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 ABSTRACT: We review the Wu-Sprung potential adding a correction involving a 
fractional derivative of Riemann Zeta function, we study a global semiclassical analysis 
in order to fit a Hamiltonian H=T+V fitting to the Riemann zeros and another new 
Hamiltonian whose energy levels are precisely the prime numbers, through these paper 
we use the notation log ( ) ln( ) log( )e x x x  for the logarithm , also unles we specify 

( )h


 means that we sum over ALL the imaginary parts of the nontrivial zero 

on both the upper and lower complex plane.

1.WU-SPRUNG POTENTIAL WITH OSCILLATING TERM

From the point of view of Physics an ‘easy’ proof to prove the celebrate Riemann 

Hypothesis would be to find a self-adjoint operator L so 
1 ˆ 0
2

iL     
 

, this would 

mean that all the zeros of the    function would have real part ½ , this is called the 
Hilbert-Polya [4 ] approach , in order to get this Linear operator Wu and Sprung [ 9] 
conjectured that if this operator were a Hamiltonian of the form 2 ( )H p V x  , then 
the ‘smooth’ part of this potential would be
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With  0 9.74123V  , the method by Wu and Sprung is based on semiclassical analysis in 
physics or WKB [ 7] approach, the idea is that in the semiclassical approximation
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In this WKB approach ,we replace the sum over Energies (imaginary part of the 
Riemann zeros) by a sum over the phase space (p,x) , also we have used the known 

properties of Dirac delta function  
( ) 0

( )
( ( ))

| '( ) |f u

x u
f x

f u





  and 

( ) ( ) ( )dxf x x a f a




  to integrate over the variable ‘p’ (momentum) . Equation (1.2) 

is just a type of Abel integral equation ( see [ 11 ] ) 
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x y t dt
f x

x t
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                     
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1 ( )
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xd f t dt
y x

dx x t


            (1.3)

If we approximate the smooth density of states ( Number of imaginary parts of the 

Riemann zeros , who are less than a given quantity E ) by  
7

( ) log
2 2 2 8

E E E
N E

  
  

, then  ( )
dN

f E
dE

 solving the last integral on (1.3) we obtain the smooth part of the 

Wu-Sprung potential defined implicitly in (1.1)

o Fractional derivative correction to Wu-Sprung potential:

Although Wu and Sprung considered only the smooth part of the density of zeros N(E) 

there is an extra term proportional to  
1 1

arg
2

is


    
  

if we insert this , inside the 

Abel integral equation (1.3)., then the oscillating term contribution to the Wu-Sprung 
potential can be defined in terms of the Riemann-Liouville differintegral [ 10] 
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      B R      (1.4)

This expression (1.4) are the common definitions for a fractional derivative/integral
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q

d f x
dtf t x t

dx q


 

      (1.5)

(derivative) (integral)

Expressions (1.5) are also useful because they satisfy a semigroup composition property 
for the fractional derivatives/integrals ,namely  .a b a bD D D  this allows to write  
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1 1/ 2 1/ 2.D D D  or 1 1/ 2 1/ 2.D D D  , however the addition of potential (1.4) makes the 
implicit form of the potential inside (1.1) harder to solve.

2. A TRACE AND ANOTHER INTEGRAL EQUATION FOR THE RIEMANN 
HYPOTHESIS:

In a previous paper [ 6 ] we obtained a Trace formula for Unitary operator  
ˆiuHU e

defined for u >0 .

 
/ 2

ˆ/ 2 / 2 0
3
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
     

     u >0   (2.1)

And 0 for u <0 .This trace (2.1) follows inmediatly from differentiation with respect to 
‘x’ and setting  ux e inside the explicit formula for the Chebyshev function
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Using the semiclassical approach inside (2.2) for u >0 and the Euler formula for the 
complex exponential ,we can get the integral equation with  wkbA R a constant to be 
fixed by empirical or numerical observations

/ 2
/ 2 / 2 0

2
0

( )
cos ( )

1 4

u u
u u

wkbu

d e e u
e e A dx uV x

du e





            

   u > 0 (2.3)

Here, the derivative of the Chebyshev function can be described as an infinite sum over 

primes p and prime powers 0

1

( ) 1
( )

log( ) p

d x
x p

dx x










  ,  this integral equation 

can be make ‘smoother’ by defining a pair of functions g(x) and h(x) with the following 
properties [ 6 ]

 Both g(x)=g(-x) and h(x)=h(-x) are even functions


0

( )
lim
x

g x

x
exists and it is finite

 The functions h(x) and g(x) are related by a Fourier Cosine transorm 
1

( ) ( )
2

i xdxh x e g 







 The function h(x) tends to 0 as x  faster than / 2xe , so the integral 

/ 2( )iux xdxe g x e



 exists as a function
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Applying the Fourier integral transform  ( ) ( )iuxh u dxe g x




  (2.3) becomes for our test 

functions g and h

    
2
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2 ( ) ( )
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A dx i h V x r i h V x r

e
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


 



                
     

     




 
     (2.4)

With ( ) ( ) ( 1)n n n     being the Mangoldt function and 
1/ 2

1/ 2

d
D

dx
 the half-

derivative, this fractional derivative appears from the property of the Fourier transform 

( ) ( )
u

u i x i xd
dxf x x e i dxf x e

d
 



 

 

   
   .  (2.4) is now the most general non-linear 

integral equation that can be obtained using the WKB approach for the potential V(x) 
and that is compatible with the Tracial condition  (2.1) many authors forget this fact and 
do not use (2.1) to construct a more general potential than Wu-Sprung one (in fact this 
Wu-sprung potential is incomplete since it does not take into account the oscillating part 
of the Riemann zeros , which is very important in the search of an operator realization 
for the Riemann Hypothesis) , in order to convert (2.4) into a linear equation it is 
enough define the change of variable  1( )x V y . A similar formla to (2.4) can be used 
to compute sums over the imaginary part of the zeros   (trace formula)
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     

 
       



 
         (2.5)

o Trace formula for Riemann Zeros and Wu-Sprung potential: 

A more general formula than (2.5)  valid only in the distributional sense expressing the 
sum over Riemann zeros without involving the prime numbers

  2 2 2
0

' 1 ' 1 4 (4 1)
( ) ( )

2 2 1 4 2 1/ 2
wkb wkb

n
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A s A s is is

s n s 

     
 





                    
  

    (2.6)

Integration from 0 to E in the variable ‘s’ will give the oscillating term 
1 1

arg
2

is


    
  

, the factor    121 4s


 is due to the pole of the Zeta function at s=1 

and the last sum comes from the non-trivial zeros   



5

Proof: if we set ( ) ( )h x x inside (2.5) and use the analytic continuation [ 5] , [6] of 
the divergent series (is a regularization more than a ‘sum’ definition)

1

( ) cos( log ) ' 1 ' 1
2

2 2n

n s n
is is

n

 
 





          
   

          
0

1

1
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as
n

e
e






        (2.7)

Together with the result  ( )
2 2

0

cos( )
( )

s n x s n
dxe ax

s n a


  


  ,and the zeta regularization 

for Dirichlet series [ 6] and [5] so we can regularize the divergent series by

log

1

( ) ' 1

2
is n

n

n
e is

n








     
 

 , then we can give a ‘formal’ proof to (2.6) . A direct 

application of this formula can be to evaluate sums of the form ( )h


 and to obtain an 

expansion for the smooth part of Wu-Sprung potential

   3/ 2 3/ 2 3/ 2 3/ 2
0 0

1 1 2 1/ 2 2 1/ 2
( )

( ) ( )/ 2 / 2
SM

n nn n

n n
Cx V i i

s ia s iai s i i s i

 

 

  
    
    

  (2.8)

With 
1

( 1) 1
lim

( 1) C


 

  
    

  and  2 1/ 2na n  this definition is obtained by just 

applying the half-derivative operator  
1/ 2

1/ 2

d

dx
and the expansion inside the equation (2.6) 

3. A POTENTIAL FUNCTION FOR THE PRIMES

A final question in our paper would be , could we obtain via semiclassical 
approximations a Hamiltonian  2 ( )H p Q x  , so we could obtain the inverse of 
potential Q(x) using the WKB approximations for the density of states or the complex 
exponential sum of density of states

 2( ) ( )n
n

E E dx dp E p Q x 
 

 

           
2( ( ))nuE u p Q x

n

e dx dpe
 

  

 

         (3.1)

So n nE p is the n-th prime number and u >0 is a Real number  , for the second case 

we will need 2 fundamental properties of Laplace transform [1 ] 

0

( ) ( )
t

L f u g t u du
 

 
 
          ( ) ( )L f t L g t f g         

0

( ) ( ) stL f t dtf t e


      (3.2)

The first formula for the potential Q(x) is inmediate, the ‘density’ of primes is given by 

the derivative of the Prime Number counting function [ 2 ]  ( )
p

d
x p

dx

   suing 
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(3.1)  (1.2) and the solution for the Abel integral equation (1.3) together with the 
defintion of the fractional derivative and integral we find  

1/ 2
1

1/ 2
0

( ) 1 ( )
( )

x

p p

d x d t dt
Q x A A

dx dx x t

 


  
        (3.3)

The constant pA can be determined by empirical or numerical observations and must be 

independent of the choice of potential Q(x) and its inverse.

The second method based on the Laplace direct and inverse transform is the following , 
using again the WKB approach to replace the sum by an integral

2
1

( ( )) ( )

0 0 0 0

nuE u p Q x uQ x ux

n

dQ
e dx dpe dxe dxe

u u dx

     
              (3.4)

On the other hand there is an exact expression for the density of primes/energies defined 

by  
0

( )nuE ux

n

e s dx x e


   , so equating (3.4) and this expression and using the unicity 

property for the Laplace transform (if two functions have the same Laplace transform , 
then these functions are equal f=g )  then (3.4) becomes

1
1/ 2 1/ 2 1

0 0 0

( ) ( )nuE ux ux ux

n

dQ
e s dx x e s dxe s dxe Q x

dx
 

  
             (3.5)

Using the convolution and the unicity properties of the Laplace transform then we reach 

to the same conclussion as in (3.3)   
1/ 2

1
1/ 2

( )
( ) p

d x
Q x A

dx

  , the problem here is that still 

we do not know the value of the Prime counting function  ( )x , one of the most 
common approaches to this function are given by the Prime Number theorem , or the 
Ramanujan approximation [3] , then our potential now becomes

1/ 2
1

1/ 2

( )
( ) p

d Li x
Q x A

dx
    or      

1/ 2 1/
1

1/ 2
1

( )
( )

lg

n

p
n

n d x
Q x A

n dx x x

 





 
  

 
        (3.6)

With  
2

( )
ln

x dt
Li x

t
  being the logarithmic integral , and ( )n the Möbius function. For 

a better definition and a good introduction to Möbius and other Numer theoretic 
functions Apostol’s book is the best reference [2] 

CONCLUSIONS AND FINAL REMARKS:

We have investigated the Wu-Sprung potential and its generalizations (2.4) , we have 
shown related to this problem , how if Trace formula for the Hamiltonian H that 
reproduces the imaginary part of the non-trivial zeros is true ( see (2.1-2-5) ) one can get 
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a semiclassical WKB approach to obtain the inverse of the potential V(x) , this 
improves the approximate result by Wu and Sprung, since they did not take care of this 
necessary condition (2.1) in order to obtain a Hamiltonian operator realization of 
Riemann Hypothesis, also in a similar manner we managed to use fractional Calculus to 
obtain the oscillatory part of the Wu-sprung potential and applied the smae in (3.6) to 
get the inverse of the potential inside a Hamiltonian whose energy levels are precisely 
the prime numbers  n nE p

APPENDIX A: A CONSTRUCTION OF THE INVERSE OF THE POTENTIAL 

V(x) FROM THE SUM niuE

n

e





We have devised a Trace formula  (2.3) using the semiclassical WKB plus the relation 
of the derivative of the Chebyshev function , the idea is can we solve (2.3) to get a real 
valued quantity ? , first of all we will not use our Trace formula, but a similar trace 
obtained by Riemann and Weyl [1] 

0 1

( ) 1 ' 1
( ) 2 ( / 2) (0) log 2 (log ) ( )

2 4 2n

n ir
h h i g g n h r dr

n

 




  

          
      (A.1)

Taking the inverse function for the potential ( )x x V , and using the approximation for 
the sum over the energies plus integration by parts 

( )niuE iuV x

n

e dxe
u

 

 

        ( )iuV iuVdx
dV e iu dVx V e

dV

 

 

        (A.2)

So taking the Fourier inverse transform , and taking into account that the trace is only 
nonzerop for u >0 , in order to get x(V) we should evaluate the integral

/ 4

1/ 2 1/ 2 1/ 2
0 00

1 1
2 ( )

| | | | | |

iu iuVe
du x V

u x x

 

    

   

 

  
        (A.3)

In order to get rid off the sum over the Non-trivial zeros, we could use (A.1) with 

1/ 2

1
( )

| |
g x

x
 to get the most general potential compatible with (2.3) and (A.1)

1/ 2

1/ 2 1/ 2 1/ 2
1

( ) ( / 4)
2

( ) cos( log / 4) 1 1 1
.

4 2logn

A
x V BCos cV D

V i

n V n ir
E Fp v dr

n n V r V r



 

 

    


                    
 

   (A.4)

Here, A,B,C ,D ,E and F are REAL numbers that describe the inverse of the potential 
V(x), since the Wu-Aprung potential and ours have been obtained by using WKB 
methods comparing the two potentials (at least the smooth parts) we could get the value 
of these constants , the sum involving ( )n is divergent , and needs to be regularized to 



8

extract some meaningful finite information, from the Dirichlet generating function, and 
integrating over ‘s’ we get via Zeta regulariztion

1/ 2 1/ 2

1/ 2 1/ 2 1/ 2
1

( ) cos( log / 4) '(1/ 2 ) '(1/ 2 )
2

(1/ 2 ) (1/ 2 )logn

n V n d iV d iV
i i

dV iV dV iVn n

  
 

 

 


      
          


(A.5)

(A.5) is get by a simple half-integration with respect to ‘s’ insde the zeta regularized 

identity
1/ 2

1

( ) 1

2is
n

n
is

n









     
 

 .

Another formula erquivalent to (A.4) can be given, if we consider in distributional sense 
1/ 2

1/ 2

( ) ( )d H x H x

dx x
 and ( ) ( ) ( )f x a f x a H x a     , then the sum (up to a constant)

1/ 2 1/ 2
0 0

1 1

| | | |x x   


   could be viewed as the half-derivative of the Density of

zeros inside the Critical line so in the WKB approximation the inverse for the potential 

is 
1/ 2 1/ 2

1
1/ 2 1/ 2

( ) ( )
( )smooth oscd N x d N x

V x
dx dx

    ,with N(T)

1 1

2
Arg iT


    

  

12
4 21 1 1 7

. log
4 2 8 2 2 2 2 8

T
iT T T T T

Arg i 
   

                
     

             

(A.6)

Then using the property  1/ 2 1 1 1/ 2. .D D D D  , ( )x V can be rewritten (at first 
approximation ignoring possible terms proportional to O(1/V) ) as

1/ 2 1/ 2 2

1/ 2 1/ 2

'(1/ 2 ) 7
e log

(1/ 2 ) 2 2 8

d iV d V V
A i V

dV iV dV V

  
 





                    
   (A.7)

Then, the Wu-Sprung potential is equivalent to our Trace formula (2.2) and (2.3) , 
however Wu and Sprung avoided the ‘oscillating’ term coming from the half-integral of 

the expression (in the sense of Zeta regularization) 
1/ 2

1

' 1 ( )

2 is
n

n
is

n









   
 

 , this term is 

obtained from the derivative of the Chebyshev step function  0d

dx


controlling how 

prime and prime powers are distributed, Also the Trace (2.3) for   ˆiuHTr e is more 

general since it can be used to give meaning to any sum ( )h


 not only for 

( )
dN

x
dx

   as we have proved in formula (2.6), in (A.7) ‘A’ is a real constant
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