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 ABSTRACT: In this paper we review and try to justify some results we gave before 

concerning the zeta regularization of integrals 
0

m sx dx


 via the zeta regularization of 

the divergent series 
0

m s

i

i





 and the zeta function ( )m s 

REGULARIZATION OF DIVERGENT INTEGRALS:

In a previous paper [6] we gave a method to regularize divergent integrals of the form 

0

mx dx


 for m a positive integer , via the zeta regularization method , that attach a finite 

meaning  ( )m  , to a power-law divergent series 
0

m

i

i



 , via the analytic continuation 

of the zeta function of Riemann to negative exponents 

 (1 ) 2 2 cos ( ) ( )
2

s s
s s s

       
 

. First we took the Euler-Bernoulli summation 

formula with ( ) mf x x , and used the property for the k-th derivative of the function 

mx , 
  ( 1)

( 1)

k m

m k
k

d x m
x

dx m k
 


  

  together with the zeta regularization of the series 

0

( )m

i

i m




  to find the following
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r

B m m rm
x dx x dx m x dx

r m r


  
 



 
   

    (1)

For ‘m’ a positive integer , this is a recurrence formula to get the value of  
0

mx dx


 for 

m=01,2,3,4,.....  from the starting value 
0

1
1 1 1 ......

2
dx



      , this is explained on 

section (2) in our previous paper [6] , now we would like to compare our method with 
another well-known method in theoretical physics to calculate divergent integrals , the 
‘dimensional regularization method’.

 Dimensional regularization of divergent integrals:

The method of dimensional regularization , assumes we can define a d-dimensional 
space and d-dimensional polar coordinates , so we can write any integral as 

  / 2

1

0

2
( ) ( )

( / 2)

d

ddxf x x I d
d

 
 

  , here ‘d’ is the dimension of the space dR , with ‘d’ any 

arbitrary real or complex number,  in many cases if the function f can be expanded into 

a power series,
0

( ) ( 1) ( )n

n

f x n




  for some function ( )n that can also be defined for 

negative argument s+n=0 , then ‘Ramanujan Theorem’ asserts that for any value of ‘d’ 

this integral will be equal to 
  / 2
2( )

( )
( ) ( / 2)

d
s

I d
sin s d








.  (2)

Here it comes the first problem, for d=4 (space-time dimension) the integral I(d) would 
be divergent in many cases, if we recall the Gamma function with functional  equation 

( ) (1 )
sin( )

s s
s




    for s=d integer this function is divergent , hence ‘dimensional 

regularization’ introduces a pole or divergent quantity by expanding the Gamma 

function near 0  ,  
1

( ) ( )O  


    , with  being the Euler-Mascheroni 

constant.

The link of ‘dimensional regularization’ with our method of calculation of integrals 

come when we wish to calculate divergent integrals of the form ( )
a

dxf x


 as x 

which is just the case s=0 inside ˆ( ) (1 )s

a

dxf x x F s


   a > 0 (Mellin transform) , the 

idea is to choose a big enough ‘s’ so the integrand 
2

1
( ) sf x x

x
  for big x making the 

integral finite , then expand the function into a Convergent Laurent series for |x| >0 in 
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the form  ( ) n
n

n

f x c x




  c R and perform the term-by-term integration ,after that 

we could  use the identity based on Euler-Maclaurin summation formula (valid for real 
or complex ‘s’  )

1

2 1 22

1

( ) ( , , )
2

( 1)
( 2 1 )

(2 )! ( 2 2 )

m s m s

a a

m r s m r sr

r a

m s
x dx x dx s m H s m a

B m s
a m r s x dx

r m r s


 

  


    




   

   
          

 

 
          a > 0   (3)

2 12

1 1

( 1)
( , , )

(2 )! ( 2 2 )

a
m s m s m s rr

k r

B m s
H s m a a k a

r m r s


    

 

  
  

        ( , ,0) 0H s m     (4)

To express any divergent integral ( ) ( )m s
i

ia

x dx a s s i


   , that is, we can relate using 

formula (3) a divergent integral m s

a

x dx


 to a divergent series 
0

( ) m s

i

s m i






   , 

0s  , in practice if ‘m’ is an integer as s tends to 0 due to the poles of the Gamma 
function ( )x at negative integers (3) is no longer infinite and ‘r’ runs only from 1r 

to 
2

2

m
r

    
, so for integer (positive) ‘m’ we can relate the divergent integral, using 

formula (1) and (3) to a linear combination involving , Bernoulli Numbers 2rB and 

negative values of Zeta function ( )  0,1,2,3,....,r r m   , from the definition of the 
functional equation for the Riemann Zeta, ( 2 ) 0   n n N    .

There is still a problem with the logarithmic divergence 
dx

x , since the Riemann zeta 

has a pole at s=1  (Harmonic series) , this is the main drawback of our theory, we can 
regularize every divergent integral by using the negative values of the Riemann zeta , 
but we can not regularize with our method (unless we introduce some correction) the 
logarithmic divergencies, this is the objective of our next section in the paper.

 The logarithmic divergence of (1 )s  with 0s  :

The case (1 )s  , 0s  can not be handeld with formulae (1) or (3) due to a pole of 
Riemann Zeta at s= 1 , this is the main serious drawback of our regularization method , 

we can not use Euler-Maclaurin summation formula to regularize 
0

dx

x a



   due to the 

fact that the sum 
0

1

n n a



  is divergent, there are several possibilities to get a finite 

result indeed
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 The finite part 
0

. log( )
dx

F p a
x a



 
 in the sense of ‘Hadamard integral’ [10] 

exists and depends on the value of ‘a’

 We could differentiate respect to ‘a’ to get 2
0

1

( )

dx

x a a



  
 , then performing 

integration with respect to ‘a’ again we get  log( ) aa c  , here ac is a physical 

parameter (mass, charge,..) that must be determined by experiments to fit the 
calculations.

Both methods yield to the same result if we set 0ac  , which can be imposed as an 

scale-invariance (invariance under a change of variable y=ax for any a R ) of the 

integral 
0

2 0a

dx
c

x



  , this results has the physical meaning that quantities (mass, 

charge) should not depend on the Energy scale we are performing the researchs.

The last (but not the less powerful) method is based on two results of mathematical 
analysis, the Abel-Plana formula, relating an integral to a series

 2 t
0 0 0

1
( ) ( ) (0) . ( ) ( )

2 1n

dt
f n f x dx f i f it f it

e 

 



    
             (5)

And the ‘Ramanujan resummation’ (Finite part) of the series 
0

1 '
( )

n

a
n a






 

    [ ] . 

Combining both formulae we can give a finite meaning to the logarithmic divergence

2

2 tan( )
0 0

' 1
( ) 2 . tan( )

2 1a

R

dx d
a

x a a e



 

 
 

       
         (6)

Expression (6) is finite for 0a  and can be regarded as the ‘regularized’ value of the 

logarithmic divergent integral 
0

dx

x a





One of the advantages of dealing with logarithmic divergences is that in case we can 

regularize  
0

log( ) a

dx
a c

x a



  
 for any fixed ‘a’ different from 0  adding and 

substracting terms and using the fact that 
0

1 1
log( / )dx b a

x a x b


      , then for any 

‘b’ different from a and bigger than 0  
0

log( ) a

dx
b c

x b



  
 , an special case is 
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whenever a=0 and we have that 
0

2 a

dx
c

x



 , then if we impose the physical condition of 

scale-invariance again 0ac  ,as the only possible alternative.

A mathematical justification of this comes from ‘Ramanujan resummation’ of the 

Harmonic series 
1

1
0.57721...

n n






  (Euler-Mascheroni constant) , however we know 

from the definition of the constant above that 
1 1

1
lim

kk

k
n

dx

n x





 
  

 
  , so Ramanujan 

resummation that takes only the finite part of the series into account ignores the infinite 
quantity log( )

 Zeta regularization and the cut-off  :

Another method involved in the calculation of divergent integrals is the following, for 

any integral ( )
a

dxf x


 we can introduce a ‘cut-off’ ( )
a

dxf x


 to make it finite , and after 

calculations we take the limit    , expanding the function f into a convergent 
Laurent series for |x| > a , we can use the Euler-Maclaurin formulae to stablish a 
recurrence between the powers of this cut-off

2

1

( , ) ( / 2) ( 1, ) ( ) ( 2 1) ( 2 , )
(2 )!

r
mr

r

B
I m m I m m a m r I m r

r





           (7)

( 1)
( 2 2)mr

m
a

m r
 

  
, and    

1

0

( , )
1

m
m m

a

a
I m x dx x dx

m

 

   
  , from here we can 

obtain finite results, even in the limit    , for example

2 2
2

3

(0) ( 1)
( 1) log( )

1 2 2 2

j
j

ja R

x a
dx a a a

x j

 
 





   
         

   a > 1         (8)

We simply have expanded for a >1 the integrand into the convergent Laurent series 

1

3

1
1 ( 1) j j

j

x x
x






    and performing term-by-term integration to obtain formulae (8)

This cut-off regularization can be achieved imposing the following condition 
( , ) 0H s    as    for every positive ‘s’ , this is connected with the expression 

for the sum of the s-th powers of ‘n’ 
1

1

( ) ( , )s
H

i

i s s 




       
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Here we have introduced the Hurwitz Zeta function 
0

1
( , )

( ) Hs
n

s a
n a







 ,  

( ,1) ( )H s s  we can define also a similar ‘regularization’ for this Hurwitz Zeta via a 
functional equation.

Equation (8) tells us an important thing, although initially 2

1a

dx
x

x



 is DIVERGENT, 

using our model of Zeta regularization we have managed to give it a finite value using 
1

(0)
2

   and 
1

( 1)
12

    , this is the main difference with ‘dimensional 

regularization’ that has remaining infinities due to the poles of the Gamma function 
( )z , however using the Zeta regularization plus the Ramanujan resummation for the 

Harmonic series 
0

1

( )n n a



  , we only have finite quantities, this is the main advantage 

(including the simplicity of applying our method) of our Zeta regularization algorithm 
for divergent integrals.

 Scale invariance and Zeta regularization:

One could ask if there is any physical justification for the Zeta regularization method of 

series and integrals  
1

( )s

n

n s




  , the main idea is that when we are performing

physical calculations of parameters such as mass ‘m’  these paremeters can not rely on 
the energy scale  , this means that if we have two energy scales related by a dilation 

a   , a R then the integral 
0

dxf


 must be independent of the cut-off as    , 

so if we use the Euler-Maclaurin summation formula in order to express divergent 

integrals as a linear combination of divergent series 
1

r

n

n



 r = 0,1,2,3,..... we should 

impose the condition 
1 1

1 1

s s

n n

n n
 

 

  s , if we consider the case of infinitesimal 

dilations  (1 )    as 0  from the definition 
1

1

( ) ( , )s
H

i

i s s 




     and 

imposing scale invariance for the series

 

1 1

1 1

0 ( ) ( ) ( , ) ( , ) 0

( , )
lim ( ,(1 ) ) ( , ) ( 1, ) 0

s s
H H

n n

H
H H H

n n s s s s

s
s s s s



   

   

 

 



             

  
              



 
(9)

In the last step inside (9) we have used the shift property of the Hurwitz Zeta function, 
the last condition in (9) is equivalent to the statement ( , ) 0H q    as    , with 

1q s  , this is precisely why  
1

( )k

n

n k




  , since the value ( )k  does not 
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depend on the energy scale or cut-off   , equation (9) is a physical justification of our 
procedure of Zeta regularization of integrals , we impose the condition ( , ) 0H q   
as    , in order our theory to have an scale invariance , for the case q=0 or q=-1 
(Harmonic series) the terms log(1 ) and  vanish as 0  , providing the linear 
term 0  as 0 

CONCLUSIONS AND FINAL REMARKS:

After having read the paper and learned about Zeta regularization of divergent integrals 
or concepts such as ‘Ramanujan resummation’ one can have the wrong idea that this 

methods are only mere curiosities without applications , the value 
1

( 1)
12

    , is used 

in string theory, and years before the value 
1

( 3)
120

    was used by Casimir and 

others to calculate the force between two plates , the ‘Zeta regularization’ algorithm is 
beyond being a simple trick in order to sweep the infinities its importance come 
specially in Quantum Field Theory (QFT) when one does perturbation theory in order to 
calculate masses and other physical parameters , even though we have only considered 

integrals of the form 
0

mx dx


 for positive ‘m’ this technique can be applied ( by means 

of a change of variable 
1

x
y

 ) to integrals with a divergence as 0x  , 
0

dx

x



 with 

2  and integer, this is justified by the fact that if we introduce a cut-off  , then 

10

lim
dx dx

x x 


 




 
   

 
  (again with the same condition for parameter alpha) , hence 

1 1

2dx
x dx

x



 

 


 

   as the cut-off goes to infinite, so we can aplly (1) , (3) or (8).

For further reading on what is Zeta regularization or the sum of divergent series beyond
this paper  I would strongly recommend ‘Divergent series’ [7] by G.H Hardy (a bit old 
fashioned but easy to read) .One of the best introductions to Zeta regularization is found 
on E. Elizalde’s “ Zeta function techniques with applications” [5] , for a survey on 
“Ramanujan resummation” and other stuff discovered by Ramanujan on divergent 
series we have references [2] and [3] as best sources, other formulae introduced are 
kindly explained on the reference books by T. Apostol (Number theory) explaining 
what is exactly the analytic continuation for the Hurwitz and Riemann Zeta [1] , another 
interesting books about the Zeta function, regularization and Mathematical Analysis are 
[4] , [8] and [9] the ‘Dimensional regularization’ method including examples is 
explained in detail in the paper by Gerard t’Hooft and M. Veltmann or in the excellent 
book by Zeidler with several practical mathematical examples [10]. Also in Zeidler’s 
book one can see the further applications of divergent series to QFT and the importance 
of Zeta regularization procedure in String theory or in calculations of the ‘Casimir 
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effect’. Note also the equivalence (except for a minus sign) of the Zeta regularization 
expansion near the pole s=1 and the expansion of the Gamma function near its poles

1
(1 ) ( )O   


             

1
( ) ( )O  


           0       (10)

Zeta regularization also avoids the ‘unphysical’ change of dimension (dimension is an 
analytic parameter and it is only set to d=4 after final calculations) used in dimensional 
regularization.

Finally we recall that our method can be extended for multiple integrals in the form

 
4 4

1 1 2 2 2
1

1
..... ( , ,........., )

n

n n
i i i

d k d k J k k k
m k          (11)

The idea is to consider (11) as an integral on 4nR , then we make a change of variable to 
4n- dimensional polar coordinates to rewrite (11) as 

 
4 1

4 1 4 1 2 2
10 4 1

1
( , )

( )

n
n

n n
i i i n

d drr J r
m r f




 
 

 
        2 2

1

n

i
i

r k


        (12)

Again we would add and substract terms of the form 4 1 4 1

0

( )k
n k nd drr g



    in order to 

make (11) converge, the integrals 
0

kdrr


 again can be regularized using (1) except for 

the case k=-1. The pole at s=1 of  ( )s seems a big deal in our method to regularize 
infinities a final thought about this will be the following, let us suppose we could 

expand  
1

1 (0)
( )

( 1)

k
k

m

D f
f r r

r a k












 
    0 1  [11] valid for example for 

Re(r) <1 , with R  an arbitrary real number different form an integer, then making 
the change of variable 1/r r into the generalized Taylor series (assuming we can 
generalize the derivatives to fractional arbitrary orders) and taking the integral term-by-

term we will find expressions of the form 
1

kr dr


 k >0, if   is different from an 

integer, then using formulae (1) and (3), (4) we can relate this divergent integrals to 

negative values of zeta function and get the series 
0

( )k
k

a k 




  , the problem here is 

that (1) and (3) are no longer finite recurrence equations , also since negative values of 
Zeta function are related to Bernoulli’s number, then by stirling formula 

2

2| | 4
n

n

n
B n

e



   
 

we can (unfortunately) expect that the sum  
0

( )k
k

a k 




  will 

be divergent and will only be well-defined in the sense of Borel-resummation  
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0

( )tdte g t


 with  
0

( ) ( )
!

kk

k

a
k t g t

k
 





                (13)

So by performing a Taylor/Laurent series with fractional powers kx  we can avoid the 
pole at s=1 replacing it with the evaluation (regularization) of a divergent power series, 
such (13) note that although recurrence (3) will have an infinite number of terms, for 

m >1 we can use the identity 
1

1

1m

dx

x m




 hence only a finite number of divergent 

integrals will appear inside (3).

APPENDIX A: RAMANUJAN RESUMMATION AND FINITE PART INTEGRAL

In order to calculate the divergent integral as 0x 
1

0

( )
k

x
dx

x


 with  ( ) [0,1]kx C  , 

we define the Truncated Taylor Polynomial of order ‘k’ 
0

(0)
[ (0)]( )

!

ik
i

k
i

D
T x x

i




 

   
1 1

1 1

0
00

( ) (0) ( )( ) (0)
lim 1 log( )

!( 1)

ik
i ik

k k
i

x T xx D
dx dx

x x i i


     




 
     

            (14)

Hadamard’s definition of the finite part is just dropping down the terms log and  m 

m R as 0  to get the ‘finite’ value 

 1 1

00 0

( ) (0) ( )( ) (0)
.

!( 1)

ik
k

k k
i

x T xx D
F p dx dx

x x i i

  


  
    

              (15)

A better definition and a generalization for further functions can be found on Zeidler 

[10] , a few examples are  
0

1
. log

a

F p dx a
x

 ,  
1

0

1
.

1

a k

k

a
F p dx

x k




 ,  

0

. 0mF p x dx




If we combine this definition of Hadamard integral and the Euler-Maclaurin summation

1
1

2 12

0
1 12 (2 )!

m
m m m rr

mr
i r

x i
B

dp a
r


  




 
  

  

 
        

( 1)
( 2 2)mr

m
a

m r
 

  
        (16)

For ‘m’ being a positive integer , if we consider the divergent integral in Hadamard’s 

sense then
0

0mx dx


 and drop the terms k  ,except 0 1  formula (12) gives 

1

1

( )
1

m m

i

B
i m

m







   
 , which is just the definition of Zeta regularization for a 
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divergent series 1m   , for the case of the logarithmic integral 
1

1
dx

x



 taken as ‘finite 

part’ is 0 , so the Euler-Maclaurin formula for this case gives
1

1
0.55721...

n n






 
(‘Euler-Mascheroni’ constant ) this last equation can not be obtained by Zeta 
regularization , however it can be seen from the definition of the Harmonic series 

(1) log( )    that in the sense of ‘Finite part’  . (1)F p  

The Finite part definition for the Mellin transform 1

0

0sx dx


  s R  inserted in the 

Euler-Maclaurin summation gives an analytic method to calculate the sum of divergent 

series 1

1

s

n

n





 via the ‘regularized’ expression  

 1

1

(1 )    0

0.55721...       0
s

n

s s R
n

s









  


 
 this is 

precisely the definition Ramanujan gave [3] for the sum of the series  1

1

s

n

n





 .

To end this appendix we shall give two more justifications of the identity 

0

log
dx

a
x a



 
 to regularize the logarithmic divergence

 If we insert the finite part of the logarithmic divergence 
0

log
dx

a
x a



 
 , and 

use the Euler-Maclaurin summation formula, we recover the  Ramanujan 

resummation value for the Harmonic series  
0

1 '
( )

n

a
n a






 

 

 If we replace 
0

dx

x a



 by 
( )H x a dx

x






   ,

0       x< a
( )

1       x > a
H x a


 


incluidng the 

Heaviside step function , using the convolution theorem for Fourier integrals we 

would get 
( )

log( ) (0)
H x a dx

a f
x






   , with  

| |
( )

d x
f x

dx
   (0) 0f  in 

this case so our ‘regularization’ is consistent , another equivalent formulation of 
this would be to differentiate with respect to ‘a’ inside ( )H x a to get a Dirac 

delta distribution  - ( )x a  , using the property ( ) ( ) ( )dxf x x a f a




  and 

integrating again with respect to a with zero constant of integration we get the 
required result log( )a

 If we integrate with respect to ‘a’ inside 
0

dx

x a



 we get the still divergent 

integral  
0

log( )x a dx


 , using Euler-Maclaurin summation formula plus zeta 
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regularization of the series 
0

log( ) (0, )s H
n

n a a




   and differentiation with 

respect to variable ‘a’ we can also get a finite result for logarithmic integrals

 Adding a counterterm inside the Lagrangian to provide integrals of the form 

 
4

22 2

d k

m k
 , which cancel logarithmic divergencies in d=4 can help to get 

finite measurable results by ‘renormalization’

 Another method is to replace or ‘regularize’ our integral  1
0 ( )

dx

x a 



 with 

0  ,     and  1  so log 0   , in this case using the Power 

series  expansion 
0

log ( )

!

n n
k

n

k x
x

n





    , Integral Calculus gives

             1 , 0 0
0

1
lim lim log( )

( )

dx a a
a

x a

  

    



   

  
   

         (17)

To Resume, if we have the divergent integral  m s

a

x dx


 for   0m N  , using 

formula (3) to regularize this divergent integral using the values ( )s r  r = 0,1,2,... as 

0s  , for m = -1 , we can use either the Abel-Plana summation formula (5) or the 

regularized value 1
0

 - log( )
( )

dx
a

x a 



 
 or log aa c  , with ‘c’ and adjustable free 

parameter, which would be the only one free parameter in our theory. The final question 
is why does this work ? , the idea is that perhaps whenever taking physical 
consideration using the Zeta reguarlization algorithm we can ‘substract’ the infinite 
from the sum or integral to obtain finite results , in our example the integral in question

2 2 2
2

3

(0) ( 1)
( ) ( 1) log( )

1 1 2 2 2

j
j

ja aR

x x a
dx dx F a a a

x x j

 
  





   
             

  (18)

With  
2

1

dF x

dx x



, so we have the equation 

2

( ) 0
1a

d x
dx F

d x

 
     

   from 

the Euler-Maclaurin summation formula 1( ) log n
n

n

F c c     , this is perhaps 

why the zeta regularization algorithm works . In the case of a logarithmic divergence we 
could take the Abel-Plana formula to obtain the finite-part 

2
0 0 0

(0) ( ) ( )
. ( ) ( )

2 1x
n

f f ix f ix
f p f n dxf x i dx

e 

 



  
     

       
0

( ) logdxf x c


        (19)
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Here f.p means that we ignore the divergent term log inside the series, for example 

1

1

. 0.57721..
n

f p n 






 
  

 
 (Harmonic series) , this would come apparently from 

imposing the condition for every ‘s’ ( 1, ) 0s        

APPENDIX B: ZETA REGULARIZATION AND AN INTEGRAL REPRESENTATION 
FOR THE RIEMANN ZETA FUNCTION

Riemann found the following integral representation for his Zeta function

1(1 )
( )

2 1

z

s
C

z s
z ds

i e








 


             (1 ) ( )
sin( )

z z
z




         (20)

This expression is valid for every complex ‘s’ except s=1 (pole) and C is a closed curve 
which encircles all the poles of  1se  , a direct application of Cauchy’s residue 
theorem gives

1
1 1 1

1

( ) (2 ) (1 ) (2 ) (2 ) (1 )z z z

m m m

z im z im im z   
  

  

  

 
       

 
      (21)

However these series are divergent for z >0 , if we apply zeta regularization to the 
divergent sums inside (A.2)

 
1

11 1 1 1

1

(2 ) (2 ) (1 ) 2 (1 ) (1 )( ( ) )
zz z z z

m m

im im z z z i i   
 

   

 

 
         

 
      (22)

From the Euler’s formula for cosine we obtain for (A.3) the functional equation

  1(1 )
( ) (1 ) (1 )sin . 2

2 ( )
cos

2

zz z
z z z

z z

    


         
 
 

  (23)

So, from (A.4) one precisely obtains the functional equation for the Riemann Zeta 

 2cos 2 ( ) ( ) (1 )
2

zz
z z z

        
 

, this fact is another empirical support of why 

Zeta regularization should be takne seriously in order to obtain ‘regularizations’ of 
divergent series and how one can use ‘formal’ method in analysis in order to prove 
rigorous results.
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APPENDIX C: ZETA REGULARIZATION AND THE SERIES 
0

 0k

n

n k






In this paper , we have used the zeta regularization algorithm to get a regularization 
(equivalent to the dimensional regularization by T’Hooft and Veltmann) for the 

integrals  
0

mx dx


 , the question could be could we recover the zeta regularization value 

0

( )k

n

n k




  from Euler-Maclaurin summation ? , if we set ( ) mf x x for any ‘m’

and use the cut-off regularization for the sum  
1

0

( ) ( , )k
H

n

n k k 




    

2 1 2 11
2

1

!( 0 )
( ) ( , )

1 2 (2 )!( 2 1)!

m r m rm m
r

H
r

B m
m m

m r m r
 

    



  
      

         (24)

Howerver inside (21) if m-2r+1=0 then we can formally put 2 10 1m r   , so after the 

cancellation of the powers of  we are left with the identity  1( )
1

mB
m

m
 
 


, which is 

the usual zeta regularization results , this way of reasoning was known to Ramanujan 

[3] who also applied to the Harmonic series to get the finite result  
0

1 '

n

a
n a






 

 
for every positive ‘a’ , this result can be obtained imposing the condition that the 
measured quantities should not depend on the value of    so  ( 1, ) 0H s    
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