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Abstract

Using a numerical method, the external directed edges of a complete
graph are tested for their level of fitness in terms of how well they form
a radially symmetric field at long distance (e.g., a test for the inverse-
square law in 3D space). It is found that the external directed edges of
a complete graph can very nearly form a radially symmetric field at long
distance if the number of graph vertices is great enough.

1 Introduction

Complete graphs have been used to construct models of quantum gravity [1–6].
It is considered here that a complete graph G1 consists of:

1. n(G1) vertices V (G1) that are uniformly distributed along a shell S(G1)
of radius r(G1).

2. (n(G1)
2 − n(G1))/2 internal non-directed edges I(G1) (e.g., internal line

segments) that join the vertices together.

3. n(G1)
2 − n(G1) external directed edges E(G1) (e.g., external rays) that

are extensions of I(G1).

See Figure 1 for a diagram of a complete graph where n(G1) = 5.
It seems fundamentally important to question whether or not the external

directed edges E(G1) can form a radially symmetric field at long distance.

2 Method

If the field is to be considered radially symmetric, then the following two fitness
criteria must be met:
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1. With regard to a second shell S(G2) of larger radius r(G2) > r(G1),
the n(G2) = n(G1)

2 − n(G1) vertices V (G2) corresponding to where the
external directed edges E(G1) intersect with S(G2) should be uniformly
distributed along S(G2).

2. The external directed edges E(G1) should be normal to S(G2) at their
respective intersection vertices.

With regard to the first criterion (e.g., uniform distribution fitness), the
vertices V (G2) will be compared to an equal number n(G3) = n(G2) of vertices
V (G3) that are known to be uniformly distributed along a third and final shell
S(G3) of radius r(G3) = r(G2).

The generation of n(G3) uniformly distributed vertices along a 1D shell (e.g.,
the Thomson problem [7] on a circle) is algorithmically simple: divide the circle’s
2π radians into n(G3) equal portions and then use the polar coordinate equations
to generate the n(G3) corresponding vertex positions. The generation of n(G3)
uniformly distributed vertices along a 2D shell (e.g., the Thomson problem on a
thin spherical shell) is not algorithmically simple: an iterative vertex repulsion
code [8] was used here to generate n(G3) roughly uniformly distributed vertices.

The uniform distribution fitness test used here compares the n(G2) pairs of
vertices V (G2)i, V (G3)i by analyzing the lengths of their corresponding internal
non-directed edges I(V (G2)i)j , I(V (G3)i)j (e.g., where i = {1, 2, . . . , n(G2)},
j = {1, 2, . . . , n(G2)−1}). Some kind of order must be established so that a rea-
sonable correlation exists between I(V (G2)i)j , I(V (G3)i)j , and so the lengths of
the internal non-directed edges corresponding to each pair of vertices are placed
into a pair of sorted bins before the comparison begins

L(I(V (G2)i)) = sort[length[I(V (G2)i)1], . . . , length[I(V (G2)i)(n(G2)−1)]], (1)

L(I(V (G3)i)) = sort[length[I(V (G3)i)1], . . . , length[I(V (G3)i)(n(G3)−1)]]. (2)

Ideally, since V (G3) are known to be uniformly distributed along S(G3), the
n(G3) sorted bins L(I(V (G3)i)) should all contain identical length distributions
(e.g., thus defining a single reference distribution L(I(V (G3)))ref). Likewise, if
V (G2) are also uniformly distributed along S(G2), then the n(G2) sorted bins
L(I(V (G2)i)) should also all contain length distributions that are identical to
L(I(V (G3)))ref.

The uniform distribution fitness test used here is

FD(G1) = [0, 1] =

n(G2)∑
i=1

(n(G2)−1)∑
j=1

min[L(I(V (G2)i))j , L(I(V (G3)i))j ]

max[L(I(V (G2)i))j , L(I(V (G3)i))j ]

n(G2)2 − n(G2)
. (3)

It is useful to note that each internal non-directed edge is analyzed exactly
twice throughout the entire test, which is why equation (3) is normalized using
n(G2)

2 − n(G2), not (n(G2)
2 − n(G2))/2.

With regard to the second criterion (e.g., normal fitness), each external
directed edge E(V (G1)i)j corresponds to one intersection vertex V (G2)k (e.g.,
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where i = {1, 2, . . . , n(G1)}, j = {1, 2, . . . , n(G1) − 1}, k = {1, 2, . . . , n(G2)}).
Where both S(G1) and S(G2) are centred at the coordinate system origin, the
normal fitness test used here is

FN (G1) = [0, 1] =

n(G1)∑
i=1

(n(G1)−1)∑
j=1

Ê(V (G1)i)j · V̂ (G2)k

n(G2)
. (4)

3 Results

The 1D and 2D shell fitness test results for various n(G1), r(G1), and r(G2) are
listed in the following tables

Uniform distribution fitness FD(G1) for a 1D shell of radius r(G1) = n(G1)XXXXXXXXXXr(G2)
n(G1) 2 4 8 16 32 64 128

103 1 0.829572 0.893257 0.946621 0.993124 0.997482 0.998891
1010 1 0.827916 0.886982 0.93004 0.95885 0.976516 0.986852
1017 1 0.827916 0.886982 0.93004 0.95885 0.976516 0.986852

Normal fitness FN (G1) for a 1D shell of radius r(G1) = n(G1)XXXXXXXXXXr(G2)
n(G1) 2 4 8 16 32 64 128

103 1 0.999997 0.999986 0.99994 0.999752 0.998991 0.995924
1010 1 1 1 1 1 1 1
1017 1 1 1 1 1 1 1

Uniform distribution fitness FD(G1) for a 2D shell of radius r(G1) = n(G1)XXXXXXXXXXr(G2)
n(G1) 2 4 8 16 32 64 128

103 1 0.937087 0.931829 0.974859 0.97905 0.995469 0.998372
1010 1 0.937088 0.930686 0.973607 0.974738 0.994824 0.997366
1017 1 0.937088 0.930686 0.973607 0.974738 0.994824 0.997366

Normal fitness FN (G1) for a 2D shell of radius r(G1) = n(G1)XXXXXXXXXXr(G2)
n(G1) 2 4 8 16 32 64 128

103 1 0.999997 0.999986 0.99994 0.999752 0.998992 0.995925
1010 1 1 1 1 1 1 1
1017 1 1 1 1 1 1 1

4 Discussion

As the fitness test results show, the external directed edges of a complete graph
can very nearly form a radially symmetric field at long distance if the number
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of graph vertices is great enough. For instance, the external directed edges of a
2D shell in 3D space can very nearly reproduce the inverse-square law at long
distance (e.g., field strength proportional to 1/r).

In order to link this model to the Schwarzschild metric, consider instead a
complete bidirected graph that consists of n vertices, (n2 − n)/2 internal bidi-
rected edges (e.g., n2 − n internal rays), and n2 − n external bidirected edges
(e.g., 2(n2 − n) external rays). For each of the n2 − n internal/external edge
pairs there are 4 ways that interaction can occur at the corresponding vertex:
internal inward, internal outward, external inward, external outward. In terms
of the Planck energy Ep, it is considered here that the number of vertices per
Schwarzschild black hole [9] is

n =
E

Ep
. (5)

If n is great enough so that the total number of ways that interaction can occur
x practically simplifies

x = 4(n2 − n) ≈ 4n2, (6)

then the black hole’s Hawking temperature T , Bekenstein-Hawking entropy Sbh,
event horizon (e.g., 2D shell) radius Rs, and time-time metric component g00
can be very nearly reproduced at long distance

T =
E

k2πx
≈ E

k8πn2
, (7)

Sbh = πx ≈ 4πn2, (8)

Rs = ℓp
√
x ≈ 2ℓpn, (9)

g00 = 1− ℓp
√
x

r
≈ 1− 2ℓpn

r
. (10)

The Newtonian gravitational potential V (r) can be very nearly reproduced at
long distance if only 1 way of interaction per internal/external edge pair is
considered (e.g., external outward only)

V (r)

c2
= −

ℓp
√

x/4

r
≈ −ℓpn

r
. (11)

As visualized and discussed in [7, 9–11], a set of n uniformly distributed
vertices along a 2D shell naturally produces a triangular tessellation (e.g., a
Delaunay triangulation). Where n ≫ 1, the geometric dual [12] of a 2D shell’s
triangular tessellation is a tessellation that consists primarily of hexagons (e.g., a
Voronoi diagram). This is interesting to note, because in the quantum graphity
model [4–6] it is considered that hexagonal tessellation is the natural tessella-
tion of a 2D plane. If the quantum graphity model is correct, then it seems
that curved and flat spacetime, or at least the tessellations naturally produced
by their respective minimum energy vertex distributions, would be geometri-
cally dual. The question of whether or not this Delaunay-Voronoi minimum
energy vertex distribution duality applies to dimensions D > 2 is left for future
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consideration (e.g., does the geometric dual of a regular tetrahedral tessellation
produce the minimum energy vertex distribution within flat 3D space?). Also
see [13–21].

See [22] for the fitness test C++ code and expanded table data. In the
fitness test code, the iterative vertex repulsion code [8] has been modified to
use the Mersenne Twister pseudorandom number generator [23] in conjunction
with the sphere point picking algorithm discussed in [24]. The fitness test code
also uses a modified version of the ray-shell intersection code given in [25].
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Figure 1: A complete graph G1, where n(G1) = 5 vertices V (G1) (e.g., black
disks) are uniformly distributed along a 1D shell S(G1) (e.g., a gray cir-
cle). There are (n(G1)

2 − n(G1))/2 = 10 internal non-directed edges I(G1)
(e.g., black internal line segments), and n(G1)

2 − n(G1) = 20 external di-
rected edges E(G1) (e.g., black external rays). Where i = {1, 2, . . . , n(G1)},
j = {1, 2, . . . , n(G1) − 1}, each vertex V (G1)i corresponds to n(G1) − 1 = 4
internal non-directed edges I(V (G1)i)j and n(G1) − 1 = 4 external directed
edges E(V (G1)i)j .
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