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Abstract

Using a simple numerical method, the external directed edges of a
complete graph are tested for their level of fitness in terms of how well
they form a radially symmetric field at long distance (e.g., a test for the
inverse square law in 3D space). It is found that the external directed
edges of a complete graph can very nearly form a radially symmetric field
at long distance if the number of graph vertices is great enough.

1 Method

Complete graphs have been used to construct a model of quantum gravity [1].
It is considered here that a complete graph G1 consists of:

1. n(G1) vertices V (G1) that are uniformly distributed along a shell S(G1)
of radius r(G1).

2. (n(G1)
2−n(G1))/2 internal non-directed edges I(G1) (e.g., line segments)

that join the pairs of vertices together.

3. n(G1)
2 −n(G1) external directed edges E(G1) (e.g., rays) that are exten-

sions of I(G1).

See Figure 1 for a diagram of a complete graph where n(G1) = 3.
It seems fundamentally important to question whether or not the external

directed edges E(G1) can form a radially symmetric field at long distance. If
the field is to be considered radially symmetric, then the following two fitness
criteria must be met:

1. With regard to a second shell S(G2) of larger radius r(G2) > r(G1),
the n(G2) = n(G1)

2 − n(G1) vertices V (G2) corresponding to where the
external directed edges E(G1) intersect with S(G2) should be uniformly
distributed along S(G2).
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2. The external directed edges E(G1) should be normal to S(G2) at their
respective intersection vertices.

With regard to the first criterion (e.g., uniform distribution fitness), the
vertices V (G2) should be compared to an equal number n(G3) = n(G2) of
vertices V (G3) that are known to be uniformly distributed along a third and
final shell S(G3) of radius r(G3) = r(G2).

The generation of n(G3) uniformly distributed vertices along a 1D shell (e.g.,
a circle) is algorithmically simple: divide the circle’s 2π radians into n(G3) equal
portions and then use the polar coordinate equations to generate the n(G3)
corresponding vertex positions. The generation of n(G3) uniformly distributed
vertices along a 2D shell (e.g., a thin spherical shell) is not algorithmically
simple: an iterative vertex repulsion code [3] was used here to generate n(G3)
roughly uniformly distributed vertices.

The uniform distribution fitness test used here compares G2, G3 by analyz-
ing the lengths of the internal non-directed edges I(G2)ij , I(G3)ij (e.g., where
i = {1, 2, . . . , n(G2)}, j = {1, 2, . . . , n(G2) − 1}, and so each unique internal
directed edge is used for exactly two comparisons). Some kind of order must
be established so that a reasonable correlation between I(G2)ij , I(G3)ij can be
produced. As such, the lengths of the internal non-directed edges corresponding
to each and every vertex V (G2), V (G3) are placed into sorted bins L(I(G2)),
L(I(G3)) before the comparison begins

L(I(G2))i = sort[length(I(G2)i1), . . . , length(I(G2)i(n(G2)−1))], (1)

L(I(G3))i = sort[length(I(G3)i1), . . . , length(I(G3)i(n(G3)−1))]. (2)

Since V (G3) are known to be uniformly distributed along S(G3), the sorted bins
L(I(G3)) should all contain identical length distributions (e.g., the reference dis-
tribution L(G3)ref). If V (G2) are also uniformly distributed along S(G2), then
the sorted bins L(I(G2)) should also all contain length distributions identical
to L(G3)ref.

The uniform distribution fitness test is

FD(G1) = [0, 1], (3)

FD(G1) =

n(G2)∑
i=1

(n(G2)−1)∑
j=1

min[L(I(G2))ij , L(I(G3))ij ]

max[L(I(G2))ij , L(I(G3))ij ]

n(G2)2 − n(G2)
. (4)

Again, each unique internal directed edge is used for exactly two comparisons,
which is why equation (4) is normalized using n(G2)

2 − n(G2), not (n(G2)
2 −

n(G2))/2.
With regard to the second criterion (e.g., normal fitness), each external

directed edge E(G1)ij corresponds to one intersection vertex v(G2)k (e.g., i =
{1, 2, . . . , n(G1)}, j = {1, 2, . . . , n(G1)− 1}, k = {1, 2, . . . , n(G2)}. Where both
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S(G1) and S(G2) are centred at the coordinate system origin, the normal fitness
test is

FN (G1) = [0, 1], (5)

FN (G1) =

n(G1)∑
i=1

(n(G1)−1)∑
j=1

Ê(G1)ij · V̂ (G2)k + 1

2

n(G2)
. (6)

2 Results

The 1D and 2D shell fitness test results for various n(G1), r(G1), and r(G2) are
listed in the following tables

Uniform distribution fitness FD(G1) for a 1D shell of radius r(G1) = n(G1)XXXXXXXXXXr(G2)
n(G1) 2 4 8 16 32 64 128

103 1 0.829572 0.893257 0.946621 0.993124 0.997482 0.998891
1010 1 0.827916 0.886982 0.93004 0.95885 0.976516 0.986852
1017 1 0.827916 0.886982 0.93004 0.95885 0.976516 0.986852

Normal fitness FN (G1) for a 1D shell of radius r(G1) = n(G1)XXXXXXXXXXr(G2)
n(G1) 2 4 8 16 32 64 128

103 1 0.999999 0.999993 0.99997 0.999876 0.999496 0.997962
1010 1 1 1 1 1 1 1
1017 1 1 1 1 1 1 1

Uniform distribution fitness FD(G1) for a 2D shell of radius r(G1) = n(G1)XXXXXXXXXXr(G2)
n(G1) 2 4 8 16 32 64 128

103 1 0.937087 0.931829 0.974859 0.97905 0.995469 0.998372
1010 1 0.937088 0.930686 0.973607 0.974738 0.994824 0.997366
1017 1 0.937088 0.930686 0.973607 0.974738 0.994824 0.997366

Normal fitness FN (G1) for a 2D shell of radius r(G1) = n(G1)XXXXXXXXXXr(G2)
n(G1) 2 4 8 16 32 64 128

103 1 0.999999 0.999993 0.99997 0.999876 0.999496 0.997963
1010 1 1 1 1 1 1 1
1017 1 1 1 1 1 1 1

As these fitness test results show, the external directed edges of a complete
graph can very nearly form a radially symmetric field at long distance if the
number of vertices is great enough. For instance, a 2D shell in 3D space can

3



very nearly reproduce the inverse square law (e.g., field strength proportional
to 1/r).

See [2] for the full code and expanded table data. In the full code, the
iterative vertex repulsion code [3] has been modified to use the Mersenne Twister
pseudorandom number generator (PRNG) code [4]. The full code also uses a
modified version of the ray-shell intersection code given in [5].
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Figure 1: A complete graph G1, where n(G1) = 3 vertices (e.g., black disks)
are uniformly distributed along a 1D shell S(G1) (e.g., a gray circle). There are
(n(G1)

2 − n(G1))/2 = 3 internal non-directed edges I(G1) (e.g., black line seg-
ments), and (n(G1)

2−n(G1)) = 6 external directed edges E(G1) (e.g., outward
pointing black rays).
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