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Abstract 

Using Jiang function we prove prime theorem: 2 1P aP b= + , Polignac  

theorem and Goldbach theorem. 
 
We read Ribenboim paper [2] and write this paper. 
Prime theorem [1]. Prime equation is  

                        2 1 , 2 , ( , ) 1P aP b ab a b= + = .             (1) 

There exist infinitely many primes  such that  is a prime. 1P 2P
Proof. We have Jiang function [1] 
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                               0 (mod )aq b P+ ≡ ,                 (3) 

where . 1, 2,..., 1q P= −
If P ab  then ( ) 0; ( ) 1P Pχ χ= =  otherwise. From (2) and (3) we have  
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We prove that there exist infinitely many primes  such that  is a prime. 1P 2P
We have the best asymptotic formula for the number of primes [1] 1P
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Polignac theorem [2]. Let  and 1a = 2 ( 1)b n n= ≥ . From (1) we have Polignac equation 

                                                    (6) 2 1 2P P n= +

From (4) we have  
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We prove that for every  there exist infinitely many primes  such that  is a prime. 2n 1P 2P

From (5) we have 
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Goldbach theorem [3]. Let  be an even number, 6b N= ≥ 1a = − . 
From (1) we have Goldbach equation 

                            2P N P1= −                             (9) 

From (4) we have 

2 2

1( ) ( 2)
2P P N

PJ P
P

ω
>

−
= Π − Π →∞

−
 as ω→∞                (10) 

We prove that every even number  is the sum of two primes. 6N ≥
From (5) we have 
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Note. Prime equation  has the only prime solution, 2 2P + 23 2 11+ = , because 2 ( ) 0J ω = . 

Prime equation 2( 2)P 2+ +  has infinitely many prime solutions, because 

               2 ( )J ω →∞    as ω→∞  
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