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1 Introduction 

 The efficient market hypothesis based primarily on the statistical principle of Bayesian inference has been 

proved to be only a special-case scenario. The generalized financial market, modeled as a binary, stochastic 

system capable of attaining one of two possible states (High  1, Low  0) with finite probabilities, is 
shown to reach efficient equilibrium with p . M = p if and only if the transition probability matrix M2x2 

obeys the additionally imposed condition {m11 = m22, m12 = m21}, where mij is an element of M 

(Bhattacharya, 2001).  [1] 

 Efficient equilibrium is defined as the stationery condition p = [0.50, 0.50] i.e. the state in t + 1 is equi-

probable between the two possible states given the market vector in time t. However, if this restriction {m11 

= m22, m12 = m21} is removed, we get inefficient equilibrium  = [m21/(1-v), m12/(1-v)], where v = m11 – 

m21 may be derived as the eigenvalue of M and  is a generalized version of p whereby the elements of the 
market vector are no longer restricted to their efficient equilibrium values. Though this proves that the 

generalized financial market cannot possibly get reduced to pure random walk if we do away with the 

assumption of normality, it does not necessarily rule out the possibility of mean reversion as M itself 

undergoes transition over time implying a probable re-establishment of the condition {m11 = m22, m12 = 
m21} at some point of time in the foreseeable future. The temporal drift rate may be viewed as the mean 

reversion parameter k such that k
j
Mt  Mt+j.  In particular, the options market demonstrates a rather 

perplexing departure from efficiency. In a Black-Scholes type world, if stock price volatility is known a 

priori, the option prices are completely determined and any deviations are quickly arbitraged away. 

 Therefore, statistically significant mispricings in the options market are somewhat unique as the only non-

deterministic variable in option pricing theory is volatility. Moreover, given the knowledge of implied 

volatility on the short-term options, the miscalibration in implied volatility on the longer term options seem 

odd as the parameters of the process driving volatility over time can simply be estimated by an AR1 model 

(Stein, 1993). [2] 

 Clearly, the process is not quite as straightforward as a simple parameter estimation routine from an 

autoregressive process. Something does seem to affect the market players‟ collective pricing of longer term 

options, which clearly overshadows the straightforward considerations of implied volatility on the short-

term options. One clear reason for inefficiencies to exist is through overreaction of the market players to 
new information. Some inefficiency however may also be attributed to purely random white noise unrelated 

to any coherent market information. If the process driving volatility is indeed mean reverting then a low 

implied volatility on an option with a shorter time to expiration will be indicative of a higher implied 

volatility on an option with a longer time to expiration. Again, a high implied volatility on an option with a 

shorter time to expiration will be indicative of a lower implied volatility on an option with a longer time to 

expiration. However statistical evidence often contradicts this rational expectations hypothesis for the 

implied volatility term structure.  

  Denoted by ‟t (t), (where the symbol ‟ indicates first derivative) the implied volatility at time t of an 
option expiring at time T is given in a Black-Scholes type world as follows: 

 

         ’t (t) = j=0
T
 [{M + k

j
 (t - M)}/T] dj 

         ’t (t) = M + (k
T
 – 1)(t - M)/(T ln k)       (1) 

 



Here t evolves according to a continuous-time, first-order Wiener process as follows: 
 

         dt = - 0 (t - M) dt + 1t dt               (2)                                                      

 

 0 = - ln k, where k is the mean reversion parameter. Viewing this as a mean reverting AR1 process yields 

the expectation at time t, Et (t+j), of the instantaneous volatility at time t+j, in the required form as it 
appears under the integral sign in equation (1). 

 This theorizes that volatility is rationally expected to gravitate geometrically back towards its long-term 

mean level of M. That is, when instantaneous volatility is above its mean level (t > M), the implied 

volatility on an option should be decreasing as t  T. Again, when instantaneous volatility is below the 

long-term mean, it should be rationally expected to be increasing as t  T. That this theorization does not 
satisfactorily reflect reality is attributable to some kind combined effect of overreaction of the market 

players to excursions in implied volatility of short-term options and their corresponding underreaction to 

the historical propensity of these excursions to be rather short-lived. 

2 A Cognitive Dissonance Model of Behavioral Market Dynamics 
 
 Whenever a group of people starts acting in unison guided by their hearts rather than their heads, two 

things are seen to happen. Their individual suggestibilities decrease rapidly while the suggestibility of the 

group as a whole increases even more rapidly. The „leader‟, who may be no more than just the most 

vociferous agitator, then primarily shapes the groupthink. He ultimately becomes the focus of the group 

opinion. In any financial market, it is the gurus and the experts who often play this role. The crowd hangs 

on their every word and makes them the uncontested Oracles of the marketplace.  

 If figures and formulae continue to speak against the prevailing groupthink, this could result into a mass 

cognitive dissonance calling for reinforcing self-rationalizations to be strenuously developed to suppress 

this dissonance. As individual suggestibilities are at a lower level compared to the group suggestibility, 
these self-rationalizations can actually further fuel the prevailing groupthink. This groupthink can even 

crystallize into something stronger if there is also a simultaneous vigilance depression effect caused by a 

tendency to filter out the dissonance-causing information. The non-linear feedback process keeps blowing 

up the bubble until a critical point is reached and the bubble bursts ending the prevailing groupthink with a 

recalibration of the position by the experts. 

 Our proposed model has two distinct components – a linear feedback process containing no looping and a 

non-linear feedback process fuelled by an unstable rationalization loop. It is due to this loop that perceived 

true value of an option might be pushed away from its theoretical true value. The market price of an option 

will follow its perceived true value rather than its theoretical true value and hence the inefficiencies arise. 

This does not mean that the market as a whole has to be inefficient – the market can very well be close to 

strong efficiency! Only it is the perceived true value that determines the actual price-path meaning that all 

market information (as well as some of the random white noise) gets automatically anchored to this 
perceived true value. This would also explain why excursions in short-term implied volatilities tend to 

dominate the historical considerations of mean reversion – the perceived term structure simply becomes 

anchored to the prevailing groupthink about the nature of the implied volatility. 

 Our conceptual model is based on two primary assumptions: 

 

The unstable rationalization loop comes into effect if and only if the group is a reasonably well-bonded one 

i.e. if the initial group suggestibility has already attained a certain minimum level as, for example, in cases 

of strong cartel formations and; 

 

The   unstable rationalization loop stays in force till some critical point in time t* is reached in the life of 

the option.  Obviously t* will tend to be quite close to T – the time of expiration. At that critical point any 
further divergence becomes unsustainable due to the extreme pressure exerted by real economic forces 

„gone out of sync‟ and the gap between perceived and theoretical true values close very rapidly.             

 



2.1 The Classical Cognitive Dissonance Paradigm 

 
 Since Leon Festinger presented it well over four decades ago, cognitive dissonance theory has continued to 

generate a lot of interest as well as controversy. [3] [4] This was mainly due to the fact that the theory was 

originally stated in very generalized, abstract terms. As a consequence, it presented possible areas of 

application covering a number of psychological issues involving the interaction of cognitive, motivational, 

and emotional factors. Festinger‟s dissonance theory began by postulating that pairs of cognitions 

(elements of knowledge), given that they are relevant to one another, can either be in agreement with each 
other or otherwise. If they are in agreement they are said to be consonant, otherwise they are termed 

dissonant. The mental condition that forms out of a pair of dissonant cognitions is what Festinger calls 

cognitive dissonance.  

 The existence of dissonance, being psychologically uncomfortable, motivates the person to reduce the 

dissonance by a process of filtering out information that are likely to increase the dissonance. The greater 

the degree of the dissonance, the greater is the pressure to reduce dissonance and change a particular 

cognition.  The likelihood that a particular cognition will change is determined by the resistance to change 

of the cognition. Again, resistance to change is based on the responsiveness of the cognition to reality and 

on the extent to which the particular cognition is in line with various other cognitions. Resistance to change 

of cognition depends on the extent of loss or suffering that must be endured and the satisfaction or pleasure 

obtained from the behavior. [5] [6] [7] [8] [9] [10] [11] [12] 

 We propose the conjecture that cognitive dissonance is one possible (indeed highly likely) critical 
behavioral trigger [13] that sets off the rationalization loop and subsequently feeds it.  

 2.2 Non-linear Feedback Statistics Generating a Rationalization Loop  

 
 In a linear autoregressive model of order R, a time series yn is modeled as a linear combination of N earlier 

values in the time series, with an added correction term xn:  

 

                         yn = xn - aj yn-j                                            (3) 

 

 The autoregressive coefficients aj (j = 1, ... N) are fitted by minimizing the mean-squared difference 

between the modeled time series yn and the observed time series yn. The minimization process results in a 

system of linear equations for the coefficients an, known as the Yule-Walker equations. Conceptually, the 

time series yn is considered to be the output of a discrete linear feedback circuit driven by a noise xn, in 

which delay loops of lag j have feedback strength aj. For Gaussian signals, an autoregressive model often 

provides a concise description of the time series yn, and calculation of the coefficients aj provides an 
indirect but highly efficient method of spectral estimation. In a full nonlinear autoregressive model, 

quadratic (or higher-order) terms are added to the linear autoregressive model. A constant term is also 

added, to counteract any net offset due to the quadratic terms: 

 

        yn = xn - a0 - aj yn-j - bj, k yn-jyn-k                      (4) 

 

 The autoregressive coefficients aj (j = 0, ... N) and bj, k (j, k = 1, ... N) are fit by minimizing the mean-

squared difference between the modeled time series yn and the observed time series yn
*. The minimization 

process also results in a system of linear equations, which are generalizations of the Yule-Walker equations 

for the linear autoregressive model.   

 Conceptually, the time series yn is considered to be the output of a circuit with nonlinear feedback, driven 

by a noise xn. In principle, the coefficients bj, k describes dynamical features that are not evident in the 

power spectrum or related measures. Although the equations for the autoregressive coefficients aj and bj, k 
are linear, the estimates of these parameters are often unstable, essentially because a large number of them 

must be estimated often resulting in significant estimation errors. This means that all linear predictive 

systems tend to break down once a rationalization loop has been generated. As parameters of the volatility 

driving process, which are used to extricate the implied volatility on the longer term options from the 

implied volatility on the short-term ones, are estimated by an AR1 model, which belongs to the class of 

regression models collectively referred to as the GLIM (General Linear Model), the parameter estimates go 

„out of sync‟ with those predicted by a theoretical pricing model. 



     Unfortunately, there is no straightforward method to distinguish linear time series models (H0) from 

non-linear alternatives (HA). The approach generally taken is to test the H0 of linearity against a pre-chosen 

particular non-linear HA. Using the classical theory of statistical hypothesis testing, several test statistics 

have been developed for this purpose. They can be classified as Lagrange Multiplier (LM) tests, likelihood 

ratio (LR) tests and Wald (W) tests. The LR test requires estimation of the model parameters both under H0 

and HA, whereas the LM test requires estimation only under H0. Hence in case of a complicated, non-linear 
HA containing many more parameters as compared to the model under H0, the LM test is far more 

convenient to use. On the other hand, the LM test is designed to reveal specific types of non-linearities. The 

test may also have some power against inappropriate alternatives.  However, there may at the same time 

exist alternative non-linear models against which an LM test is not powerful. Thus rejecting H0 on the basis 

of such a test does not permit robust conclusions about the nature of the non-linearity. One possible 

solution to this problem is using a W test which estimates the model parameters under a well-specified non-

linear HA [14]. 

 

 3 The Zadeh argument revisited  

  In the face of non-linear feedback processes generated by dissonant information sources, even 

mathematically sound rule-based reasoning schemes often tend to break down. As a pertinent illustration, 

we take Zadeh‟s argument against the well-known Dempster‟s rule [15] [16]. Let  = {1, 2 … n} stand 
for a set of n mutually exhaustive, elementary events that cannot be precisely defined and classified making 

it impossible to construct a larger set ref of disjoint elementary hypotheses.  

 The assumption of exhaustiveness is not a strong one because whenever j, j = 1, 2 … n does not constitute 

an exhaustive set of elementary events, one can always add an extra element 0 such that j, j = 0, 1 … n 

describes an exhaustive set. Then, if  is considered to be a general frame of discernment of the problem 

under consideration, a map m (.): D

  [0, 1] may be defined associated with a given body of evidence B 

that can support paradoxical information as follows: 

 

                                    m () = 0                            (5)    

                                    AD

 m (A) = 1                (6) 

  

 Then m (A) is called A‟s basic probability number. In line with the Dempster-Shafer Theory, the belief 

and plausibility functions are defined as follows: 

 

                 Bel (A) = BD


, BA m (B)                  (7)                                                                        

                  Pl (A) = BD


, BA   m (B)               (8)                                                                               
 

 Now let Bel1 (.) and Bel2 (.) be two belief functions over the same frame of discernment  and their 
corresponding information granules m1 (.) and m2 (.). Then the combined global belief function is obtained 

as Bel1 (.) = Bel1 (.)  Bel2 (.) by combining the information granules m1 (.) and m2 (.) as follows for m () 

= 0 and for any C  0 and C  ; 
 

[m1  m2] (C)  = [AB=C m1 (A) m2 (B)] / [1 - AB =  m1 (A) m2 (B)]                                         (9) 

 

 The summation notation AB=C is necessarily interpreted as the sum over all A, B   such that A  B = 
C. The orthogonal sum m (.) is considered a basic probability assignment if and only if the denominator in 

equation (5) is non-zero. Otherwise the orthogonal sum m (.) does not exist and the bodies of evidences B1 

and B2 are said to be in full contradiction.  

 Such a case can arise when there exists A   such that Bel1 (A) =1 and Bel2 (Ac) = 1 – a problem 
associated with optimal Bayesian information fusion rule (Dezert, 2001). Extending Zadeh‟s argument to 

option market anomalies, if we now assume that under conditions of asymmetric market information, two 

market players with homogeneous expectations view implied volatility on the long-term options. One of 

them sees it as either arising out of (A) current excursion in implied volatility on short-term options with 

probability 0.99 or out of (C) random white noise with probability of 0.01. The other sees it as either 



arising out of (B) historical pattern of implied volatility on short-run options with probability 0.99 or out of 

(C) random white noise with probability of 0.01.  

 Using Dempster‟s rule of combination, the unexpected final conclusion boils down to the expression m (C) 

= [m1  m2] (C) = 0.0001/(1 – 0.0099 – 0.0099 – 0.9801) = 1 i.e. the determinant of implied volatility on 
long-run options is random white noise with absolute certainty!   

 To deal with this information fusion problem a new combination rule has been proposed under the name of 

Dezert-Smarandache combination rule of paradoxical sources of evidence, which looks for the optimal 

combination i.e. the basic probability assignment m (.) = m1 (.)  m2 (.) that maximizes the joint entropy 
of the two information sources [17].  
 The Zadeh illustration originally sought to bring out the fallacy of automated reasoning based on the 

Dempster‟s rule and showed that some form of the degree of conflict between the sources must be 

considered before applying the rule. However, in the context of financial markets this assumes a great 

amount of practical significance in terms of how it might explain some of the recurrent anomalies in rule-

based information processing by inter-related market players in the face of apparently conflicting 

knowledge sources. The traditional conflict between the fundamental analysts and the technical analysts 

over the credibility of their respective knowledge sources is of course all too well known!  

4 Market Information Reconciliation Based on the Concept of 

Neutrosophic Risk 
 
 Neutrosophy is a new branch of philosophy that is concerned with neutralities and their interaction with 

various ideational spectra. Let T, I, F be real subsets of the non-standard interval ]-0, 1+[. If  > 0 is an 

infinitesimal such that for all positive integers n and we have || < 1/n, then the non-standard finite numbers 

1+ = 1+ and 0- = 0- form the boundaries of the non-standard interval ]-0, 1+[. Statically, T, I, F are subsets 
while dynamically they may be viewed as set-valued vector functions. If a logical proposition is said to be 
t% true in T, i% indeterminate in I and f% false in F then T, I, F are referred to as the neutrosophic 

components. Neutrosophic probability is useful to events that are shrouded in a veil of indeterminacy like 

the actual implied volatility of long-term options. As this approach uses a subset-approximation for truth-

values, indeterminacy and falsity-values it provides a better approximation than classical probability to 

uncertain events. 

 The neutrosophic probability approach also makes a distinction between “relative sure event”, event that is 

true only in certain world(s): NP (rse) = 1, and “absolute sure event”, event that is true for all possible 

world(s): NP (ase) =1+. Similar relations can be drawn for “relative impossible event” / “absolute 

impossible event” and “relative indeterminate event” / “absolute indeterminate event”. In case where the 

truth- and falsity-components are complimentary i.e. they sum up to unity, and there is no indeterminacy 

and one is reduced to classical probability. Therefore, neutrosophic probability may be viewed as a 

generalization of classical and imprecise probabilities. [18] 
 When a long-term option priced by the collective action of the market players is observed to be deviating 

from the theoretical price, three possibilities must be considered: 

 (1) The theoretical price is obtained by an inadequate pricing model, which means that the market price 

may well be the true price,  

 (2) An unstable rationalization loop has taken shape that has pushed the market price of the option „out of 

sync‟ with its true price, or 

 (3) The nature of the deviation is indeterminate and could be due to either (a) or (b) or a super-position of 

both (a) and (b) and/or due to some random white noise. 

 However, it is to be noted that in none of these three possible cases are we referring to the efficiency or 

otherwise of the market as a whole. The market can only be as efficient as the information it gets to 

process. We term the systematic risk associated with the efficient market as resolvable risk. Therefore, if 
the information about the true price of the option is misleading (perhaps due to an inadequate pricing 

model), the market cannot be expected to process it into something useful – after all, the markets can‟t be 

expected to pull jack-rabbits out of empty hats!     The perceived risk resulting from the imprecision 

associated with how human psycho-cognitive factors subjectively interpret information and use the 

processed information in decision-making is what we term as irresolvable (or neutrosophic) risk.  

 



 With T, I, F as the neutrosophic components, let us now define the following events: 

 

H = {p: p is the true option price determined by the theoretical pricing model} and  

 

M = {p: p is the true option price determined by the prevailing market price}                             (10) 

               

 Then there is a t% chance that the event (H  Mc) is true, or corollarily, the corresponding complimentary 

event (Hc  M) is untrue, there is a f% chance that the event (Mc  H) is untrue, or corollarily, the 

complimentary event (M  Hc) is true and there is a i% chance that neither (H  Mc) nor (M  Hc) is 
true/untrue; i.e. the determinant of the true market price is indeterminate. This would fit in nicely with 

possibility (c) enumerated above – that the nature of the deviation could be due to either (a) or (b) or a 
super-position of both (a) and (b) and/or due to some random white noise.  

 Illustratively, a set of AR1 models used to extract the mean reversion parameter driving the volatility 

process over time have coefficients of determination in the range say between 50%-70%, then we can say 

that t varies in the set T (50% - 70%). If the subjective probability assessments of well-informed market 

players about the weight of the current excursions in implied volatility on short-term options lie in the 

range say between 40%-60%, then f varies in the set F (40% - 60%). Then unexplained variation in the 

temporal volatility driving process together with the subjective assessment by the market players will make 

the event indeterminate by either 30% or 40%. Then the neutrosophic probability of the true price of the 

option being determined by the theoretical pricing model is NP (H  M
c
) = [(50 – 70), (40 – 60), {30, 40}].  

5 Conclusion 

 Finally, in terms of our behavioral conceptualization of the market anomaly primarily as manifestation of 

mass cognitive dissonance, the joint neutrosophic probability NP (H  Mc) will also be indicative of the 
extent to which an unstable rationalization loop has formed out of such mass cognitive dissonance that is 

causing the market price to deviate from the true price of the option. Obviously increasing strength of the 

non-linear feedback process fuelling the rationalization loop will tend to increase this deviation. As human 

psychology; and consequently a lot of subjectivity; is involved in the process of determining what drives 

the market prices, neutrosophic reasoning will tend to reconcile market information much more realistically 
than classical probability theory. Neutrosophic reasoning approach will also be an improvement over rule-

based reasoning possibly avoiding pitfalls like that brought out by Zadeh‟s argument. This has particularly 

significant implications for the vast majority of market players who rely on signals generated by some 

automated trading system following simple rule-based logic.  

 However, the fact that there is inherent subjectivity in processing the price information coming out of 

financial markets, given that the way a particular piece of information is subjectively interpreted by an 

individual investor may not be the globally correct interpretation, there is always the matter of irresolvable 

risk that will tend to pre-dispose the investor in favour of some safe investment alternative that offers some 

protection against both resolvable as well as irresolvable risk. This highlights the rapidly increasing 

importance and popularity of safe investment options that are based on some form of portfolio insurance 

i.e. an investment mechanism where the investor has some kind of in-built downside protection against 
adverse price movements resulting from erroneous interpretation of market information e.g. constant 

proportion portfolio insurance (CPPI) and its generalized form – options based portfolio insurance (OBPI).  

Such portfolio insurance strategies offer protection against all possible downsides, whether resulting out of 

resolvable or irresolvable risk, thereby making the investors feel confident about the decisions they take. 
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