The New Prime theorem (1)

$$P_2 = aP_1 + b$$

Chun-Xuan Jiang

P. O. Box 3924, Beijing 100854, P. R. China

jiangchunxuan@vip.sohu.com

Abstrat

Using Jiang function we prove that there exist infinitely many primes P_1 such that $aP_1 + b$ is prime.

Theorem

$$P_2 = aP_1 + b.(a,b) = 1, \quad 2|ab,$$
 (1)

There exist infinitely many priems P_1 such that P_2 is prime.

Proof. We have Jiang function [1,2]

$$J_2(\omega) = \prod_{P} [P - 1 - \chi(P)],$$
 (2)

where

$$\omega = \prod_{P} P$$
,

 $\chi(P)$ is the number of solutions of congruence

$$aq + b \equiv 0 \pmod{P},\tag{3}$$

 $q=1,\cdots,P-1$.

From (3) we have if P|ab then $\chi(P) = 0$, $\chi(P) = 1$ otherwise.

From (3) and (2) we have

$$J_2(\omega) = \prod_{3 \le P} (P-2) \prod_{P|ab} \frac{P-1}{P-2} \ne 0.$$
 (4)

We prove that there exist infinitely many primes P_1 such that P_2 is prime.

We have the best asymptotic formula [1, 2]

$$\pi_2(N,2) = \left| \left\{ P_1 \le N : aP_1 + b = prime \right\} \right| \sim \frac{J_2(\omega)\omega}{\phi^2(\omega)} \frac{N}{\log^2 N}$$

$$=2\prod_{3\leq P}\left(1-\frac{1}{(P-1)^2}\right)\prod_{P|ab}\frac{P-1}{P-2}\frac{N}{\log^2 N}.$$
 (5)

where $\phi(\omega) = \prod_{P} (P-1)$.

Twin primes theorem [1]. Let a = 1 and b = 2. From (1) we have

$$P_2 = P_1 + 2 (6)$$

From (4) we have

$$J_2(\omega) = \prod_{p} (P - 2) \neq 0 \tag{7}$$

We prove that there exist infinitely many primes P_1 such that $P_1 + 2$ is prime.

From (5) we have

$$\pi_2(N,2) = \left| \left\{ P_1 \le N : P_1 + 2 = prime \right\} \right| \sim 2 \prod_{3 \le P} \left(1 - \frac{1}{(P-1)^2} \right) \frac{N}{\log^2 N} \,. \tag{8}$$

Goldbach theorem [1]. Let a = -1 and b = N. From (1) we have

$$N = P_1 + P_2 \tag{9}$$

From (4) we have

$$J_2(\omega) = \prod_{3 \le P} (P - 2) \prod_{P|N} \frac{P - 1}{P - 2} \neq 0$$
 (10)

We prove that every even number $N \ge 6$ is the sum of two primes.

From (5) we have

$$\pi_2(N,2) = \left| \left\{ P_1 \le N : N - P = prime \right\} \right| \sim 2 \prod_{3 \le P} \left(1 - \frac{1}{(P-1)^2} \right) \prod_{P \mid N} \frac{P-1}{P-2} \frac{N}{\log^2 N}$$
 (11)

Reference

- [1] Chun-Xuan Jiang, On the Yu-Goldbach prime theorem (Chinese), Guangxi Science, 3 (1996) 9-12.
- [2] Chun-Xuan Jiang, Jiang's function $J_{n+1}(\omega)$ in prime distribution. (http://www.wbabin.net/math/xuan2.pdf) (http://vixra.org/pdf/0812.0004v2.pdf)