The New Prime theorem (14)

$$P_{j} = (j)^{2} P + (k - j)^{2}, j = 1, \dots, k - 1$$

Chun-Xuan Jiang

P. O. Box 3924, Beijing 100854, P. R. China

jiangchunxuan@vip.sohu.com

Abstract

Using Jiang function we prove that there exist infinitely many primes P such that each of $(j)^2 P + (k-j)^2$ is a prime.

Theorem. Let k be a given prime.

$$P_{j} = (j)^{2} P + (k - j)^{2} (j = 1, \dots, k - 1)$$
(1)

There exist infinitely many prime P such that each of $(j)^2 P + (k-j)^2$ is a prime.

Proof. We have Jiang function[1]

$$J_2(\omega) = \prod_{p} [P - 1 - \chi(P)],$$
 (2)

where $\omega = \prod_{P} P$, $\chi(P)$ is the number of solutions of congruence

$$\prod_{i=1}^{k-1} [(j)^2 q + (h-j)^2] \equiv 0 \pmod{P}, q = 1, \dots, P-1.$$
(3)

From (3) we have $\chi(2) = 0$ if P < k then $\chi(P) \le P - 2$, $\chi(k) = 1$, if k < P then $\chi(P) \le k - 1$. Jiang functions a subset of Euler function: $J_2(\omega) \subset \phi(\omega)$. From (3) we have

$$J_{\gamma}(\omega) \neq 0$$
. (4)

We prove that there exist inifinitely many primes P such that each of $(j)^2 P + (k-j)^2$ is a prime.

We have asymptotic formula

$$\pi_{k}(N,2) = \left| \left\{ P \le N : (j)^{2} P + (k-j)^{2} = prime \right\} \right| \sim \frac{J_{2}(\omega)\omega^{k-1}}{\phi^{k}(\omega)} \frac{N}{\log^{k} N}, \tag{5}$$

where $\phi(\omega) = \prod_{P} (P-1)$.

We have [2]

$$|\{P \le N : jP + k - j = prime\}| \le |\{P \le N : (j)^2 P + (k - j)^2 = prime\}|$$
 (6)

Example 1. Let K = 3. From (1) we have

$$P_1 = P + 4, P_2 = 4P + 1 \tag{7}$$

We have Jiang function

$$J_2(\omega) = \prod_{5 < P} (P - 3) \neq 0$$
 (8)

There exist infinitely many primes P such that P_1 and P_2 are all prime. We have asymptotic formula

$$\pi_3(N,2) = \left| \left\{ P \le N : P_1 = prime, P_2 = prime \right\} \right| \sim \frac{J_2(\omega)\omega^2}{\phi^3(\omega)} \frac{N}{\log^3 N}$$
 (9)

Example 2. Let k = 5, from (1) we have

$$P_{i} = (j)^{2} P + (5 - j)^{2} (j = 1, 2, 3, 4)$$
(10)

We have jiang function

$$J_2(\omega) = \prod_{p} [P - 1 - \chi(P)].$$
 (11)

We have $\chi(3) = 1$, $\chi(5) = 1$, $\chi(7) = 2$, $\chi(11) = 2$, $\chi(13) = 3$, $\chi(17) = 3$, $\chi(P) = 4$ otherwise.

Substituting it into (11) we have

$$J_2(\omega) = 11232 \prod_{19 \le P} (P - 5) \ne 0$$
 (12)

There exist infinitely many primes P such that P_1, P_2, P_3 and P_4 are all prime.

We have asymptotic formula

$$\pi_{5}(N,2) = \left| \left\{ P \le N : P_{1}, P_{2}, P_{3}, P_{4} = prime \right\} \right| \sim \frac{J_{2}(\omega)\omega^{4}}{\phi^{5}(\omega)} \frac{N}{\log^{5} N}$$
 (13)

Example 3. Let k = 7. From (1) we have

$$P_{j} = (j)^{2} P + (7 - j)^{2} (j = 1, 2, 3, 4, 5, 6)$$
(14)

We have jiang function

$$J_2(\omega) = \prod_{p} [P - 1 - \chi(P)].$$
 (15)

Where $\chi(2) = 0$, $\chi(3) = 1$, $\chi(5) = 2$, $\chi(7) = 1$, $\chi(11) = 5$, $\chi(13) = 5$, $\chi(17) = 4$,

$$\chi(29) = 5$$
, $\chi(37) = 5$, $\chi(P) = 6$ otherwise.

From (15) we have

$$J_{2}(\omega) \neq 0 \tag{16}$$

We prove that there exist infinitely many primes P such that each of $(j)^2P+(7-j)^2$ is a prime.

Note. The prime numbers theory is to count the Jiang function $J_{n+1}(\omega)$ and Jiang singular

series $\sigma(J) = \frac{J_2(\omega)\omega^{k-1}}{\phi^k(\omega)} = \prod_P \left(1 - \frac{1 + \chi(P)}{P}\right) (1 - \frac{1}{P})^{-k}$ [1-3], which can count the number of prime

numbers. The prime number is not random. But Hardy singular series $\sigma(H) = \prod_{P} \left(1 - \frac{v(P)}{P}\right) (1 - \frac{1}{P})^{-k}$ is false [4-6], which can not count the number of prime numbers.

References

- [1] Chun-Xuan Jiang, Jiang's function $J_{n+1}(\omega)$ in prime distribution. http://www. wbabin.net/math/xuan2. pdf. http://wbabin.net/xuan.htm#chun-xuan
- [2] Chun-Xuan Jiang, The New prime theorem (5), http://www.wbabin.net/math/xuan88.pdf
- [3] Chun-Xuan Jiang, The Hardy-Littlewood prime K-tuple conjecture is false. http://wbabin.net/xuan.htm # chun-xuan.
- [4] G. H. Hardy and J. E. Littlewood, Some problems of "Prtition Numerorum", III: On the expression of a number as a sum of primes. Acta Math., 44(1923) 1-70.
- [5] B. Green and T. Tao, Linear equations in primes. To appear, Ann. Math.
- [6] D. Goldston, J. Pintz, and C. Y. Yildiriom, Primes in tuples I. Ann, Math., 170 (2009) 819-862.
- [7] T. Tao. Recent progress in additive prime number theory, preprint. 2009. Szemerédi's theorem does not directly to the primes, because it can not count the number of primes. It is unusable.
- [8] W. Narkiewicz, The development of prime number theory. From Euclid to Hardy and Littlewood. Springer-Verlag, New York, NY. 2000.