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Abstract— It is demonstrated clearly that for the same 

classical generalized system the Tsallis power-laws with 

both the 1>q and the 1<q  can be induced by the 

constraint of the constant harmonic mean for the so-called 

reciprocal energies rE  and at the same time the 

Boltzmann distribution or the negative exponential 

probability distribution can be generated with the 

constraint of the constant arithmetic mean for the 

generalized energies E . The author thus argues that there 

might be no definite “extensive system” or “classical 

system” and there are only “classical physical parameters” 

and “classical constraints”. For any physical system or 
generalized system, it is the non-natural constraints which 

determine both the forms of the entropies and the non-

uniform equilibrium distributions. 
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I. INTRODUCTION 

It is well known that under the constraint of the constant 

arithmetic mean of the physical energy, the physical system 

will follow the Boltzmann distribution or the negative 
exponential probability distribution. This fact was explained 

by Jaynes through maximizing the Boltzmman-Gibbs-

Shannon entropy under the given constraints of both the 

natural constraint and the constant arithmetic mean [1]. In 

previous work by the author it was demonstrated in theory that 

a constant statistical harmonic mean of the effective energies 

of a generalized system may induce the standard form of 

Tsallis’ power law when the Tsallis Entropy with the Tsallis 

q-parameter larger than one is maximized [2][3][4][5]. In this 

paper, the author likes to show an interesting fact of that for 

the same classical generalized system while the constraint of 

the constant arithmetic mean for the generalized 

energies E results in the classical Boltzmann distribution or 

the negative exponential probability distribution, the 

constraint of the constant harmonic mean for the so-called 

reciprocal energies rE  may lead to the Tsallis power-laws 

with both the 1>q and the 1<q . Based these facts of the 

numerical experiments, some discussions are made. 

II. THE SIMULATION FOR A CLASSICAL 

GENERALIZED SYSTEM WITH MATLAB  

Imagine you cut a tangled skein of jute into many segments 

with a sharp knife and ask yourself the following scientific 

question: “What is the probability distribution of the lengths 

of all the segments ? ”. Zhang and his co-worker [6] made a 

numerical simulation and a theoretical analysis with the 
maximal entropy principle developed by Jaynes [1]. Both the 

theory and the results of the numerical experiments 

demonstrated clearly that the lengths of the segments follow a 

negative exponential probability distribution or the Boltzmann 

distribution. Zhang’s simulation system is very classical and 

the results are well known. In this paper the author uses the 

same classical system to make a MATLAB simulation and to 

show some interesting new results. It is assumed that the 

readers are familiar with MATLAB and some sentences of 

MATLAB language are used directly to express some 

mathematical equations. The detailed algorithm is shown as 
follows. 

1) Generate 10,000,000 random numbers with MATLAB 

simulating cutting a tangled skein of jute into segments with a 

sharp knife  

brandar += )1,10000000(*  (Eq.1),  

where ,10000=a and .5000=b  

2) Sort these random numbers in ascending order. 

1r = )(rsort  (Eq.2),  

3) Add the possible minimum and maximum of the random 

number r  into the expanded, sorted and transposed array of 

2r . In the following equation 3, the '1r is the transpose of the 

.1r  

2r =[5000 '1r  10000] (Eq.3),  

4) Calculate the differences E  for the pairs of the adjacent 

elements in the 2r  which are the lengths of the segments, and 

define the differences E  as the generalized energies of the 

generalized system. 

)1:1():2( 22 −−= endrendrE  (Eq.4),  

5) Define the reciprocal energies rE of the generalized 

energies E  as  

)1(

1

E
Er

γ+
=  (Eq.5),  

It is easy to show theoretically that 

constE
S

i

i =∑
=1

 (Eq.6),  
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and for a given γ , 

const
E

S

i ri

=∑
=1

1
 (Eq.7), 

where iE and riE are the ith elements of the generalized 

energies E  and the reciprocal energies rE respectively, The 

const is meant by a constant independent of the random 

numbers generated by the equation 1, and the S is the sample 

size of the segments. In this paper, 10000001=S . The 

results of the numerical experiments indicated that although 

the generalized energies E  and the reciprocal energies rE  

change greatly from one experiment to another, the sums in 

the equations 6-7 do not change except for a small numerical 

errors. It is meant by the equation 7 that the harmonic mean of 

the reciprocal energies rE , proportional to the reciprocal of 

the sum shown in the equation 7, is a constant. 

6) Get the probability distributions for the 100 uniform 

intervals of both the generalized energies E and the reciprocal 

energies 
rE . The centers of the intervals or the discrete 

samples denoted as 1X  and 2X  for both the generalized 

energies E  and the reciprocal energies rE are calculated with  

the following formula. 

11 *)
2

1
()min( steprankEX −+=  (Eq.8), 

22 *)
2

1
()min( steprankEX r −+=  (Eq.9), 

where ]100:1[=rank , and 

100

)min()max(
1

EE
step

−
=  (Eq.10) 

100

)min()max(
2

rr EE
step

−
=  (Eq.11) 

The uniformity of the 100 intervals makes the probabilities 

proportional approximately to the values of the pdf or the 

probability density functions about the both the generalized 

energies E and the reciprocal energies rE . 

III. THE SIMULATION RESULTS 

The standard form of the Tsallis power-law for the 

reciprocal energies rE  as an effective energies shown in [2] 

can be expressed as [2][5]  

kP ∝ 
)1(

1

)( −

−

q

rE  (Eq.12),  

and the normalized probabilities can thus be described as 

kp = 

∑
−
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E
 (Eq.13),  

For the generalized energies E  the probability following the 

Boltzmann distribution or the negative exponential probability 

distribution can be described as 

BkP ∝ )exp( Eα−  (Eq.14),  

and the normalized probability distribution can be written as 

=Bkp  

∑ −

−

)exp(

)exp(

E

E

α

α
 (Eq.15),  

The simulation results are summarized in Fig.1-3. 
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 with γ=4.0E+5
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Tsallis Power-law, q=1.52

Boltzmman Distribution, α  = 999.73

 

Figure 1 illustrates that the probability distribution of the reciprocal 

energies rE  fits the Tsallis power law with the 52.1=q  well  

while the probability distribution of the generalized energies E fits 

the Boltzmman distribution with 73.999=α  well . The 

logarithm of the normalized probability for the reciprocal energies 

rE looks like a straight line as a function of the logarithm of the 

discrete samples of  rE , which indicates a power-law. 

0 0.05 0.1 0.15 0.2 0.25 0.3
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

The Discrete Samples 

T
h
e
 L

o
g
a
ri

th
m

 o
f 

th
e
 N

o
rm

a
liz

e
d
 P

ro
b
a
b

ili
ty

 

 

E
r
 with γ=4.0E+5

E

Tsallis Power-law, q=1.52

Boltzmman Distribution, α  = 999.73

 

Figure 2 illustrates that the probability distribution of the generalized 

energies E  follows the Boltzmann distribution. 
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Figure 3 illustrates that the probability distribution of the reciprocal 

energies 
rE  fits the Tsallis power law with the 9990.0=q well 

when 1=γ . A clear comparison is formed between the positive 

slope with 1=γ and the negative slope with 400000=γ as 

shown in Fig.1. 

From the basically repeatable numerical results as shown in 

Fig 1-3, one may see clearly that for the same generalized 

system the Tsallis power laws with both  the 1>q and  the 

1<q  and the Boltzmann distribution can be formed under 

different constraints and with the different values of the 

parameter γ  for  two closely related system parameters of the 

generalized energies E and the reciprocal energies rE . The 

MATLAB’s optimization function called fmincon is used to 

optimize the fitting.  

IV. THE IMPLICATIONS OF THE SIMULATION 

Tsallis and his co-workers use the q-parameter to 

distinguish a nonextensive system from an extensive system 

[4]. When the 1>−q , the Tsallis entropy becomes the 

Boltzmann-Gibbs-Shannon entropy and the system is called 

an extensive system or classical system. When the 1>q , the 

system is called a nonextensive system or a non-classical 

system. The simulation results shown in this paper, however, 

have clearly and repeatedly demonstrated that the Tsallis 

entropies with essentially different q-parameters and the 
Boltzmann-Gibbs-Shannon entropy as the special case of the 

Tsallis entropy with 1→q  are all applicable to the same 

generalized system for the generalized energy E and its 

reciprocal energy rE under different constraints. Is the 

generalized system an extensive system or a nonextensive 

system ? There might be no definite “extensive system “ or 

“classical system” and there are only “classical parameters” 
and “classical constraints”. For any physical system or 

generalized system, it is the non-natural constraints which 

determine both the forms of the entropies and the non-uniform 

equilibrium distributions. The reasons are that we can only get 

a uniform distribution if there is no non-natural constraint and 

the uniform distribution can be obtained with the maximizing 

of both the Tsallis entropy with q ≠1  and the Boltzmann-

Gibbs-Shannon entropy as a special case of the Tsallis entropy 

with 1→q  Therefore the form of the entropy will not be 

exclusive if there is no non-natural constraint [3]. 

V. CONCLUSION AND DISCUSSIONS 

It has been demonstrated clearly that for the same 

generalized system the Boltzmann distribution can be induced 

for the generalized energies E under the constraint of the 

constant arithmetic mean and at the same time the Tsallis 

power-law may be generated under the constraint of the 

constant harmonic mean for the reciprocal energies 
rE  of the 

energies E . The author thus once again argues that [3] for 

any physical system or generalized system, it is the non-

natural constraints which determine both the forms of the 

entropies and the non-uniform equilibrium distributions. 
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