The New Prime theorem (15)

$$P_{j} = (j)^{3} P + (k - j)^{3}, j = 1, \dots, k - 1$$

Chun-Xuan Jiang

P. O. Box 3924, Beijing 100854, P. R. China

jiangchunxuan@vip.sohu.com

Abstract

Using Jiang function we prove that there exist infinitely many primes P such that each of $(j)^3 P + (k-j)^3$ is a prime.

Theorem. Let k be a given prime.

$$P_{j} = (j)^{3} P + (k - j)^{3} (j = 1, \dots, k - 1)$$
(1)

There exist infinitely many prime P such that each of $(j)^3 P + (k-j)^3$ is a prime.

Proof. We have Jiang function[1]

$$J_2(\omega) = \prod_{p} [P - 1 - \chi(P)],$$
 (2)

where $\omega = \prod_{P} P$, $\chi(P)$ is the number of solutions of congruence

$$\prod_{j=1}^{k-1} [(j)^3 q + (k-j)^3] \equiv 0 \pmod{P}, q = 1, \dots, P-1.$$
(3)

From (3) we have $\chi(2) = 0$, if P < k then $\chi(P) \le P - 2$, $\chi(k) = 1$, if k < P then $\chi(P) \le k - 1$. From (3) we have

$$J_{\gamma}(\omega) \neq 0$$
. (4)

We prove that there exist inifinitely many primes P such that each of $(j)^3P+(k-j)^3$ is a prime. Jiang function is a subset of Euler function: $J_2(\omega) \subset \phi(\omega)$.

We have asymptotic formula [1]

$$\pi_{k}(N,2) = \left| \left\{ P \le N : (j)^{3} P + (k-j)^{3} = prime \right\} \right| \sim \frac{J_{2}(\omega)\omega^{k-1}}{\phi^{k}(\omega)} \frac{N}{\log^{k} N}. \tag{5}$$

where $\phi(\omega) = \prod_{P} (P-1)$.

Example 1. Let k = 3. From (1) we have

$$P_1 = P + 8, \quad P_2 = 8P + 1$$
 (6)

We have Jiang function

$$J_2(\omega) = \prod_{5 \le P} (P - 3) \ne 0$$
 (7)

There exist infinitely many primes P such that P_1 and P_2 are all prime. We have asymptotic formula

$$\pi_3(N,2) = \left| \left\{ P \le N : P_1 = prime, P_2 = prime \right\} \right| \sim \frac{J_2(\omega)\omega^2}{\phi^3(\omega)} \frac{N}{\log^3 N}$$
 (8)

Example 2. Let k = 5, from (1) we have

$$P_{j} = (j)^{3} P + (k - j)^{3} (j = 1, 2, 3, 4)$$
(9)

We have jiang function

$$J_2(\omega) = \prod_{P} [P - 1 - \chi(P)],$$
 (10)

where $\chi(P)$ is the number of solutions of congruence

$$\prod_{j=1}^{4} [(j)^{3} q + (k-j)^{3}] \equiv 0 \pmod{P}$$
 (11)

From (11) we have $\chi(2) = 0$, $\chi(3) = 1$, $\chi(5) = 1$, $\chi(7) = 2$, $\chi(11) = 4$, $\chi(13) = 3$, $\chi(P) = 4$ otherwise.

Substituting it into (10) we have.

$$J_2(\omega) = 648 \prod_{17 < P} (P - 5) \neq 0$$
 (12)

We prove that there exist infinitely many primes P such that each of $(j)^3 P + (k-j)^3$ is prime.

Note. The prime numbers theory is to count the Jiang function $J_{n+1}(\omega)$ and Jiang singular

series
$$\sigma(J) = \frac{J_2(\omega)\omega^{k-1}}{\phi^k(\omega)} = \prod_P \left(1 - \frac{1 + \chi(P)}{P}\right) (1 - \frac{1}{P})^{-k}$$
 [1-2], which can count the number of prime

number. The prime number is not random. But Hardy singular series $\sigma(H) = \prod_{P} \left(1 - \frac{v(P)}{P}\right) (1 - \frac{1}{P})^{-k}$

is false. [2-5], which can not count the number of prime numbers.

References

- [1] Chun-Xuan Jiang, Jiang's function $J_{n+1}(\omega)$ in prime distribution. http://www. wbabin.net/math/xuan2. pdf. http://wbabin.net/xuan.htm#chun-xuan.
- [2] G. H. Hardy and J. E. Littlewood, Some problems of "Partitio Numerorum", III: On the expression of a number as a sum of primes. Acta Math., 44(1923)-70.
- [4] B. Green and T. Tao, Linear equations in primes. To appear, Ann. Math.
- [5] D. Goldston, J. Pintz and C. Y. Yildirim, Primes in tuples I. Ann. Math., 170(2009) 819-862.