
 1

NEW CLASSES OF CODES FOR
CRYPTOLOGISTS AND

COMPUTER SCIENTISTS

W. B. Vasantha Kandasamy
e-mail: vasanthakandasamy@gmail.com

web: http://mat.iitm.ac.in/~wbv
www.vasantha.net

Florentin Smarandache

e-mail: smarand@unm.edu

INFOLEARNQUEST
Ann Arbor

2008

 2

This book can be ordered in a paper bound reprint from:

 Books on Demand
 ProQuest Information & Learning
 (University of Microfilm International)
 300 N. Zeeb Road
 P.O. Box 1346, Ann Arbor
 MI 48106-1346, USA
 Tel.: 1-800-521-0600 (Customer Service)
 http://wwwlib.umi.com/bod/

Peer reviewers:
Prof. Dr. Adel Helmy Phillips.
Faculty of Engineering, Ain Shams University
1 El-Sarayat st., Abbasia, 11517, Cairo, Egypt.
Professor Paul P. Wang, Ph D
Department of Electrical & Computer Engineering
Pratt School of Engineering, Duke University
Durham, NC 27708, USA
Professor Diego Lucio Rapoport
Departamento de Ciencias y Tecnologia
Universidad Nacional de Quilmes
Roque Saen Peña 180, Bernal, Buenos Aires, Argentina

Copyright 2008 by InfoLearnQuest and authors
Cover Design and Layout by Kama Kandasamy

Many books can be downloaded from the following
Digital Library of Science:
http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm

ISBN-10: 1-59973-028-6
ISBN-13: 978-1-59973-028-8
EAN: 9781599730288

Standard Address Number: 297-5092
Printed in the United States of America

 3

CONTENTS

Preface 5

Chapter One
BASIC CONCEPTS 7

1.1 Introduction of Linear Code
and its basic Properties 7

1.2 Bimatrices and their Generalizations 33

Chapter Two
BICODES AND THEIR
GENERALIZATIONS 45

2.1 Bicodes and n-codes 45
2.2 Error Detection and Error Correction

in n-codes (n ≥ 2) 103

 4

2.3 False n-matrix and Pseudo
False n-matrix 137

2.4 False n-codes (n ≥ 2) 156

Chapter Three
PERIYAR LINEAR CODES 169

3.1 Periyar Linear Codes and their Properties 169
3.2 Application of these New Classes of Codes 193

FURTHER READING 195

INDEX 199

ABOUT THE AUTHORS 206

 5

PREFACE

Historically a code refers to a cryptosystem that deals with
linguistic units: words, phrases etc. We do not discuss such
codes in this book. Here codes are message carriers or
information storages or information transmitters which in time
of need should not be decoded or read by an enemy or an
intruder. When we use very abstract mathematics in using a
specific code, it is difficult for non-mathematicians to make use
of it. At the same time, one cannot compromise with the
capacity of the codes. So the authors in this book have
introduced several classes of codes which are explained very
non-technically so that a strong foundation in higher
mathematics is not needed. The authors also give an easy
method to detect and correct errors that occur during
transmission. Further some of the codes are so constructed to
mislead the intruder. False n-codes, whole n-codes can serve
this purpose.

These codes can be used by computer scientists in
networking and safe transmission of identity thus giving least
opportunity to the hackers. These codes will be a boon to
cryptologists as very less mathematical background is needed.

To honour Periyar on his 125th birth anniversary and to
recognize his services to humanity the authors have named a
few new classes of codes in his name. This book has three
chapters. Chapter one is introductory in nature. The notion of
bicodes and their generalization, n-codes are introduced in
chapter two. Periyar linear codes are introduced in chapter three.

 6

Many examples are given for the reader to understand these new
notions. We mainly use the two methods, viz. pseudo best n-
approximations and n-coset leader properties to detect and
correct errors.

The authors deeply acknowledge the unflinching support of
Dr.K.Kandasamy, Meena and Kama.

W.B.VASANTHA KANDASAMY
FLORENTIN SMARANDACHE

 7

DECODING

CHANNEL NOISE

RECEIVER

CODINGSENDER

Figure 1.1

Chapter One

BASIC CONCEPTS

In this chapter we introduce the basic concepts about linear
codes which forms the first section. Section two recalls the
notion of bimatrices and n-matrices (n a positive integer) and
some of their properties.

1.1 Introduction of Linear Code and its basic Properties

In this section we just recall the definition of linear code and
enumerate a few important properties about them. We begin by
describing a simple model of a communication transmission
system given by the figure 1.1.

 8

Messages go through the system starting from the source
(sender). We shall only consider senders with a finite number of
discrete signals (eg. Telegraph) in contrast to continuous
sources (eg. Radio). In most systems the signals emanating from
the source cannot be transmitted directly by the channel. For
instance, a binary channel cannot transmit words in the usual
Latin alphabet. Therefore an encoder performs the important
task of data reduction and suitably transforms the message into
usable form. Accordingly one distinguishes between source
encoding the channel encoding. The former reduces the message
to its essential(recognizable) parts, the latter adds redundant
information to enable detection and correction of possible errors
in the transmission. Similarly on the receiving end one
distinguishes between channel decoding and source decoding,
which invert the corresponding channel and source encoding
besides detecting and correcting errors.
 One of the main aims of coding theory is to design methods
for transmitting messages error free cheap and as fast as
possible. There is of course the possibility of repeating the
message. However this is time consuming, inefficient and crude.
We also note that the possibility of errors increases with an
increase in the length of messages. We want to find efficient
algebraic methods (codes) to improve the reliability of the
transmission of messages. There are many types of algebraic
codes; here we give a few of them.
 Throughout this book we assume that only finite fields
represent the underlying alphabet for coding. Coding consists of
transforming a block of k message symbols a1, a2, …, ak; ai ∈ Fq
into a code word x = x1 x2 … xn; xi ∈ Fq, where n ≥ k. Here the
first ki symbols are the message symbols i.e., xi = ai; 1 ≤ i ≤ k;
the remaining n – k elements xk+1, xk+2, …, xn are check symbols
or control symbols. Code words will be written in one of the
forms x; x1, x2, …, xn or (x1 x2 … xn) or x1 x2 … xn. The check
symbols can be obtained from the message symbols in such a
way that the code words x satisfy a system of linear equations;
HxT = (0) where H is the given (n – k) × n matrix with elements
in Fq = Zpn (q = pn). A standard form for H is (A, In–k) with n – k
× k matrix and In–k, the n – k × n – k identity matrix.

 9

We illustrate this by the following example.

Example 1.1.1: Let us consider Z2 = {0, 1}. Take n = 7, k = 3.
The message a1 a2 a3 is encoded as the code word x = a1 a2 a3 x4
x5 x6 x7. Here the check symbols x4 x5 x6 x7 are such that for this
given matrix

()4

0 1 0 1 0 0 0
1 0 1 0 1 0 0

H = A;I
0 0 1 0 0 1 0
0 0 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

;

we have HxT = (0) where

x = a1 a2 a3 x4 x5 x6 x7.

a2 + x4 = 0
a1 + a3 + x5 = 0

a3 + x6 = 0
a3 + x7 = 0.

Thus the check symbols x4 x5 x6 x7 are determined by a1 a2 a3.
The equation HxT = (0) are also called check equations. If the
message a = 1 0 0 then, x4 = 0, x5 = 1, x6 = 0 and x7 = 0. The
code word x is 1 0 0 0 1 0 0. If the message a = 1 1 0 then x4 =1,
x5 = 1, x6 = 1 = x7. Thus the code word x = 1 1 0 1 1 0 0.

We will have altogether 23 code words given by

 0 0 0 0 0 0 0 1 1 0 1 1 0 0
 1 0 0 0 1 0 0 1 0 1 0 0 1 1
 0 1 0 1 1 0 0 0 1 1 1 1 1 1
 0 0 1 0 1 1 1 1 1 1 1 0 1 1

DEFINITION 1.1.1: Let H be an n – k × n matrix with elements
in Zq. The set of all n-dimensional vectors satisfying HxT = (0)
over Zq is called a linear code(block code) C over Zq of block

 10

length n. The matrix H is called the parity check matrix of the
code C. C is also called a linear(n, k) code.
 If H is of the form(A, In-k) then the k-symbols of the code
word x is called massage(or information) symbols and the last
n – k symbols in x are the check symbols. C is then also called a
systematic linear(n, k) code. If q = 2, then C is a binary code.
k/n is called transmission (or information) rate.
 The set C of solutions of x of HxT = (0). i.e., the solution
space of this system of equations, forms a subspace of this
system of equations, forms a subspace of n

qZ of dimension k.
Since the code words form an additive group, C is also called a
group code. C can also be regarded as the null space of the
matrix H.

Example 1.1.2: (Repetition Code) If each codeword of a code
consists of only one message symbol a1 ∈ Z2 and (n – 1) check
symbols x2 = x3 = … = xn are all equal to a1 (a1 is repeated n – 1
times) then we obtain a binary (n, 1) code with parity check
matrix

1 1 0 0 1
0 0 1 0 0

H = 0 0 0 1 0

1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…
…
…

#
…

.

There are only two code words in this code namely 0 0 … 0 and
1 1 …1.

If is often impracticable, impossible or too expensive to send the
original message more than once. Especially in the transmission
of information from satellite or other spacecraft, it is impossible
to repeat such messages owing to severe time limitations. One
such cases is the photograph from spacecraft as it is moving it
may not be in a position to retrace its path. In such cases it is
impossible to send the original message more than once. In

 11

repetition codes we can of course also consider code words with
more than one message symbol.

Example 1.1.3: (Parity-Check Code): This is a binary (n, n – 1)
code with parity-check matrix to be H = (1 1 … 1). Each code
word has one check symbol and all code words are given by all
binary vectors of length n with an even number of ones. Thus if
sum of the ones of a code word which is received is odd then
atleast one error must have occurred in the transmission.

Such codes find its use in banking. The last digit of the
account number usually is a control digit.

DEFINITION 1.1.2: The matrix G = (Ik, –AT) is called a
canonical generator matrix (or canonical basic matrix or
encoding matrix) of a linear (n, k) code with parity check matrix
H =(A, In–k). In this case we have GHT = (0).

Example 1.1.4: Let

G =
1 0 0 0 1 0 0
0 1 0 1 0 0 0
0 0 1 0 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

be the canonical generator matrix of the code given in example
1.1.1. The 23 code words x of the binary code can be obtained
from x = aG with a = a1 a2 a3, ai ∈ Z2, 1 ≤ i ≤ 3. We have the set
of a = a1 a2 a3 which correspond to the message symbols which
is as follows:

[0 0 0], [1 0 0], [0 1 0], [0 0 1],
[1 1 0], [1 0 1], [0 1 1] and [1 1 1].

x = []
1 0 0 0 1 0 0

0 0 0 0 1 0 1 0 0 0
0 0 1 0 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = []0 0 0 0 0 0 0

 12

x = []
1 0 0 0 1 0 0

1 0 0 0 1 0 1 0 0 0
0 0 1 0 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= []1 0 0 0 1 0 0

x = []
1 0 0 0 1 0 0

0 1 0 0 1 0 1 0 0 0
0 0 1 0 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= []0 1 0 1 0 0 0

x = []
1 0 0 0 1 0 0

0 0 1 0 1 0 1 0 0 0
0 0 1 0 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= []0 0 1 0 1 1 1

x = []
1 0 0 0 1 0 0

1 1 0 0 1 0 1 0 0 0
0 0 1 0 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= []1 1 0 1 1 0 0

x = []
1 0 0 0 1 0 0

1 0 1 0 1 0 1 0 0 0
0 0 1 0 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= []1 0 1 0 0 1 1

x = []
1 0 0 0 1 0 0

0 1 1 0 1 0 1 0 0 0
0 0 1 0 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= []0 1 1 1 1 1 1

 13

x = []
1 0 0 0 1 0 0

1 1 1 0 1 0 1 0 0 0
0 0 1 0 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= []1 1 1 1 0 1 1 .

The set of codes words generated by this G are

(0 0 0 0 0 0 0), (1 0 0 0 1 0 0), (0 1 0 1 0 0 0), (0 0 1 0 1 1 1), (1
1 0 1 1 0 0), (1 0 1 0 0 1 1), (0 1 1 1 1 1 1) and (1 1 1 1 0 1 1).

The corresponding parity check matrix H obtained from this G
is given by

H =

0 1 0 1 0 0 0
1 0 1 0 1 0 0
0 0 1 0 0 1 0
0 0 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

Now

GH
T
 =

0 1 0 0
1 0 0 0

1 0 0 0 1 0 0 0 1 1 1
0 1 0 1 0 0 0 1 0 0 0
0 0 1 0 1 1 1 0 1 0 0

0 0 1 0
0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=
0 0 0 0
0 0 0 0
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

We recall just the definition of Hamming distance and
Hamming weight between two vectors. This notion is applied to
codes to find errors between the sent message and the received

 14

message. As finding error in the received message happens to be
one of the difficult problems more so is the correction of errors
and retrieving the correct message from the received message.

DEFINITION 1.1.3: The Hamming distance d(x, y) between two
vectors x = x1 x2 … xn and y = y1 y2 … yn in n

qF is the number of

coordinates in which x and y differ. The Hamming weight ω(x)
of a vector x = x1 x2 … xn in n

qF is the number of non zero co

ordinates in ix . In short ω(x) = d(x, 0).

We just illustrate this by a simple example.
Suppose x = [1 0 1 1 1 1 0] and y ∈ [0 1 1 1 1 0 1] belong to

7
2F then D(x, y) = (x ~ y) = (1 0 1 1 1 1 0) ~ (0 1 1 1 1 0 1) =

(1~0, 0~1, 1~1, 1~1, 1~1, 1~0, 0~1) = (1 1 0 0 0 1 1) = 4. Now
Hamming weight ω of x is ω(x) = d(x, 0) = 5 and ω(y) = d(y, 0)
= 5.

DEFINITION 1.1.4: Let C be any linear code then the minimum
distance dmin of a linear code C is given as

min , C
min (,)

∈
≠

=
u v

u v

d d u v .

For linear codes we have
d(u, v) = d(u – v, 0) = ω(u –v).

Thus it is easily seen minimum distance of C is equal to the
least weight of all non zero code words. A general code C of
length n with k message symbols is denoted by C(n, k) or by a
binary (n, k) code. Thus a parity check code is a binary (n,
n – 1) code and a repetition code is a binary (n, 1) code.
 If H = (A, In–k) be a parity check matrix in the standard form
then G = (Ik, –AT) is the canonical generator matrix of the linear
(n, k) code.
 The check equations (A, In – k) xT = (0) yield

 15

1 1 1

2 2 2

k

k

n k k

x x a
x x a

A A

x x a

+

+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

#
.

Thus we obtain
1 1

2 2k

n k

x a
x aI

A
x a

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

#
.

We transpose and denote this equation as

(x1 x2 … xn) = (a1 a2 … ak) (Ik, –A7)

= (a1 a2 … ak) G.

We have just seen that minimum distance
min , C

min (,)
∈
≠

=
u v

u v

d d u v .

If d is the minimum distance of a linear code C then the

linear code of length n, dimension k and minimum distance d is
called an (n, k, d) code.
 Now having sent a message or vector x and if y is the
received message or vector a simple decoding rule is to find the
code word closest to x with respect to Hamming distance, i.e.,
one chooses an error vector e with the least weight. The
decoding method is called “nearest neighbour decoding” and
amounts to comparing y with all qk code words and choosing
the closest among them. The nearest neighbour decoding is the
maximum likelihood decoding if the probability p for correct
transmission is > ½.

Obviously before, this procedure is impossible for large k
but with the advent of computers one can easily run a program
in few seconds and arrive at the result.
We recall the definition of sphere of radius r. The set Sr(x) = {y
∈ n

qF / d(x, y) ≤ r} is called the sphere of radius r about x ∈ n
qF .

 16

In decoding we distinguish between the detection and the
correction of error. We can say a code can correct t errors and
can detect t + s, s ≥ 0 errors, if the structure of the code makes it
possible to correct up to t errors and to detect t + j, 0 < j ≤ s
errors which occurred during transmission over a channel.

A mathematical criteria for this, given in the linear code is ;
A linear code C with minimum distance dmin can correct upto t
errors and can detect t + j, 0 < j ≤ s, errors if and only if zt + s ≤
dmin or equivalently we can say “A linear code C with minimum

distance d can correct t errors if and only if (d 1)t
2
−⎡ ⎤= ⎢ ⎥⎣ ⎦

. The

real problem of coding theory is not merely to minimize errors
but to do so without reducing the transmission rate
unnecessarily. Errors can be corrected by lengthening the code
blocks, but this reduces the number of message symbols that
can be sent per second. To maximize the transmission rate we
want code blocks which are numerous enough to encode a given
message alphabet, but at the same time no longer than is
necessary to achieve a given Hamming distance. One of the
main problems of coding theory is “Given block length n and
Hamming distance d, find the maximum number, A(n, d) of
binary blocks of length n which are at distances ≥ d from each
other”.
 Let u = (u1, u2, …, un) and v = (v1, v2, …, vn) be vectors in

n
qF and let u.v = u1v1 + u2v2 + … + unvn denote the dot product

of u and v over n
qF . If u.v = 0 then u and v are called

orthogonal.

DEFINITION 1.1.5: Let C be a linear (n, k) code over Fq. The
dual(or orthogonal)code C⊥ = {u | u.v = 0 for all v ∈ C}, u ∈

n
qF . If C is a k-dimensional subspace of the n-dimensional

vector space n
qF the orthogonal complement is of dimension n –

k and an (n, n – k) code. It can be shown that if the code C has a
generator matrix G and parity check matrix H then C⊥ has
generator matrix H and parity check matrix G.

 17

Orthogonality of two codes can be expressed by GH
T = (0).

Example 1.1 .5: Let us consider the parity check matrix H of a
(7, 3) code where

1 0 0 1 0 0 0
0 0 1 0 1 0 0
1 1 0 0 0 1 0
1 0 1 0 0 0 1

H

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

The code words got using H are as follows

0 0 0 0 0 0 0
1 0 0 1 0 1 1
0 1 0 0 0 1 0
0 0 1 0 1 0 1
1 1 0 1 0 0 1

0 1 1 0 1 1 1
1 0 1 1 1 1 0
1 1 1 1 1 0 0

.

Now for the orthogonal code the parity check matrix H of the
code happens to be generator matrix,

1 0 0 1 0 0 0
0 0 1 0 1 0 0

G
1 1 0 0 0 1 0
1 0 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

T0 1 0 0 1 0 0 0

0 0 0 1 0 1 0 0
x

0 1 1 0 0 0 1 0
0 1 0 1 0 0 0 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 = [0 0 0 0 0 0 0].

 18

T1 1 0 0 1 0 0 0
0 0 0 1 0 1 0 0

x
0 1 1 0 0 0 1 0
0 1 0 1 0 0 0 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 = [1 0 0 1 0 0 0].

[]

1 0 0 1 0 0 0
0 0 1 0 1 0 0

x 0 1 0 0
1 1 0 0 0 1 0
1 0 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [0 0 1 0 1 0 0]

[]

1 0 0 1 0 0 0
0 0 1 0 1 0 0

0 0 1 0
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [1 1 0 0 0 1 0]

[]

1 0 0 1 0 0 0
0 0 1 0 1 0 0

0 0 0 1
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [1 0 1 0 0 0 1]

[]

1 0 0 1 0 0 0
0 0 1 0 1 0 0

1 1 0 0
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [1 0 1 1 1 0 0]

[]

1 0 0 1 0 0 0
0 0 1 0 1 0 0

1 0 1 0
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [0 1 0 1 0 1 0]

 19

[]

1 0 0 1 0 0 0
0 0 1 0 1 0 0

1 0 0 1
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

= [0 0 1 1 0 0 1]

[]

1 0 0 1 0 0 0
0 0 1 0 1 0 0

0 1 1 0
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

= [1 1 1 0 1 1 0]

[]

1 0 0 1 0 0 0
0 0 1 0 1 0 0

0 1 0 1
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [1 0 0 0 1 0 1]

[]

1 0 0 1 0 0 0
0 0 1 0 1 0 0

0 0 1 1
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [0 1 1 0 0 1 1]

[]

1 0 0 1 0 0 0
0 0 1 0 1 0 0

1 1 1 0
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [0 1 1 1 1 1 0]

[]

1 0 0 1 0 0 0
0 0 1 0 1 0 0

1 1 0 1
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [0 0 0 1 1 0 1]

 20

[]

1 0 0 1 0 0 0
0 0 1 0 1 0 0

1 0 1 1
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [1 1 1 1 0 1 1]

[]

1 0 0 1 0 0 0
0 0 1 0 1 0 0

0 1 1 1
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [0 1 0 0 1 1 1]

[]

1 0 0 1 0 0 0
0 0 1 0 1 0 0

1 1 1 1
1 1 0 0 0 1 0
1 0 1 0 0 0 1

x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = [1 1 0 1 1 1 1] .

The code words of C(7, 4) i.e., the orthogonal code of C(7, 3)
are

{(0 0 0 0 0 0 0), (1 0 0 1 0 0 0), (0 0 1 0 1 0 0), (1 1 0 0 0 1 0),
(1 0 1 0 0 0 1), (1 0 1 1 1 0 0), (0 1 0 1 0 1 0), (0 0 1 1 0 0 1), (1
1 1 0 1 1 0), (1 0 0 0 1 0 1), (0 1 1 0 0 1 1), (0 1 1 1 1 1 0), (0 0
0 1 1 0 1), (1 1 1 1 0 1 1), (0 1 0 0 1 1 1), (1 1 0 1 1 1 1)}

Thus we have found the orthogonal code for the given code.
Now we just recall the definition of the cosets of a code C.

DEFINITION 1.1.6: For a ∈ n

qF we have a + C = {a + x /x ∈
C}. Clearly each coset contains qk vectors. There is a partition
of n

qF of the form n
qF = C ∪ {a(1) + C} ∪ {a(2) + C} ∪ … ∪ {at

+ C} for t = qn–k –1. If y is a received vector then y must be an
element of one of these cosets say ai + C. If the code word x(1)
has been transmitted then the error vector

e = y – x(1) ∈ a(i) + C – x(1) = a(i) + C.

 21

Now we give the decoding rule which is as follows.

If a vector y is received then the possible error vectors e are
the vectors in the coset containing y. The most likely error is the
vector e with minimum weight in the coset of y. Thus y is
decoded as = −x y e . [23, 4]

Now we show how to find the coset of y and describe the
above method. The vector of minimum weight in a coset is
called the coset leader.

If there are several such vectors then we arbitrarily choose
one of them as coset leader. Let a(1), a(2), …, a(t) be the coset
leaders. We first establish the following table

(1) (2) ()

(1) (1) (1) (2) (1) ()

() (1) () (2) () ()

0 0= =
⎫+ + + ⎪⎪
⎬
⎪

+ + + ⎪⎭

…
…

#

…

k

k

k

q

q

t t t q

x x x code words inC
a x a x a x

other cosets

a x a x a x
coset
leaders

If a vector y is received then we have to find y in the table.

Let y = a(i) + x(j); then the decoder decides that the error e is
the coset leader a(i). Thus y is decoded as the code word

()jx y e x= − = . The code word x occurs as the first element
in the column of y. The coset of y can be found by evaluating the
so called syndrome.

Let H be parity check matrix of a linear (n, k) code. Then
the vector S(y) = HyT of length n–k is called syndrome of y.
Clearly S(y) = (0) if and only if y ∈ C.
S(y(1)) = S(y(2)) if and only if y(1) + C = y(2) + C .

We have the decoding algorithm as follows:
If y ∈ n

qF is a received vector find S(y), and the coset
leader e with syndrome S(y). Then the most likely transmitted
code word is x y e= − we have (,)d x y .= min{d(x, y)/x ∈ C}.

We illustrate this by the following example.

 22

Example 1.1.6: Let C be a (5, 3) code where the parity check
matrix H is given by

H =
1 0 1 1 0
1 1 0 0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

and

G =
1 0 0 1 1
0 1 0 0 1
0 0 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

The code words of C are

{(0 0 0 0 0), (1 0 0 1 1), (0 1 0 0 1), (0 0 1 1 0), (1 1 0 1 0), (1 0
1 0 1), (0 1 1 1 1), (1 1 1 0 0)}.

The corresponding coset table is

Message 000 100 010 001 110 101 011 111

code
words 00000 10011 01001 00110 11010 10101 01111 11100

10000 00011 11001 10110 01010 00101 11111 01100
01000 11011 00001 01110 10010 11101 00111 10100 other

cosets 00100 10111 01101 00010 11110 10001 01011 11000
 coset
 leaders

If y = (1 1 1 1 0) is received, then y is found in the coset with
the coset leader (0 0 1 0 0)
y + (0 0 1 0 0) = (1 1 1 1 0) + (0 0 1 0 0) = (1 1 0 1 0) is the
corresponding message.

Now with the advent of computers it is easy to find the real
message or the sent word by using this decoding algorithm.

A binary code Cm of length n = 2m– 1, m ≥ 2 with m × 2m –1
parity check matrix H whose columns consists of all non zero
binary vectors of length m is called a binary Hamming code.

We give example of them.

 23

Example 1.1.7: Let

H =

1 0 1 1 1 1 0 0 1 0 1 1 0 0 0
1 1 0 1 1 1 1 0 0 1 0 0 1 0 0
1 1 1 0 1 0 1 1 0 0 1 0 0 1 0
1 1 1 1 0 0 0 1 1 1 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

which gives a C4(15, 11, 4) Hamming code.

Cyclic codes are codes which have been studied extensively.

Let us consider the vector space n
qF over Fq. The mapping

Z: n
qF → n

qF
where Z is a linear mapping called a “cyclic shift” if Z(a0, a1,
…, an–1) = (an–1, a0, …, an–2)
 A = (Fq[x], +, ., .) is a linear algebra in a vector space over
Fq. We define a subspace Vn of this vector space by

Vn = {v ∈ Fq[x] / degree v < n}

= {v0 + v1x + v2x2 + … + vn–1xn–1 / vi ∈ Fq; 0 ≤ i ≤ n –1}.

We see that Vn ≅ n

qF as both are vector spaces defined over the
same field Fq. Let Γ be an isomorphism

Γ(v0, v1, …, vn–1) → {v0 + v1x + v2x2 + … + vn–1xn–1}.
w: n

qF J Fq[x] / xn – 1
i.e., w (v0, v1, …, vn–1) = v0 + v1x + … + vn–1x n–1.

Now we proceed onto define the notion of a cyclic code.

DEFINITION 1.1.7: A k-dimensional subspace C of n

qF is called

a cyclic code if Z(v) ∈ C for all v ∈ C that is v = v0, v1, …, vn–1

∈ C implies (vn–1, v0, …, vn–2) ∈ C for v ∈ n
qF .

We just give an example of a cyclic code.

 24

Example 1.1.8: Let C ⊆ 7

2F be defined by the generator matrix

G =

(1)

(2)

(3)

1 1 1 0 1 0 0 g
0 1 1 1 0 1 0 g
0 0 1 1 1 0 1 g

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

.

The code words generated by G are {(0 0 0 0 0 0 0), (1 1 1 0 1 0
0), (0 1 1 1 0 1 0), (0 0 1 1 1 0 1), (1 0 0 1 1 1 0), (1 1 0 1 0 0 1),
(0 1 0 0 1 1 1), (1 0 1 0 0 1 1)}.

Clearly one can check the collection of all code words in C
satisfies the rule if (a0 … a5) ∈ C then (a5 a0 … a4) ∈ C i.e., the
codes are cyclic. Thus we get a cyclic code.

Now we see how the code words of the Hamming codes looks
like.

Example 1.1.9: Let

1 0 0 1 1 0 1
H 0 1 0 1 0 1 1

0 0 1 0 1 1 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

be the parity check matrix of the Hamming (7, 4) code.

Now we can obtain the elements of a Hamming(7,4) code.
We proceed on to define parity check matrix of a cyclic

code given by a polynomial matrix equation given by defining
the generator polynomial and the parity check polynomial.

DEFINITION 1.1.8: A linear code C in Vn = {v0 + v1x + … +
vn–1xn–1 | vi ∈ Fq, 0 ≤ i ≤ n –1} is cyclic if and only if C is a
principal ideal generated by g ∈ C.

The polynomial g in C can be assumed to be monic.
Suppose in addition that g / xn –1 then g is uniquely determined
and is called the generator polynomial of C. The elements of C
are called code words, code polynomials or code vectors.

 25

Let g = g0 + g1x + … + gmxm ∈ Vn, g / xn –1 and deg g = m < n.
Let C be a linear (n, k) code, with k = n – m defined by the
generator matrix,

0 1

0 1

k-1
0 1

0 0 g
0 0 xg

 =

0 0 x g

m

m m

m

g g g
g g g

G

g g g

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

… …
… …

#
.

Then C is cyclic. The rows of G are linearly independent and
rank G = k, the dimension of C.

Example 1.1.10: Let g = x3 + x2 + 1 be the generator
polynomial having a generator matrix of the cyclic(7,4) code
with generator matrix

G =

1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

The codes words associated with the generator matrix is

0000000, 1011000, 0101100, 0010110, 0001011, 1110100,
1001110, 1010011, 0111010, 0100111, 0011101, 1100010,
1111111, 1000101, 0110001, 1101001.

The parity check polynomial is defined to be

h =
7x 1
g
−

h =
7

3 2

x 1
x x 1

−
+ +

 = x4 + x3 + x2 + 1.

If
nx 1
g
− = h0 + h1x + … + hkxk.

 26

the parity check matrix H related with the generator polynomial
g is given by

k 1 0

k k 1 0

k 1 0

0 0 h h h
0 h h h 0

H

h h h 0

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

… …
…

#
… …

.

For the generator polynomial g = x3 + x2 +1 the parity check
matrix

0 0 1 1 1 0 1
H 0 1 1 1 0 1 0

1 1 1 0 1 0 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

where the parity check polynomial is given by x4 + x3 + x2 + 1 =

7

3 2

x 1
x x 1

−
+ +

. It is left for the reader to verify that the parity check

matrix gives the same set of cyclic codes.

We now proceed on to give yet another new method of
decoding procedure using the method of best approximations.

We just recall this definition given by [4, 23, 39]. We just
give the basic concepts needed to define this notion. We know
that n

qF is a finite dimensional vector space over Fq. If we take

Z2 = (0, 1) the finite field of characteristic two. 5
2Z = Z2 × Z2 ×

Z2 × Z2 × Z2 is a 5 dimensional vector space over Z2. Infact {(1
0 0 0 0), (0 1 0 0 0), (0 0 1 0 0), (0 0 0 1 0), (0 0 0 0 1)} is a
basis of 5

2Z . 5
2Z has only 25 = 32 elements in it. Let F be a field

of real numbers and V a vector space over F. An inner product
on V is a function which assigns to each ordered pair of vectors
α, β in V a scalar 〈α /β 〉 in F in such a way that for all α, β, γ in
V and for all scalars c in F.

(a) 〈α + β / γ〉 = 〈α/γ〉 + 〈β/γ〉

 27

(b) 〈cα /β〉 = c〈α/β〉
(c) 〈β/α〉 = 〈α/β〉
(d) 〈α/α〉 > 0 if α ≠ 0.

On V there is an inner product which we call the standard inner
product. Let α = (x1, x2, …, xn) and β = (y1, y2, …, yn)

〈α /β〉 = i i
i

x y∑ .

This is called as the standard inner product. 〈α/α〉 is defined as
norm and it is denoted by ||α||. We have the Gram-Schmidt
orthogonalization process which states that if V is a vector
space endowed with an inner product and if β1, β2, …, βn be any
set of linearly independent vectors in V; then one may construct
a set of orthogonal vectors α1, α2, …, αn in V such that for each
k = 1, 2, …, n the set {α1, …, αk} is a basis for the subspace
spanned by β1, β2, …, βk where α1 = β1.

1 1

2 2 12
1

3 1 3 2
3 3 1 22 2

1 2

/

/ /

β α
α = β − α

α

β α β α
α = β − α − α

α α

& &

& & & &

and so on.

Further it is left as an exercise for the reader to verify that if
a vector β is a linear combination of an orthogonal sequence of
non-zero vectors α1, …, αm, then β is the particular linear
combination, i.e.,

m
k

k2
k 1 k

/

=

β α
β = α

α∑ & &
.

In fact this property that will be made use of in the best
approximations.

We just proceed on to give an example.

 28

Example 1.1.11: Let us consider the set of vectors β1 = (2, 0, 3),
β2 = (–1, 0, 5) and β3 = (1, 9, 2) in the space R3 equipped with
the standard inner product.
Define α1 = (2, 0, 3)

2
(1, 0, 5) /(2, 0, 3)

(1, 0, 5) (2, 0, 3)
13

−
α = − −

()13(1, 0, 5) 2, 0, 3
13

= − − = (–3, 0, 2)

3
(1, 9, 2) /(2, 0, 3)

(1,9,2) (2, 0, 3)
13

−
α = −

(1, 9, 2) /(3, 0, 2)
(3,0,2)

13
−

− −

= 8 1(1,9,2) (2,0,3) (3,0,2)
13 13

− − −

16 24 3 2(1,9,2) , 0, , 0,
13 13 13 13
⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

16 3 24 2(1,9,2) , 0,
13 13

⎧ ⎫− +⎛ ⎞= − ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

= (1, 9, 2) – (1, 0, 2)
= (0, 9, 0).

Clearly the set {(2, 0, 3), (–3, 0, 2), (0, 9, 0)} is an orthogonal
set of vectors.
 Now we proceed on to define the notion of a best
approximation to a vector β in V by vectors of a subspace W
where β ∉ W. Suppose W is a subspace of an inner product
space V and let β be an arbitrary vector in V. The problem is to
find a best possible approximation to β by vectors in W. This
means we want to find a vector α for which ||β – α|| is as small
as possible subject to the restriction that α should belong to W.
To be precisely in mathematical terms: A best approximation to
β by vectors in W is a vector α in W such that ||β – α || ≤ ||β – γ||
for every vector γ in W ; W a subspace of V.

By looking at this problem in R2 or in R3 one sees
intuitively that a best approximation to β by vectors in W ought

 29

to be a vector α in W such that β – α is perpendicular
(orthogonal) to W and that there ought to be exactly one such α.
These intuitive ideas are correct for some finite dimensional
subspaces, but not for all infinite dimensional subspaces.

We just enumerate some of the properties related with best
approximation.

Let W be a subspace of an inner product space V and let β
be a vector in V.

(i) The vector α in W is a best approximation to β by
vectors in W if and only if β – α is orthogonal to
every vector in W.

(ii) If a best approximation to β by vectors in W exists,
it is unique.

(iii) If W is finite-dimensional and {α1, α2, …, αn} is
any orthonormal basis for W, then the vector

k
k2

k k

/β α
α = α

α∑ & &
, where α is the (unique)best

approximation to β by vectors in W.
Now this notion of best approximation for the first time is used
in coding theory to find the best approximated sent code after
receiving a message which is not in the set of codes used.
Further we use for coding theory only finite fields Fq. i.e., |Fq| <
∞ . If C is a code of length n; C is a vector space over Fq and C
≅ k

qF ⊆ n
qF , k the number of message symbols in the code, i.e.,

C is a C(n, k) code. While defining the notion of inner product
on vector spaces over finite fields we see all axiom of inner
product defined over fields as reals or complex in general is not
true. The main property which is not true is if 0 ≠ x ∈ V; the
inner product of x with itself i.e., 〈x / x〉 = 〈x, x〉 ≠ 0 if x ≠ 0 is
not true i.e., 〈x / x〉 = 0 does not imply x = 0 .
 To overcome this problem we define for the first time the
new notion of pseudo inner product in case of vector spaces
defined over finite characteristic fields [4, 23].

DEFINITION 1.1.9: Let V be a vector space over a finite field Fp
of characteristic p, p a prime. Then the pseudo inner product on

 30

V is a map 〈,〉 p : V × V → Fp satisfying the following
conditions.

 1. 〈x, x〉p ≥ 0 for all x ∈ V and 〈x, x〉p = 0 does not in
general imply x = 0.
 2. 〈x, y〉p = 〈y, x〉p for all x, y ∈ V.

3. 〈x + y, z〉p = 〈x, z〉p + 〈y, z〉p for all x, y, z ∈ V.
 4. 〈x, y + z〉p = 〈x, y〉p + 〈x, z〉p for all x, y, z ∈ V.
 5. 〈α.x, y〉p = α 〈x, y〉p and
 6. 〈x, β.y〉p = β〈x, y〉p for all x, y, ∈ V and α, β ∈ Fp.

Let V be a vector space over a field Fp of characteristic p, p is a
prime; then V is said to be a pseudo inner product space if there
is a pseudo inner product 〈,〉p defined on V. We denote the
pseudo inner product space by (V, 〈,〉p).

Now using this pseudo inner product space (V, 〈,〉p) we proceed
on to define pseudo-best approximation.

DEFINITION 1.1.10: Let V be a vector space defined over the
finite field Fp (or Zp). Let W be a subspace of V. For β ∈ V and
for a set of basis {α1, …, αk} of the subspace W the pseudo best

approximation to β, if it exists is given by
1

,
=
∑

k

i ip
i

β α α . If

1
,

=
∑

k

i ip
i

β α α = 0, then we say the pseudo best approximation

does not exist for this set of basis {α1, α2, …, αk}. In this case
we choose another set of basis for W say {γ1, γ2, …, γk} and

calculate
1

,
=
∑

k

i ip
i

β γ γ and
1

,
=
∑

k

i ip
i

β γ γ is called a pseudo best

approximation to β.

Note: We need to see the difference even in defining our pseudo
best approximation with the definition of the best
approximation. Secondly as we aim to use it in coding theory
and most of our linear codes take only their values from the
field of characteristic two we do not need 〈x, x〉 or the norm to

 31

be divided by the pseudo inner product in the summation of
finding the pseudo best approximation.

Now first we illustrate the pseudo inner product by an example.

Example 1.1.12: Let V = Z2 × Z2 × Z2 × Z2 be a vector space
over Z2. Define 〈,〉p to be the standard pseudo inner product on
V; so if x = (1 0 1 1) and y = (1 1 1 1) are in V then the pseudo
inner product of

〈x, y〉p = 〈(1 0 1 1), (1 1 1 1)〉p = 1 + 0 + 1 + 1 = 1.
Now consider

〈x, x〉p = 〈(1 0 1 1), (1 0 1 1)〉p = 1 + 0 + 1 + 1 ≠ 0
but

〈y, y〉p = 〈(1 1 1 1), (1 1 1 1)〉p = 1 + 1 + 1 + 1 = 0.

We see clearly y ≠ 0, yet the pseudo inner product is zero.

Now having seen an example of the pseudo inner product we
proceed on to illustrate by an example the notion of pseudo best
approximation.

Example 1.1.13: Let

V = 8
2 2 2 2

8 times

Z Z Z Z= × × ×…����	���

be a vector space over Z2. Now
W = {0 0 0 0 0 0 0 0), (1 0 0 0 1 0 11), (0 1 0 0 1 1 0 0), (0 0 1 0
0 1 1 1), (0 0 0 1 1 1 0 1), (1 1 0 0 0 0 1 0), (0 1 1 0 1 1 1 0), (0
0 1 1 1 0 1 0), (0 1 0 1 0 1 0 0), (1 0 1 0 1 1 0 0), (1 0 0 1 0 1 1
0), (1 1 1 0 0 1 0 1), (0 1 1 1 0 0 1 1), (1 1 0 1 1 1 1 1), (1 0 1 1
0 0 0 1), (1 1 1 1 1 0 0 0)}

be a subspace of V. Choose a basis of W as B = {α1, α2, α3, α4}
where

α1 = (0 1 0 0 1 0 0 1),
α2 = (1 1 0 0 0 0 1 0),
α3 = (1 1 1 0 0 1 0 1)

and
α4 = (1 1 1 1 1 0 0 0).

 32

Suppose β = (1 1 1 1 1 1 1 1) is a vector in V using pseudo best
approximations find a vector in W close to β. This is given by α
relative to the basis B of W where

4

k kp
k 1

,
=−

α = β α α∑

= 〈(1 1 1 1 1 1 1 1), (0 1 0 0 1 0 0 1)〉p α1 +

〈(1 1 1 1 1 1 1 1), (1 1 0 0 0 0 1 0)〉p α2 +
〈(1 1 1 1 1 1 1 1), (1 1 1 0 0 1 0 1)〉p α3 +
〈(1 1 1 1 1 1 1 1), (1 1 1 1 1 0 0 0)〉p α4.

= 1.α1 + 1.α2 + 1.α3 + 1.α4.
= (0 1 0 0 1 0 0 1) + (1 1 0 0 0 0 1 0) + (1 1 1 0 0 1 0 1) + (1 1
 1 1 1 0 0 0)
= (1 0 0 1 0 1 1 0) ∈ W.

Now having illustrated how the pseudo best approximation of a
vector β in V relative to a subspace W of V is determined, now
we illustrate how the approximately the nearest code word is
obtained.

Example 1.1.14: Let C = C(4, 2) be a code obtained from the
parity check matrix

1 0 1 0
H

1 1 0 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

.

The message symbols associated with the code C are {(0, 0), (1,
0), (1, 0), (1, 1)}. The code words associated with H are C = {(0
0 0 0), (1 0 1 1), (0 1 0 1), (1 1 1 0)}. The chosen basis for C is
B = {α1, α2} where α1 = (0 1 0 1) and α2 = (1 0 1 1). Suppose
the received message is β = (1 1 1 1), consider HβT = (0 1) ≠ (0)
so β ∉ C. Let α be the pseudo best approximation to β relative
to the basis B given as

 33

2

k kp
k 1

,
=

α = β α α∑ = 〈(1 1 1 1), (0 1 0 1)〉pα1

+ 〈(1 1 1 1), (1 0 1 1)〉pα2.

= (1 0 1 1) .

Thus the approximated code word is (1 0 1 1).
This method could be implemented in case of algebraic linear
bicodes and in general to algebraic linear n-codes; n ≥ 3.

Now having seen some simple properties of codes we now
proceed on to recall some very basic properties about bimatrices
and their generalization, n-matrices (n ≥ 3).

1.2 Bimatrices and their Generalizations

In this section we recall some of the basic properties of
bimatrices and their generalizations which will be useful for us
in the definition of linear bicodes and linear n-codes
respectively.

In this section we recall the notion of bimatrix and illustrate
them with examples and define some of basic operations on
them.

DEFINITION 1.2.1: A bimatrix AB is defined as the union of two
rectangular array of numbers A1 and A2 arranged into rows and
columns. It is written as follows AB = A1 ∪ A2 where A1 ≠ A2
with

A1 =

1 1 1
11 12 1
1 1 1
21 22 2

1 1 1
1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

#
"

n

n

m m mn

a a a
a a a

a a a

and

 34

A2 =

2 2 2
11 12 1
2 2 2
21 22 2

2 2 2
1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

#
"

n

n

m m mn

a a a
a a a

a a a

‘∪’ is just the notational convenience (symbol) only.

The above array is called a m by n bimatrix (written as
B(m × n) since each of Ai (i = 1, 2) has m rows and n columns).
It is to be noted a bimatrix has no numerical value associated
with it. It is only a convenient way of representing a pair of
array of numbers.

Note: If A1 = A2 then AB = A1 ∪ A2 is not a bimatrix. A
bimatrix AB is denoted by () ()1 2

ij ija a∪ . If both A1 and A2 are m

× n matrices then the bimatrix AB is called the m × n rectangular
bimatrix.

But we make an assumption the zero bimatrix is a union of
two zero matrices even if A1 and A2 are one and the same; i.e.,
A1 = A2 = (0).

Example 1.2.1: The following are bimatrices

i. AB =
3 0 1 0 2 1
1 2 1 1 1 0

−⎡ ⎤ ⎡ ⎤
∪⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

is a rectangular 2 × 3 bimatrix.

ii. B

3 0
A ' 1 1

2 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ∪ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

is a column bimatrix.

 35

iii. A"B = (3, –2, 0, 1, 1) ∪ (1, 1, –1, 1, 2)

is a row bimatrix.

In a bimatrix AB = A1 ∪A2 if both A1 and A2 are m × n

rectangular matrices then the bimatrix AB is called the
rectangular m × n bimatrix.

DEFINITION 1.2.2: Let AB = A1 ∪ A2 be a bimatrix. If both A1
and A2 are square matrices then AB is called the square
bimatrix.

If one of the matrices in the bimatrix AB = A1 ∪ A2 is a
square matrix and other is a rectangular matrix or if both A1
and A2 are rectangular matrices say m1 × n1 and m2 × n2 with m1
≠ m2 or n1 ≠ n2 then we say AB is a mixed bimatrix.

The following are examples of a square bimatrix and the mixed
bimatrix.

Example 1.2.2: Given

AB =
3 0 1 4 1 1
2 1 1 2 1 0
1 1 0 0 0 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

is a 3 × 3 square bimatrix.

A'B =

1 1 0 0 2 0 0 1
2 0 0 1 1 0 1 0
0 0 0 3 0 1 0 3
1 0 1 2 3 2 0 0

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥∪
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

is a 4 × 4 square bimatrix.

 36

Example 1.2.3: Let

AB =

3 0 1 2
1 1 2

0 0 1 1
0 2 1

2 1 0 0
0 0 4

1 0 1 0

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ ∪ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎣ ⎦

then AB is a mixed square bimatrix.
Let

B

2 0 1 1
2 0

A' 0 1 0 1
4 3

1 0 2 1

⎡ ⎤
⎡ ⎤⎢ ⎥= ∪ ⎢ ⎥⎢ ⎥ −⎣ ⎦⎢ ⎥−⎣ ⎦

,

A'B is a mixed bimatrix.

Now we proceed on to give the operations on bimatrices.

Let AB = A1 ∪ A2 and CB = C1 ∪ C2 be two bimatrices we
say AB and CB are equal written as AB = CB if and only if A1 and
C1 are identical and A2 and C2 are identical i.e., A1 = C1 and A2
= C2.

If AB = A1 ∪ A2 and CB = C1 ∪ C2, we say AB is not equal
to CB, we write AB ≠ CB if and only if A1 ≠ C1 or A2 ≠ C2.

Example 1.2.4: Let

AB =
3 2 0 0 1 2
2 1 1 0 0 1

−⎡ ⎤ ⎡ ⎤
∪⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

and

CB =
1 1 1 2 0 1
0 0 0 1 0 2
⎡ ⎤ ⎡ ⎤

∪⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

clearly AB ≠ CB. Let

 37

AB =
0 0 1 0 4 2
1 1 2 3 0 0

−⎡ ⎤ ⎡ ⎤
∪⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

CB =
0 0 1 0 0 0
1 1 2 1 0 1
⎡ ⎤ ⎡ ⎤

∪⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

clearly AB ≠ CB.

If AB = CB then we have CB = AB.
We now proceed on to define multiplication by a scalar.

Given a bimatrix AB = A1 ∪ B1 and a scalar λ, the product of λ
and AB written λ AB is defined to be

λAB =
11 1n

m1 mn

a a

a a

λ λ⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥λ λ⎣ ⎦

"
#

"
 ∪

11 1n

m1 mn

b b

b b

λ λ⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥λ λ⎣ ⎦

"
#

"

each element of A1 and B1 are multiplied by λ. The product λ
AB is then another bimatrix having m rows and n columns if AB
has m rows and n columns.

We write
 λ AB = ij ija b⎡ ⎤ ⎡ ⎤λ ∪ λ⎣ ⎦ ⎣ ⎦

 = ij ija b⎡ ⎤ ⎡ ⎤λ ∪ λ⎣ ⎦ ⎣ ⎦

 = AB λ.

Example 1.2.5: Let

AB =
2 0 1 0 1 1
3 3 1 2 1 0

−⎡ ⎤ ⎡ ⎤
∪⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

and λ = 3 then

3AB =
6 0 3 0 3 3
9 9 3 6 3 0

−⎡ ⎤ ⎡ ⎤
∪⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

.

If λ = – 2 for
 AB = [3 1 2 –4] ∪ [0 1 –1 0],
 λAB = [–6 –2 –4 8] ∪ [0 –2 2 0].

 38

Let AB = A1 ∪ B1 and CB = A2 ∪ B2 be any two m × n
bimatrices. The sum DB of the bimatrices AB and CB is defined
as DB = AB + CB = [A1 ∪ B1] + [A2 ∪ B2] = (A1 + A2) ∪ [B2 +
B2]; where A1 + A2 and B1 + B2 are the usual addition of
matrices i.e., if

AB = () ()1 1
ij ija b∪

and
CB = () ()2 2

ij ija b∪

then
AB + CB = DB = () () ()1 2 1 2

ij ij ij ija a b b ij+ ∪ + ∀ .

If we write in detail

AB =

1 1 1 1
11 1n 11 1n

1 1 1 1
m1 mn m1 mn

a a b b

a a b b

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

" "
#

" "

CB =

2 2 2 2
11 1n 11 1n

2 2 2 2
m1 mn m1 mn

a a b b

a a b b

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

" "
#

" "

AB + CB =

1 2 1 2 1 2 1 2
11 11 1n 1n 11 11 1n 1n

1 2 1 2 1 2 1 2
m1 m1 mn mn m1 m1 mn mn

a a a a b b b b

a a a a b b b b

⎡ ⎤ ⎡ ⎤+ + + +
⎢ ⎥ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ + + +⎣ ⎦ ⎣ ⎦

… …
#

… …
.

The expression is abbreviated to

DB = AB + CB
 = (A1 ∪ B1) + (A2 ∪ B2)
 = (A1 + A2) ∪ (B1 + B2).

 39

Thus two bimatrices are added by adding the corresponding
elements only when compatibility of usual matrix addition
exists.

Note: If AB = A1 ∪ A2 be a bimatrix we call A1 and A2 as the
components of AB or component matrices of the bimatrix AB.

Example 1.2.6:

(i) Let

AB =
3 1 1 4 0 1
1 0 2 0 1 2

−⎡ ⎤ ⎡ ⎤
∪⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

and

CB =
1 0 1 3 3 1

2 2 1 0 2 1
−⎡ ⎤ ⎡ ⎤

∪⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
,

then,

DB = AB + CB

=
3 1 1 1 0 1
1 0 2 2 2 1

−⎡ ⎤ ⎡ ⎤
+ ∪⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

4 0 1 3 3 1
0 1 2 0 2 1

−⎡ ⎤ ⎡ ⎤
+⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

=
2 1 2 7 3 0
1 2 1 0 3 3
⎡ ⎤ ⎡ ⎤

∪⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
.

(ii) Let

AB = (3 2 –1 0 1) ∪ (0 1 1 0 –1)
and

CB = (1 1 1 1 1) ∪ (5 –1 2 0 3),

AB + CB = (4 3 0 1 2) ∪ (5 0 3 0 2).

 40

Example 1.2.7: Let

AB =
6 1 3 1
2 2 0 2
1 1 1 3

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

and

CB =
2 4 1 4
4 1 2 1
3 0 3 1

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− ∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

.

AB + AB =
12 2 6 2
4 4 0 4
2 2 2 6

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 = 2AB

CB + CB =
4 8 2 8
8 2 4 2
6 0 6 2

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− ∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 = 2CB.

Similarly we can add

AB + AB + AB = 3AB =
18 3 9 3
6 6 0 6
3 3 3 9

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

.

Note: Addition of bimatrices are defined if and only if both the
bimatrices are m × n bimatrices.

Let

AB =
3 0 1 1 1 1
1 2 0 0 2 1
⎡ ⎤ ⎡ ⎤

∪⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

and

 41

CB =
3 1 1 1
2 1 2 1
0 0 3 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∪ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

.

The addition of AB with CB is not defined for AB is a 2 × 3
bimatrix where as CB is a 3 × 2 bimatrix.

Clearly AB + CB = CB + AB when both AB and CB are m × n
matrices.

Also if AB, CB, DB be any three m × n bimatrices then AB +
(CB + DB) = (AB + CB) + DB.

Subtraction is defined in terms of operations already considered
for if

AB = A1 ∪ A2
and

BB = B1 ∪ B2
then
 AB – BB = AB + (–BB)
 = (A1 ∪ A2) + (–B1 ∪ –B2)
 = (A1 – B1) ∪ (A2 – B2)
 = [A1 + (–B1)] ∪ [A2 + (–B2)].

Example 1.2.8:

i. Let

AB =
3 1 5 2
1 2 1 1

0 3 3 2

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− ∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

and

BB =
8 1 9 2
4 2 2 9
1 3 1 1

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

AB – BB = AB + (–BB).

 42

=
3 1 5 2 8 1 9 2
1 2 1 1 4 2 2 9

0 3 3 2 1 3 1 1

⎧ ⎫ ⎧ ⎫− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ∪ + − ∪⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

=
3 1 8 1 5 2 9 2
1 2 4 2 1 1 2 9

0 3 1 3 3 2 1 1

− −⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ∪ −⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

=
5 2 4 4
5 0 1 8

1 0 4 3

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− ∪ − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

.

ii. Let
 AB = (1, 2, 3, –1, 2, 1) ∪ (3, –1, 2, 0, 3, 1)
and
 BB = (–1, 1, 1, 1, 1, 0) ∪ (2, 0, –2, 0, 3, 0)
then
 AB + (–BB) = (2, 1, 2, –2, 1, 1) ∪ (1, –1, 4, 0, 0, 1).

Now we have defined addition and subtraction of bimatrices.
Unlike in matrices we cannot say if we add two bimatrices the
sum will be a bimatrix.

Now we proceed onto define the notion of n-matrices.

DEFINITION 1.2.3: A n matrix A is defined to be the union of n
rectangular array of numbers A1, …, An arranged into rows and
columns. It is written as A= A1 ∪ …∪ An where Ai ≠ Aj with

Ai =

11 12 1

21 22 2

1 2

i i i
p

i i i
p

i i i
m m mp

a a a
a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…
…

#
…

 43

i = 1, 2, …, n.

'∪' is just the notional convenience (symbol) only (n ≥ 3).

Note: If n = 2 we get the bimatrix.

Example 1.2.9: Let

A =
3 1 0 1 2 1 1 0
0 0 1 1 0 1 1 0
⎡ ⎤ ⎡ ⎤

∪⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 ∪

1 0 0 1 5 1 0 2
0 1 0 1 7 1 0 3
⎡ ⎤ ⎡ ⎤

∪⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

A is a 4-matrix.

Example 1.2.10: Let

A = A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5

= [1 0 0] ∪

1
2
1

0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪
3 1 2
0 1 1
9 7 8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

∪
2 1 3 5
0 1 0 2
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪

7 9 8 11 0
1 2 0 9 7
0 5 7 1 8
4 6 6 0 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥− −⎣ ⎦

;

A is a 5-matrix. Infact A is a mixed 5-matrix.

 44

Example 1.2.11: Consider the 7-matrix

A =
2 0 1 1 1 1
1 1 0 1 0 4

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
∪ ∪⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 ∪

3 1
1 0
0 1
2 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 ∪

5
6
7
8
1

3
2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪ [3 7 8 1 0] ∪

2 1 0 0
1 0 2 1
1 1 0 0

0 2 0 1
2 0 0 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

= A1 ∪ A2 ∪ … ∪ A7. A is a mixed 7-matrix.

 45

Chapter Two

BICODES AND THEIR GENERALIZATIONS

This chapter has four sections. We introduce in this chapter four
classes of new codes. Section 1 contains bicodes and the new
class of n-codes (n ≥ 3) and their properties. Section two deals
with error correction using n-coset leaders and pseudo best n
approximations. The notion of false n-matrix and pseudo false
n-matrix are introduced in section three. Section four introduces
4 new classes of codes viz false n-codes, m-pseudo false n-
codes, (t, t) pseudo false n-codes and (t, m) pseudo false n-codes
which has lot of applications.

2.1 Bicodes and n-codes

In this section we introduce the notion of bicodes and n-codes
and describe some of their basic properties. Now for the first
time we give the use of bimatrices in the field of coding theory.
Very recently we have defined the notion of bicodes [43, 44].

A bicode is a pair of sets of markers or labels built up from
a finite “alphabet” which can be attached to some or all of the
entities of a system of study. A mathematical bicode is a bicode
with some mathematical structure. In many cases as in case of
codes the mathematical structure of a bicodes refers to the fact
that it forms a bivector space over finite field and in this case

 46

the bicode is linear. Let Zq(m) =
1q 2Z (m) ∪

2q 2Z (m) . Denote

the m-dimensional linear bicode in the bivector space V = V1 ∪
V2 where V1 is a m1 dimensional vector space over Zp where q1
is a power of the prime p and V2 is a m2 – dimensional vector
space over Zp where q2 is a power of the prime p, then Zq (m) =

1 2q 1 q 2Z (m) Z (m)∪ is a bicode over Zp.
Thus a bicode can also be defined as a ‘union’ of two codes

C1 and C2 where union is just the symbol.
For example we can have a bicode over Z2.

Example 2.1.1: Let C = C1 ∪ C2 be a bicode over Z2 given by

C = C1 ∪ C2
= {(0 0 0 0 0 0), (0 1 1 0 1 1), (1 1 0 1 1 0), (0 0 1 1 1 0), (1 0 0
0 1 1), (1 1 1 0 0 0), (0 1 0 1 0 1), (1 0 1 1 0 1)} ∪ {(0 0 0 0), (1
1 1 0), (1 0 0 1), (0 1 1 1), (0 1 0 1), (0 0 1 0), (1 1 0 0), (1 0 1
1)} over Z2.

These codes are subbispaces of the bivector space over Z2 of
dimension (6, 4). Now the bicodes are generated by bimatrices
and we have parity check bimatrices to play a role in finding the
check symbols. Thus we see we have the applications of linear
bialgebra / bivector spaces in the study of bicodes.

C (n1 ∪ n2, k1, k2) = C1 (n1, k1) ∪ C2 (n2, k2)
is a linear bicode if and only if both C1 (n1, k1) and C2 (n2, k2)
are linear codes of length n1 and n2 with k1 and k2 message
symbols respectively with entries from the same field Zq. The
check symbols can be obtained from the k1 and k2 messages in
such a way that the bicode words x = x1 ∪ x2 satisfy the system
of linear biequations.

i.e. HxT = (0)
i.e. (H1 ∪ H2) (x1 ∪ x2)T = (0) ∪ (0)
i.e. H1 (x1)T ∪ H2 (x2)T = (0) ∪ (0)
where H = H1 ∪ H2 is a given mixed bimatrix of order (n1 – k1 ×
n1, n2 – k2 × n2) with entries from the same field Zq, H = H1 ∪
H2 is the parity check bimatrix of the bicode C.

 47

The standard form of H is (A1,
1 1n kI −) ∪ (A2, n k2 2

I −) with
A1 a n1 – k1 × k1 matrix and A2 a n2 – k2 × k2 matrix.

n k n k1 1 2 2
I and I− − are n1 – k1 × n1 – k1 and n2 – k2 × n2 – k2
identity matrices respectively. The bimatrix H is called the
parity check bimatrix of the bicode C = C1 ∪ C2. C is also called
the linear (n, k) = (n1 ∪ n2, k1 ∪ k2) = (n1, k1) ∪ (n2, k2) bicode.

Example 2.1.2: Let C (n, k) = C (6 ∪ 7, 3 ∪ 4) = C1 (6, 3) ∪ C2
(7, 4) be a bicode got by the parity check bimatrix, H = H1 ∪ H2
where

H =
0 1 1 1 0 0 1 1 1 0 1 0 0
1 0 1 0 1 0 0 1 1 1 0 1 0
1 1 0 0 0 1 1 1 0 1 0 0 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

.

The bicodes are obtained by solving the equations.

HxT = T T
1 1 2 2H x H x∪ = (0) ∪ (0).

There are 23 ∪ 24 bicode words given by

{(0 0 0 0 0 0), (0 1 1 0 1 1), (1 1 0 1 1 0), (0 0 1 1 1 1 0), (1 0 0
0 1 1), (1 1 1 0 0 0), (0 1 0 1 0 1), (1 0 1 1 0 1)} ∪ {(0 0 0 0 0 0
0), (1 0 0 0 1 0 1), (0 1 0 0 1 1 1), (0 0 1 0 1 1 0), (0 0 0 1 0 1 1),
(1 1 0 0 0 1 0), (1 0 1 0 0 1 1), (1 0 0 1 1 1 1), (0 1 1 0 0 0 1), (0
1 0 1 1 0 0), (0 0 1 1 1 0 1), (1 1 1 0 1 0 0), (1 1 0 1 0 0 1), (1 0
1 1 0 0 0), (0 1 1 1 0 1 0), (1 1 1 1 1 1 1)}.

Clearly this is a bicode over Z2. Now the main advantage of a
bicode is that at a time two codes of same length or of different
length are sent simultaneously and the resultant can be got.

As in case of codes if x = x1 ∪ x2 is a sent message and y =
y1 ∪ y2 is a received message using the parity check bimatrix H
= H1 ∪ H2 one can easily verify whether the received message is
a correct one or not.

For if we consider HxT = T T
1 1 2 2H x H x∪ then HxT = (0) ∪

(0) for x = x1 ∪ x2 is the bicode word which was sent. Let y = y1

 48

∪ y2 be the received word. Consider HyT = T T
1 1 2 2H y H y∪ , if

HyT = (0) ∪ (0) then the received bicode word is a correct
bicode if HyT ≠ (0), then we say there is error in the received
bicode word. So we define bisyndrome SB (y) = HyT for any
bicode y = y1 ∪ y2.

Thus the bisyndrome

B

1 1 2 2S (y) S (y) S (y)= ∪ = T T
1 1 2 2H y H y∪ .

If the bisyndrome SB (y) = (0) then we say y is the bicode word.
If SB (y) ≠ (0) then the word y is not a bicode word. This is the
fastest and the very simple means to check whether the received
bicode word is a bicode word or not.

Now we proceed on to define the notion of bigenerator
bimatrix or just the generator bimatrix of a bicode C(n, k) =
C1(n1, k1) ∪ C2 (n2, k2).

DEFINITION 2.1.1: The generator bimatrix G = (Ik, – AT) = G1
∪ G2 = () ()1 2

1 2
1 2
T T

k kI A I A− ∪ − is called the canonical

generator bimatrix or canonical basic bimatrix or encoding
bimatrix of a linear bicode, C(n, k) = C(n1 ∪ n2, k1 ∪ k2) with
parity check bimatrix; H = H1 ∪ H2 = (A1,

1 1 2 2

1 2
2) (,)− −∪n k n kI A I . We have GHT = (0) i.e. 1 1 2 2∪T TG H G H

= (0) ∪ (0).

We now illustrate by an example how a generator bimatrix
of a bicode functions.

Example 2.1.3: Consider C (n, k) = C1 (n1, k1) ∪ C2 (n2, k2) a
bicode over Z2 where C1 (n1, k1) is a (7, 4) code and C2 (n2, k2) is
a (9, 3) code given by the generator bimatrix

G = G1 ∪ G2 =

 49

1 0 0 0 1 0 1
1 0 0 1 0 0 1 0 0

0 1 0 0 1 1 1
.0 1 0 0 1 0 0 1 0

0 0 1 0 1 1 0
0 0 1 0 0 1 0 0 1

0 0 0 1 0 1 1

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ ∪ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎣ ⎦

One can obtain the bicode words by using the rule x1 = aG
where a is the message symbol of the bicode. x1 ∪ x2 =

1 2
1 2a G a G∪ with a = a1 ∪ a2 ;

where
a1 = 1 1 1

1 2 3a a a
and

a2
 = 2 2 2 2 2 2

1 2 3 4 5 6a a a a a a .

We give another example in which we calculate the bicode

words.

Example 2.1.4: Consider a C (n, k) = C1 (6, 3) ∪ C2 (4, 2)
bicode over Z2.

The 23 ∪ 22 code words x1 and x2 of the binary bicode can
be found using the generator bimatrix G = G1 ∪ G2.

G =
1 0 0 0 1 1

1 0 1 1
0 1 0 1 0 1

0 1 0 1
0 0 1 1 1 0

⎡ ⎤
⎡ ⎤⎢ ⎥ ∪ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

.

x = aG i.e., x1 ∪ x2 = a1G1 ∪ a2G2 where a1 =

1 1 1 2 2 2
1 2 3 1 2a a a and a a a= where the message symbols are

000 001 100 010 0 1 1 0
110 011 101 111 0 0 11

⎧ ⎫ ⎧ ⎫
∪⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
.

Thus x = x1 ∪ x2 = a1G1 ∪ a2G2.
We get the bicodes as follows:

 50

000000 011011 110110 001110
100011 111000 010101 101101

⎧ ⎫
⎨ ⎬
⎩ ⎭

∪
0000 1010
0101 1110

⎧ ⎫
⎨ ⎬
⎩ ⎭

Now we proceed on to define the notion of repetition bicode

and parity check bicode.

DEFINITION 2.1.2: If each bicode word of a bicode consists of
only one message symbol a = a1 ∪ a2 ∈ F2 and the (n1 – 1) ∪
(n2 – 1) check symbols and

1

1 1 1
2 3 1= = = =… nx x x a and

2

2 2 2
2 3 2 1... ,= = = =nx x x a a repeated n1 – 1 times and a2 is

repeated n2 – 1 times. We obtain the binary (n, 1) = (n1, 1) ∪
(n2, 1) repetition bicode with parity check bimatrix, H = H1 ∪
H2;

i.e., H =

1 1 2 2n 1 n n 1 n

110 0 110 0
101 0 101 0

100 1 100 1
− × − ×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∪
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

" …
"

…

There are only 4 bicode words in a repetition bicode.
{(1 1 1 1…1), (0 0 0…0)} ∪ {(1 1 1 1 1 1…1), (0 0 … 0)}.

Example 2.1.5: Consider the Repetition bicode (n, k) = (5, 1) ∪
(4, 1). The parity check bimatrix is given by

3 4
4 5

1 1 0 0 0
1 1 0 0

1 0 1 0 0
1 0 1 0

1 0 0 1 0
1 0 0 1

1 0 0 0 1 ×
×

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ ∪ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎣ ⎦

.

The bicode words are
{(1 1 1 1 1), (0 0 0 0 0)} ∪ {(1 1 1 1), (0 0 0 0)}.

We now proceed on to define Parity-check bicode.

 51

DEFINITION 2.1.3: Parity check bicode is a (n, n-1) = (n1, n1-1)
∪ (n2, n2 – 1) bicode with parity check bimatrix H =
() ()... ...

× ×
∪

1 21 n 1 n1 1 1 1 1 1 .

Each bicode word has one check symbol and all bicode
words are given by all binary bivectors of length n = n1 ∪ n2
with an even number of ones. Thus if the sum of ones of a
received bicode word is 1 at least an error must have occurred
at the transmission.

Example 2.1.6: Let (n, k) = (4, 3) ∪ (5, 4) be a bicode with
parity check bimatrix.

H = (1 1 1 1) ∪ (1 1 1 1 1)
 = H1 ∪ H2.

The bicodes related with the parity check bimatrix H is given by

0000 1001
0101 0011
1100 1010
0110 1111

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 ∪

00000 00011 11000 10100
10001 01100 00110 01010
01001 11011 10110 01111
00101 10010 11101 11110

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

.

Now the concept of linear bialgebra i.e. bimatrices are used
when we define cyclic bicodes. So we define a cyclic bicode as
the union of two cyclic codes for we know if C (n, k) is a cyclic
code then if (x1…xn) ∈ C (n, k) it implies (xn x1…xn–1) belongs
to C (n, k).

We just give an example of a cyclic bicode using both
generator bimatrix and the parity check bimatrix or to be more
precise using a generator bipolynomial and a parity check
bipolynomial.

 52

Suppose C(n, k) = C1 (n1, k1) ∪ C2 (n2, k2) be a cyclic
bicode then we need generator polynomials g1 (x) | 1nx 1− and
g2(x) 2nx 1− where g(x) = g1 (x) ∪ g2 (x) is a generator

bipolynomial with degree of g(x) = (m1, m2) i.e. degree of g1(x)
= m1 and degree of g2(x) = m2. The C(n, k) linear cyclic bicode
is generated by the bimatrix; G = G1 ∪ G2 which is given below

1

1 1

1

1 1 1
0 1 m

1 1 1
0 m 1 m

1 1 1
0 1 m

g g g 0 0

0 g g g 0

0 0 g g g

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
"

2

2 2

2

2 2 2
0 1 m

2 2 2
0 m 1 m

2 2
0 m

g g g 0 0

0 g g g 0

0 0 g g

−

⎡ ⎤
⎢ ⎥
⎢ ⎥

∪ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
"

=

1 2

1 2

1 2

k 1 k 1
1 2

g g
xg xg

x g x g− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∪
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

.

Then C (n, k) is cyclic bicode.

Example 2.1.7: Suppose g = g1 ∪ g2 = 1 + x3 ∪ 1 + x2 + x3 be
the generator bipolynomial of a C (n, k) (= C1 (6, 3) ∪ C2 (7, 3))
bicode. The related generator bimatrix is given by

G = G1 ∪ G2

 53

i.e.,

1 0 1 1 0 0 0
1 0 0 1 0 0

0 1 0 1 1 0 0
0 1 0 0 1 0

0 0 1 0 1 1 0
0 0 1 0 0 1

0 0 0 1 0 1 1

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

.

Clearly the cyclic bicode is given by

000000 100100
001001 101101
010010 110110
011011 111111

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 ∪

0000000 0001011 0110001 1101001
1000101 1100010 0101100 1011000
0100111 1010000 0011101 0111010
0010110 1001110 1110100 1111111

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

.

It is easily verified that the bicode is a cyclic bicode. Now we
define how a cyclic bicode is generated by a generator
bipolynomial. Now we proceed on to give how the check
bipolynomial helps in getting the parity check bimatrix. Let g =
g1 ∪ g2 be the generator bipolynomial of a bicode C (n, k) =
C1(n1, k1) ∪ C2 (n2, k2).

Then h1 =
1n 1

1

x
g

−

 and h2 =
2n 1

2

x
g

−

; h = h1 ∪ h2 is called the

check bipolynomial of the bicode C(n, k). The parity check
bimatrix H = H1 ∪ H2

=

1

1 1

1

1 1 1
k 1 0

1 1 1
k k 1 0

1 1
k 0

0 0 0 h h h

0 0 h h h 0

h h 0

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"

…

#
… …

 ∪

 54

2

2 2

2

2 2 2
k 1 0

2 2 2
k k 1 0

2 2
k 0

0 0 0 h h h

0 0 h h h 0

h h 0

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"

…

#
… …

.

From the above example the parity check bipolynomial h =

h1 ∪ h2 is given by
(x3 + 1) ∪ (x4 + x3 + x2 + 1).

The parity check bimatrix associated with this bipolynomial
is given by G = G1 ∪ G2 where,

G =
0 0 1 0 0 1 0 0 1 0 1 1 1
0 1 0 0 1 0 0 1 0 1 1 1 0
1 0 0 1 0 0 1 0 1 1 1 0 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

.

The linear bialgebra concept is used for defining

biorthogonal bicodes or dual bicodes.
Let C (n, k) = C1 (n1, k1) ∪ C2 (n2, k2) be a linear bicode

over Z2. The dual (or orthogonal) bicode C⊥ of C is defined by

C⊥ = { }u u.v 0, v C= ∀ ∈

= { } { }1 1 1 1 1 2 2 2 2 2u u .v 0, C u u .v 0, C= ∀ν ∈ ∪ = ∀ν ∈ .

Thus in case of dual bicodes we have if for the bicode

C (n, k), where G = G1 ∪ G2 is the generator bimatrix and if its
parity check bimatrix is H = H1 ∪ H2 then for the orthogonal
bicode or dual bicode, the generator bimatrix is H1 ∪ H2 and the
parity check bimatrix is G = G1 ∪ G2.

Thus we have HGT = GHT.

 55

In this section we define the notion of best biapproximation
and pseudo inner biproduct. Here we give their applications to
bicodes.

The applications of pseudo best approximation have been
carried out in (2005) [39] to coding theory. We have recalled
this notion in chapter I of this book.

Now we apply this pseudo best approximation, to get the most
likely transmitted code word. Let C be code over n

qZ . Clearly C

is a subspace of n
qZ . n

qZ is a vector space over Zp where q = pt ,
(p – a prime, t > 1).

We take C = W in the definition and apply the best
biapproximation to β where β is the received code word for
some transmitted word from C but β ∉ W = C, for if β∈ W = C
we accept it as the correct message. If β ∉ C then we apply the
notion of pseudo best approximation to β related to the subspace
C in n

qZ .
Let {c1, … , ck} be chosen as the basis of C then

k

ii p
i 1

c,c
=

β∑

gives the best approximation to β clearly

k

ii p
i 1

c,c
=

β∑

belongs to C provided
k

ii p
i 1

c,c
=

β∑ ≠ 0.

It is easily seen that this is the most likely received message.
If

k

ii p
i 1

c,c
=

β∑ = 0,

 56

we can choose another basis for C so that

k

ii p
i 1

c 0,c
=

≠β∑ .

Now we just adopt this argument in case of bicodes.

DEFINITION 2.1.4: Let V = V1 ∪ V2 be a bivector space over the
finite field Zp, with some pseudo inner biproduct 〈,〉p defined on
V. Let W = W1 ∪ W2 be the subbispace of V = V1 ∪ V2. Let β∈
V1 ∪ V2 i.e. β = β1 ∪ β2 related to W = W1 ∪ W2 is defined as
follows: Let

{ }1,..., kα α = { } { }1 2

1 1 2 2
1 1,..., ,...,∪k kα α α α

be the chosen basis of the bisubspace W = W1 ∪ W2. The pseudo
best biapproximation to β = β1 ∪ β2 if it exists is given by

1

1

11
1

1 1

, ,
= =

=∑ ∑
kk

i i iip p
i i

β α α αβ α ∪
2

2

22
2

1
,

=
∑
k

ii p
i

αβ α .

If
k

ii p
i 1

0,
=

α =β α∑ then we say that the pseudo best

biapproximation does not exist for the set of basis
{ }1 2, ,..., kα α α = { } { }1 2

1 1 1 2 2 2
1 2 1 2, ,..., , ,...,∪k kα α α α α α .

In this case we choose another set of basis { }11' ,..., 'kα α and

find 1
1

, ' '
=
∑

k

i p
i

β α α which is taken as the pseudo best

biapproximation to β = β1 ∪ β2.

Now we apply it in case of bicodes in the following way to

find the most likely bicode word. Let C = C1 ∪ C2 be a bicode
in n

qZ . Clearly C is a bivector subspace of n
qZ . Take in the

definition C = W and apply the pseudo best biapproximation. If
some bicode word x = x1 ∪ x2 in C = C1 ∪ C2 is transmitted and
β = β1 ∪ β2 is received bicode word then if β ∈ C = C1 ∪ C2

 57

then it is accepted as the correct message if β∉ C = C1 ∪ C2
then we apply pseudo best biapproximation to β = β1 ∪ β2
related to the subbispace C = C1 ∪ C2 in n

qZ .

Here three cases occur if β = β1 ∪ β2 ∉ C = C1 ∪ C2.

1) β1 ∈ C1 and β2 ∉ C2 so that β1 ∪ β2 ∉ C
2) β1 ∉ C1 and β2 ∈ C2 so that β1 ∪ β2 ∉ C
3) β1 ∉ C1 and β2 ∉ C2 so that β1 ∪ β2 ∉ C.

We first deal with (3) then indicate the working method in case
of (1) and (2).

Given β = β1 ∪ β2 , with β ∉ C ; β1 ∉ C1 and β2 ∉
C2;choose a basis

(c1, c2, … , ck) = { } { }1 2

1 1 1 2 2 2
1 2 k 1 2 kc ,c , ... , c c , c , ..., c∪

of the subbispace C. To find the pseudo best biapproximation to
β in C find

1 2k kk

1 21 2
i i ii 1 i 2 ip 1 2

i 1 i 1 i 1

c c c/ c / c / c
= = =

= ∪β β β∑ ∑ ∑ .

If both

1k
11 1
ii 1

i 1

c 0/ c
=

≠β∑

and
2k

22
i2 i 2

i 1

c 0/ c
=

≠β∑

then
k

ii p
i 1

c 0/ c
=

≠β∑

is taken as the pseudo best biapproximation to β.
If one of

tk
tt
it i t

i 1

c 0c
=

=β∑ (t = 1, 2)

say

 58

1k
11
ii i

i 1

c 0c
=

=β∑

then choose a new basis, say { }t1 kc ' ... c ' and calculate
tk

t i it
i 1

c ' c '
=

β∑ ;

that is
1 2k k

22
i i1 i 2 i1 2

i 1 i 1

c ' cc ' c
= =

∪β β∑ ∑

will be the pseudo best biapproximation to β in C. If both

1 2k k
1 21 2
i i1 i 2 i1 2

i 1 i 1

c 0 and c 0c c
= =

= =β β∑ ∑

then choose a new basis for C.

{ } { } { }1 2

1 1 2 2
1 k 1 k 1 kb ,...,b b ,...,b b ,...,b= ∪

and find

1 2k kk
1 21 2

i i ii 1 i 2 ip 1 2
i 1 i 1 i 1

b b b, b , b , b
= = =

= ∪β β β∑ ∑ ∑ .

If this is not zero it will be the pseudo best biapproximation to β
in C.

Now we proceed on to work for cases (1) and (2) if we
work for one of (1) or (2) it is sufficient. Suppose we assume

1 2k kk
1 21 2

i i ii 1 i 2 ip 1 2
i 1 i 1 i 1

c c cc c c
= = =

= ∪β β β∑ ∑ ∑

and say
2k

22
i2 i 2

i 1

cc
=

β∑ = 0

and
1k

11
i1 i 1

i 1

c 0c
=

≠β∑

 59

then we choose only a new basis for C2 and calculate the pseudo
best approximation for β2 relative to the new basis of C2.

Now we illustrate this by the following example:

Example 2.1.8: Let C = C1 (6, 3) ∪ C2 (8, 4) be a bicode over
Z2 generated by the parity check bimatrix H = H1 ∪ H2 given by

1 1 0 1 1 0 0 0

0 1 1 1 0 0
0 0 1 1 0 1 0 0

1 0 1 0 1 0
1 0 1 0 0 0 1 0

1 1 0 0 0 1
1 1 1 1 0 0 0 1

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

.

The bicode is given by C = C1 ∪ C2

=
(000000) (011011) (110110) (001110)
(100011) (111000) (100101) (101101)

⎧ ⎫
⎨ ⎬
⎩ ⎭

 ∪

{(0 0 0 0 0 0 0 0), (1 0 0 0 1 0 1 1), (0 1 0 0 1 0 0 1), (0 0 1 0 0 1
1 1), (0 0 0 1 1 1 0 1), (1 1 0 0 0 0 1 0), (0 1 1 0 1 1 1 0), (0 0 1
1 1 0 1 0), (0 1 0 1 0 1 0 0), (1 0 1 0 1 1 0 0), (1 0 0 1 0 1 1 0),
(1 1 1 0 0 1 0 1), (0 1 1 1 0 0 1 1), (1 1 0 1 1 1 1 1), (1 0 1 1 0 0
0 1), (1 1 1 1 1 0 0 0)}.

Choose a basis B = B1 ∪ B2 = {(0 0 1 1 1 0), (1 1 1 0 0 0),
(0 1 0 1 0 1)} ∪ {(0 1 0 0 1 0 0 1), (1 1 0 0 0 0 1 0), (1 1 1 0 0 1
0 1), (1 1 1 1 1 0 0 0)}. Let β = (1 1 1 1 1 1) ∪ (1 1 1 1 1 1 1 1)
be the received bicode. Clearly β ∉ C1 ∪ C2 = C. Now we find
the best pseudo biapproximation to β in C relative to the basis B
= B1 ∪ B2 under the pseudo inner biproduct.

Let α = α1 ∪ α2 = {〈(1 1 1 1 1 1) / (0 0 1 1 1 0)〉1 (0 0 1 1 1 0) +
〈(1 1 1 1 1 1) / (1 1 1 0 0 0)〉1 (1 1 1 0 0 0) + 〈(1 1 1 1 1 1) / (0 1
0 1 0 1)〉1 (0 1 0 1 0 1) } ∪ {〈(1 1 1 1 1 1 1 1) / (0 1 0 0 1 0 0
1)〉2 (0 1 0 0 1 0 0 1) + 〈(1 1 1 1 1 1 1 1) , (1 1 0 0 0 0 1 0)〉p (1 1
0 0 0 0 1 0) + 〈(1 1 1 1 1 1 1 1) / (1 1 1 0 0 1 0 1)〉 2 (1 1 1 0 0 1
0 1) + 〈(1 1 1 1 1 1 1 1) / (1 1 1 1 1 0 0 0)〉 2 (1 1 1 1 1 0 0 0)}

 60

= {(0 0 1 1 1 0) + (1 1 1 0 0 0) + (0 1 0 1 0 1)} ∪ {(0 1 0 0 1 0 0
1) + (1 1 0 0 0 0 1 0) + (1 1 1 0 0 1 0 1) + (1 1 1 1 1 0 0 0)}

= (1 0 0 0 1 1) ∪ (1 0 0 1 0 1 1 0) ∈ C1 ∪ C2 = C.

Thus this is the pseudo best biapproximation to the received
bicode word {(1 1 1 1 1 1) ∪ (1 1 1 1 1 1 1 1)}.

Thus the method of pseudo best biapproximation to a
received bicode word which is not a bicode word is always
guaranteed. If one wants to get best of the best pseudo
biapproximations one can vary the basis and find the resultant
pseudo biapproximated bicodes, compare it with the received
message, the bicode which gives the least Hamming bidistance
from the received word is taken as the best of pseudo best
biapproximated bicode.

Note: We just define the Hamming bidistance of two bicodes x
= x1 ∪ x2 and y = y1 ∪ y2, which is given by dB (x, y) = d (x1 y1)
∪ d (x2 y2) where d (x1 y1) and d(x2, y2) are the Hamming
distance. The least of Hamming bidistances is taken as
minimum of the sum of d (x1 y1) + d (x2 y2).

In this section we introduce the notion of tricodes and describe a
few of its properties.

DEFINITION 2.1.5: Let C = C1 ∪ C2 ∪ C3 where C1 C2 and C3

are distinct codes ‘∪’ just a symbol. C is then defined to be a
tricode.

Note: It is very important to know that each of the Ci ‘s must be
distinct for 1 ≤ i ≤ 3.

Example 2.1.9: Consider the tricode C = C1 ∪ C2 ∪ C3 where C1
is a (7, 4) code, C2 is a (6, 3) code and C3 is a (5, 4) code with
the associated generator trimatrix

G = G1∪ G2∪ G3

 61

=

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 ∪
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∪

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

The tricode generated by G is given as follows. {(0 0 0 0 0 0 0)
∪ (0 0 0 0 0 0) ∪ (0 0 0 0 0), (1 1 0 1 0 0 0) ∪ (1 0 0 1 0 0) ∪ (1
1 0 0 0), (0 1 1 0 1 0 0) ∪ (0 1 0 0 1 0) ∪ (0 0 0 0 0), (1 1 0 1 0
0 0) ∪ (1 0 0 1 0 0) ∪ (1 0 0 0 1), (0 1 1 0 1 0 0) ∪ (1 0 0 1 0 0)
∪ (1 0 0 0 1), (0 1 1 0 1 0 0) ∪ (1 0 0 1 0 0) ∪ (1 0 0 0 1)} and
so on}.

Example 2.1.10: Let C = C1 ∪ C2 ∪ C3 be a tricode where C is
generated by the trimatrix G = G1 ∪ G2 ∪ G3 with G =

1 0 1 1
0 1 0 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪
1 0 0 1 1
0 1 1 0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪
1 0 0 0 0 1
1 1 0 1 0 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

.

The elements of the tricode C generated by G is as follows:

{(0 0 0 0) ∪ (0 0 0 0 0) ∪ (0 0 0 0 0 0), (1 0 1 1) ∪ (0 0 0 0 0)
(0 0 0 0 0 0), (0 1 0 0) ∪ (0 0 0 0 0) ∪ (0 0 0 0 0 0), (1 1 1 1) ∪
(0 0 0 0 0) ∪ (0 0 0 0 0 0), (0 0 0 0) ∪ (1 0 0 1 1) ∪ (0 0 0 0 0
0), (0 0 0 0) ∪ (0 1 1 0 1) ∪ (0 0 0 0 0 0), (0 0 0 0) ∪ (1 1 1 1 0)
∪ (0 0 0 0 0 0), (0 0 0 0) ∪ (0 0 0 0 0) ∪ (1 0 0 0 0 1), (0 0 0 0)
∪ (0 0 0 0 0) ∪ (0 1 0 1 0 0), (0 0 0 0) ∪ (1 0 0 0 0 0) ∪ (0 1 0 1
0 1), (0 0 0 0) ∪ (1 1 1 1 0) ∪ (1 0 0 0 0 1), (0 0 0 0) ∪ (1 1 1 1
0) ∪ (0 1 0 1 0 1), (0 0 0 0) ∪ (1 1 1 1 0) ∪ (0 1 0 1 0 0), (0 0 0
0) ∪ (0 1 1 0 1) ∪ (1 0 0 0 0 1), (0 0 0 0) ∪ (0 1 1 0 1) ∪ (0 1 0
1 0 0), (0 0 0 0) ∪ (0 1 1 0 1) ∪ (0 1 0 1 0 1) and so on}.

 62

Now having defined a tricode we proceed on to define the
notion of n-code.

DEFINITION 2.1.6: Let C = C1 ∪ C2 ∪ … ∪ Cn (n ≥ 4) is said to
be n-code if each of the Ci is a (ni, ki) code, 1 ≤ i ≤ n. Clearly C
is generated by the n-matrix G = G1∪ G2 ∪ … ∪ Gn where each
Gi generates a (ni, ki) code. The parity check n-matrix of the n-
code C is given by H = H1 ∪ H2 ∪ … ∪ Hn with each Hi in the
standard form 1 ≤ i ≤ n where H is a n-matrix. Clearly GHT =
(0) ∪ (0) ∪ (0) ∪ … ∪ (0); i.e.,

GHT = (G1 ∪ G2 ∪ … ∪ Gn) (H1 ∪ H2 ∪ … ∪ Hn)

T
= (G1∪ G2∪ … ∪ Gn) × (T

1H ∪ T
2H ∪ … ∪ T

nH)
= G1

T
1H ∪ G2

T
2H ∪ … ∪ Gn

T
nH

= (0) ∪ (0) ∪ … ∪ (0)

is the zero n-matrix. Here each Ci is a distinct code i.e., Ci ≠ Cj
if i ≠ j.

Now we proceed give examples of n-codes.

Example 2.1.11: Consider a 6-code C given by C = C1 ∪ C2 ∪
… ∪ C6 where C is a 6-code generated by the 6-matrix given by

G = G1 ∪ G2 ∪ … ∪ G6

1 0 0 1
0 1 1 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 ∪
1 0 0 1 1
0 1 0 0 0
0 0 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∪
1 0 0 0 1
1 1 0 1 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪
1 0 1 1
0 1 0 0
0 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 63

∪
1 0 0 1 1 1
0 1 1 0 0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪
1 0 0 1 0 1
0 1 0 0 1 1
0 0 1 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

The 6 codes generated by the generator 6-matrix is as follows:

{(0 0 0 0) ∪ (0 0 0 0 0) ∪ (0 0 0 0 0) ∪ (0 0 0 0) ∪ (0 0 0 0 0 0)
∪ (0 0 0 0 0 0), (1 0 0 1) ∪ (0 0 0 0 0) ∪ (0 0 0 0 0) ∪ (0 0 0 0)
∪ (0 0 0 0 0 0) ∪ (0 0 0 0 0 0), (1 0 0 1) ∪ (1 0 0 1 1) ∪
(1 0 0 0 1) ∪ (0 1 0 0) ∪ (1 0 0 1 1 1) ∪ (1 0 0 1 0 1), (1 0 0 1)
∪ (1 0 0 1 1) ∪ (1 0 0 0 1) ∪ (0 1 0 0) ∪ (1 0 0 1 1 1) ∪
(0 1 0 0 1 1), (1 0 0 1) ∪ (1 0 0 1 1) ∪ (1 0 0 0 1) ∪ (0 1 0 0) ∪
(1 0 0 1 1 1) ∪ (0 0 1 1 1 1) and so on}.

Example 2.1.12: Let us consider the 5-code C = C1 ∪ C2 ∪ C3
∪ C4 ∪ C5 where the generator of the 5-code is given by the
generator 5-matrix

G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5

=
1 0 0 0 0
0 1 1 1 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪
1 1 1 0 0 1
0 0 1 1 1 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪

1 0 0 1 1 0
1 1 0 0 1 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪
1 0 1 1 0
1 0 0 1 0
1 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∪
1 0 1 1
1 1 0 0
0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

The 5-code given by the G is as follows :

{(0 0 0 0 0) ∪ (0 0 0 0 0 0) ∪ (0 0 0 0 0 0) ∪ (0 0 0 0 0) ∪
(0 0 0 0), (1 0 0 0 0) ∪ (1 1 1 0 0 1) ∪ (1 0 0 1 1 0) ∪
(1 0 1 1 0) ∪ (1 0 1 1), (1 0 0 0 0) ∪ (0 0 0 0 0 0) ∪
(1 1 0 0 1 1) ∪ (1 1 0 0 1) ∪ (0 0 1 0), (0 1 1 1 0) ∪
(0 0 1 1 1 1) ∪ (1 1 0 0 1 1) ∪ (1 1 0 0 1) ∪ (0 0 1 0),
(1 1 1 1 0) ∪ (1 1 0 1 1 0) ∪ (0 1 0 1 0 1) ∪ (1 1 1 0 1) ∪
(0 1 0 1), (1 1 1 1 0) ∪ (0 0 0 0 0 0) ∪ (0 0 0 0 0 0) ∪
(0 0 0 0 0) ∪ (0 0 0 0)), (1 1 1 1 0) ∪ (0 0 1 1 1 1) ∪

 64

(0 0 0 0 0 0) ∪ (0 0 0 0 0) ∪ (0 0 0 0), (1 1 1 1 0) ∪
(0 0 1 1 1 1) ∪ (0 1 0 1 0 1) ∪ (0 0 0 0 0) ∪(0 0 0 0) and so on}.

We now illustrate and define the notion of repetition bicode
and repetition n-code (n ≥ 3).

We can just non mathematically but technically define
repetition bicode as ;

Let us consider the bimatrix H = H1 ∪ H2 where

1

1 1 0 0
1 0 1 0

1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

#
"

H

be a n – 1 × n matrix with the first column in which all entries
are 1 and the rest n – 1 × n – 1 matrix is the identity matrix. H2
is a m – 1 × m matrix m ≠ n with the first column in which all
entries are 1 and the rest m – 1 × m – 1 matrix is the identity
matrix. The bicode C = C1 ∪ C2 given by using this parity check
bimatrix H is a repetition bicode.
There are only 4 bicode words namely
() ()

− −

∪" "��	�
 ���	��

n times m times

0 0 0 1 1 1 1 , (0 0 … 0) ∪ (0 0 … 0), (1 1 … 1 1)

∪ (0 0 … 0) and (1 1 … 1) ∪ (1 1 1 … 1).

Now we illustrate this by the following example.

Example 2.1.13: Let H = H1 ∪ H2 where

1

1 1 0 0 0
1 0 1 0 0

H
1 0 0 1 0
1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

and

 65

2

1 1 0 0 0 0
1 0 1 0 0 0

H 1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

The repetition bicode words given by H are (0 0 0 0 0) ∪ (0 0 0
0 0 0), (1 1 1 1 1) ∪ (0 0 0 0 0 0), (0 0 0 0 0) ∪ (1 1 1 1 1 1), (1
1 1 1 1) ∪ (1 1 1 1 1 1).

Now we give yet another example.

Example 2.1.14: Let us consider the bicode C = C1 ∪ C2 given
by the parity check bimatrix H = H1 ∪ H2

=

1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 1 0 0 0 0
1 0 0 1 0 0 0 0 1 0 1 0 0 0
1 0 0 0 1 0 0 0 1 0 0 1 0 0
1 0 0 0 0 1 0 0 1 0 0 0 1 0
1 0 0 0 0 0 1 0 1 0 0 0 0 1
1 0 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

.

The repetition bicode words given by H are {(1 1 1 1 1 1 1 1) ∪
(1 1 1 1 1 1), (1 1 1 1 1 1 1 1) ∪ (0 0 0 0 0 0), (0 0 0 0 0 0 0 0)
∪ (1 1 1 1 1 1), (0 0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0)}.

Clearly in the definition of repetition bicode we demand m ≠ n.

We now proceed on to define the notion of repetition tricode.

DEFINITION 2.1.7: Let H be parity check trimatrix i.e. H = H1
∪ H2 ∪ H3 where each Hi is a mi – 1 × mi matrix with i = 1, 2, 3
and mi ≠ mj if i ≠ j, j = 1, 2, 3, H is defined to be the repetition
tricode parity check trimatrix of the tricode C = C1 ∪ C2 ∪ C3.

 66

The tricodes obtained by using this parity check trimatrix will
be known as the repetition tricode.

We demand Hi ≠ Hj if i ≠ j, i ≤ i, j ≤ 3.

We illustrate this by the following example.

Example 2.1.15: Let H = H1 ∪ H2 ∪ H3 be a partly check
trimatrix of a repetition tricode, C = C1 ∪ C2 ∪ C3 where

1

1 1 0 0 0
1 0 1 0 0

H
1 0 0 1 0
1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,

2

1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0

H
1 0 0 0 1 0 0
1 0 0 0 0 1 0
1 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

and

3

1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0

H 1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 .

The repetition tricodes obtained by H = H1 ∪ H2 ∪ H3 is

{(0 0 0 0 0) ∪ (0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0 0 0),
(0 0 0 0 0) ∪ (0 0 0 0 0 0 0) ∪ (1 1 1 1 1 1 1 1),

 67

(0 0 0 0 0) ∪ (1 1 1 1 1 1 1) ∪ (1 1 1 1 1 1 1 1),
(0 0 0 0 0) ∪ (1 1 1 1 1 1 1) ∪ (0 0 0 0 0 0 0 0),
(1 1 1 1 1) ∪ (0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0 0 0),
(1 1 1 1 1) ∪ (1 1 1 1 1 1 1) ∪ (1 1 1 1 1 1 1 1),
(1 1 1 1 1) ∪ (0 0 0 0 0 0 0) ∪ (1 1 1 1 1 1 1 1) and
(1 1 1 1 1) ∪ (1 1 1 1 1 1 1) ∪ (0 0 0 0 0 0 0 0)}.

Thus for the repetition tricode we have 8 choices to be operated
upon by the sender and the receiver.
 Now we proceed on to define the notion of repetition n-code
using a n-matrix.

DEFINITION 2.1.7: Let H = H1 ∪ H2 ∪ … ∪ Hn be a n-matrix
where each Hi is a mi – 1 × mi parity check matrix related with a
repetition code 1 ≤ i ≤ n. i.e. each Hi will have the first column
to be ones and the remaining mi – 1 × mi – 1 matrix will be a
identity matrix with ones along the main diagonal and rest
zeros. Clearly the n-matrix gives way to 2n codes and H is
called the n-parity check matrix and the codes are called
repetition n-codes and has 2n code words; when n = 1 we get
the usual repetition code. When n = 2 we get the repetition
bicode; when n = 3 the repetition 3-code or repetition tricode.
When n ≥ 4 we obtain the repetition n code which has 2n code
words.

Example 2.1.16: Let H = H1 ∪ H2 ∪ H3 ∪ H4 ∪ H5 be a n-
parity check matrix (n = 5); with values from Z2 = {0, 1}. Here

1

1 1 0 0
H 1 0 1 0

1 0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,

 68

2

1 1 0 0 0 0
1 0 1 0 0 0

H 1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,

3

1 1 0 0 0
1 0 1 0 0

H
1 0 0 1 0
1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,

4

1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0

H
1 0 0 0 1 0 0
1 0 0 0 0 1 0
1 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

and

5

1 1 0
H

1 0 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 .

H is the n-parity check matrix for the repetition 5-code. The
code words related with H are { (0 0 0 0) ∪ (0 0 0 0 0 0) ∪ (0 0
0 0 0) ∪ (0 0 0 0 0 0 0) ∪ (0 0 0), (0 0 0 0) ∪ (0 0 0 0 0 0) ∪ (0
0 0 0 0) ∪ (0 0 0 0 0 0 0) ∪ (1 1 1), (0 0 0 0) ∪ (0 0 0 0 0 0) ∪
(0 0 0 0 0) ∪ (1 1 1 1 1 1 1) ∪ (0 0 0), (0 0 0 0) ∪ (0 0 0 0 0 0)
∪ (0 0 0 0 0) ∪ (1 1 1 1 1 1 1) ∪ (1 1 1), …, (1 1 1 1) ∪ (1 1 1 1
1 1) ∪ (1 1 1 1 1) ∪ (1 1 1 1 1 1 1) ∪ (1 1 1) }.

We have 25 i.e. 32 code words related with any repetition 5-
code.

 69

Now we proceed on to define parity check bicode differently to
make one understand it better.

DEFINITION 2.1.8: Let H = H1 ∪ H2 where 1 (1 1 1)

−

= "��	�

n times

H and

2 (1 1 1 1)
−

= "��	�

m times

H (m ≠ n). C = C1 ∪ C2 is a parity check bicode

related with the parity check bimatrix H = H1 ∪ H2. This is a
binary (n, n – 1) ∪ (m, m – 1) bicode with parity check bimatrix
H = H1 ∪ H2. Each of the bicode words are binary bivectors of
length (n, m) with an even number of ones in both the vectors of
the bivector. Thus if the sum of the ones in the bivectors is odd
atmost two errors must have occurred during the transmission.
The last digit is the control symbol or the control digit.

Example 2.1.17: Let H = (1 1 1 1) ∪ (1 1 1 1 1) be the parity
check bimatrix of the bicode C = C1 ∪ C2. The code words
given by H are {(0 0 0 0) ∪ (0 0 0 0 0), (1 0 0 1) ∪ (0 0 0 0 0),
(0 1 0 1) ∪ (0 0 0 0 0), (0 0 1 1) ∪ (0 0 0 0), (1 1 0 0) ∪ (0 0 0
0 0), (1 0 1 0) ∪ (0 0 0 0 0), (0 1 1 0) ∪ (0 0 0 0 0), (1 1 1 1) ∪
(0 0 0 0 0), (0 0 0 0) ∪ (1 0 0 0 1), (0 0 0 0) ∪ (1 1 0 0 0), (0 0 0
0) ∪ (0 0 0 1 1), (0 0 0 0) ∪ (0 1 1 0 0), (0 0 0 0) ∪ (1 0 1 0 0),
(0 0 0 0) ∪ (1 0 0 1 0), (0 0 0 0) ∪ (0 1 1 0 0), (0 0 0 0) ∪ (0 1 0
1 0, (0 0 0 0) ∪ (0 1 0 0 1) so on (1 1 1 1) ∪ (0 1 1 1 1), (1 1 1
1) ∪ (1 0 1 1 1), (1 1 1 1) ∪ (1 1 0 1 1) (1 1 11 1) ∪ (1 1 1 0 1),
(1 1 1 1) ∪ (1 1 1 1 0)}.

We see the sum of the ones in each of the vector of the bivector
adds to an even number.

Now we give yet another simple example of a parity check
bicode.

Example 2.1.18: Let H = (1 1 1) ∪ (1 1 1 1) be the parity check
bimatrix of the parity check bicode C = C1 ∪ C2. The bicodes
related with H are { (0 0 0) ∪ (0 0 0 0), (1 0 1) ∪ (0 0 0 0), (0 1
1) ∪ (0 0 0 0), (1 1 0) ∪ (0 0 0 0), (0 0 0) ∪ (1 1 0 0), (0 0 0) ∪
(1 0 0 1), (0 0 0) ∪ (1 0 1 0), (0 0 0) ∪ (0 1 1 0), (0 0 0) ∪ (0 0

 70

1 1), (0 0 0) (0 1 0 1), so on (1 1 0) ∪ (1 1 1 1), (1 0 1) ∪ (1 1 1
1), (0 1 1) ∪ (1 1 1 1) }.

The reader is given the work of finding the number of parity
check bicodes when H = H1 ∪ H2 with H1 having m coordinate
and H2 having n coordinates (m ≠ n).

Now we proceed on to define the notion of parity check
tricodes.

DEFINITION 2.1.9: Let H = H1 ∪ H2 ∪ H3 be a parity check
trimatrix where H is a row trivector, i.e. each Hi is a row vector
of different lengths with all its entries as ones, 1 ≤ i ≤ 3.

The code C = C1 ∪ C2 ∪ C3 related with H is a parity check
tricode. Each code word in the row trivector C = C1 ∪ C2 ∪ C3
is such that the sum of the elements in each of the row vector of
the row trivector is always even.

We denote this by the following example.

Example 2.1.19: Let H = (1 1 1 1) ∪ (1 1 1) ∪ (1 1 1 1 1 1) =
H1 ∪ H2 ∪ H3 be the parity check trimatrix of the parity check
tricode. Now the code words related with H are given by C =
{(0 0 0 0) ∪ (0 0 0) ∪ (0 0 0 0 0 0), (0 0 0 0) ∪ (0 0 0) ∪ (1 1 0
0 0 0), (0 0 0 0) ∪ (0 0 0) ∪ (1 0 1 0 0 0), (0 0 0 0) ∪ (0 0 0) ∪
(1 0 0 1 0 0), (0 0 0 0) ∪ (0 0 0) ∪ (1 0 0 0 1 0), (0 0 0 0) ∪ (0 0
0) ∪ (1 0 0 0 0 1), (0 0 0 0) ∪ (0 0 0) ∪ (1 1 1 1 0 0), (0 0 0 0)
∪ (0 0 0) ∪ (1 1 1 0 1 0), (0 0 0 0) ∪ (0 0 0) ∪ (1 1 1 0 0 1), (0
0 0 0) ∪ (0 0 0) ∪ (1 1 0 0 1 1), (0 0 0 0) ∪ (0 0 0) ∪ (1 1 0 1 0
1), (0 0 0 0) ∪ (0 0 0) ∪ (1 0 1 1 1 0), (0 0 0 0) ∪ (0 0 0) ∪ (1 0
1 1 0 1), (0 0 0 0) ∪ (0 0 0) ∪ (1 0 0 1 1 1), (0 0 0 0) ∪ (0 0 0)
∪ (1 0 1 0 1 1), (0 0 0 0) ∪ (0 0 0) ∪ (0 1 1 1 1 0), (0 0 0 0) ∪
(0 0 0) ∪ (0 1 1 1 0 1), (0 0 0 0) ∪ (0 0 0) ∪ (0 1 1 0 1 1), (0 0 0
0) ∪ (0 0 0) ∪ (0 1 0 1 1 1), (0 0 0 0) ∪ (0 0 0) ∪ (1 1 1 1 1 1),
(0 0 0 0) ∪ (0 0 0) ∪ (0 1 0 0 0 1), (0 0 0 0) ∪ (0 0 0) ∪ (0 1 0 1
0 0), (0 0 0 0) ∪ (0 0 0) ∪ (0 1 0 0 1 0), (0 0 0 0) ∪ (0 0 0) ∪ (0
1 1 0 0 0), (0 0 0 0) ∪ (0 0 0) ∪ (0 0 1 1 0 0), (0 0 0 0) ∪ (0 0 0)
∪ (0 0 1 0 1 0), (0 0 0 0) ∪ (0 0 0) ∪ (0 0 1 0 0 1), (0 0 0 0) ∪
(0 0 0) ∪ (0 0 0 110), (0 0 0 0) ∪ (0 0 0) ∪ (0 0 0 1 0 1), (0 0 0

 71

0) ∪ (0 0 0) ∪ (0 0 0 0 1 1), (0 0 0 0) ∪ (0 0 0) ∪ (1 1 0 1 1 0),
(1 1 0 0) ∪ (0 0 0) ∪ (0 0 0 0) and so on}.

As a simple exercise the reader is requested to find the number
of elements in the parity check code given in the example 2.

Now we proceed on to define the notion of parity check n-code
(n ≥ 4).

DEFINITION 2.1.10: Let us consider the parity check n-matrix
(n ≥ 4) Hp = (1 1 1) ∪ (1 1 1 1) ∪ (1 1 1 1 1) ∪ … ∪ (1 11 1 1 1
1 1 1) = H1 ∪ H2 ∪ … ∪ Hn where each Hi’s are distinct i.e. Hi
≠ Hj, if i ≠ j. The n-code obtained by Hp the parity check n-
matrix is a parity check n-code, n ≥ 4.

We just illustrate this by the following example.

Example 2.1.20: Let us consider a parity check n-matrix (n = 5)
given by H = H1 ∪ H2 ∪ H3 ∪ H4 ∪ H5 = (1 1 1) ∪ (1 1 1 1 1)
∪ (1 1 1 1 1 1) ∪ (1 1 1 1) ∪ (1 1 1 1 1 1 1). We see H is
associated with a parity check 5-code where C = { (0 0 0) ∪ (0
0 0 0 0) ∪ (0 0 0 0 0 0) ∪ (0 0 0 0) ∪ (0 0 0 0 0 0 0), (0 0 0) ∪
(0 0 0 0 0) ∪ … ∪ (1 1 0 0) ∪ (0 0 0 1 0 0 1), (1 1 0) ∪ (1 1 0 0
0) ∪ … ∪ (1 0 0 1) ∪ (1 1 0 0 0 0 0) and so on}. We see C is a
parity check five code.

Interested reader can find the number of elements in C.

We just define the notion of binary Hamming bicode.

DEFINITION 2.1.11: A binary Hamming bicode is a bicode C
given by C =

1mC ∪
2mC (m1 ≠ m2) of length n1 = 12m – 1 and

n2 = 22m – 1 with parity check bimatrix H = H1 ∪ H2 where Hi
have all of its columns to consist of all non zero binary vectors
of length mi; i = 1, 2 (If m1 = m2 then it is important H1 and H2
generate different set of code words).

Now we illustrate a binary Hamming bicode which is as
follows.

 72

Example 2.1.21: Let C = C7 ∪ C15, be a Hamming binary
bicode C = C7 ∪ C15 which has the following parity check
bimatrix H = H1 ∪ H2. C7 has the following parity check matrix

1

0 0 1 1 1 0 1
H 0 1 0 1 0 1 1

1 0 0 0 1 1 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

and

2

0 0 1 0 1 1 1 0 0 0 0 1 1 1 1
0 1 0 0 1 0 0 1 0 1 1 1 0 1 1

H
0 0 0 1 0 1 0 1 1 0 1 1 1 0 1
1 0 0 0 0 0 1 0 1 1 1 0 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

;

is the parity check matrix of C15. H = H1 ∪ H2 is the parity
check bimatrix associated with the Hamming binary bicode
(Here C7 is a C(7, 4) Hamming code and C15 is a C (15, 11)
Hamming code).

Now having seen an example of a binary Hamming bicode we
proceed on to see some more properties of bicodes and various
types of bicodes.

Example 2.1.22: Now we can have also a Hamming bicode H =
H1 ∪ H2 where both are C(7, 4) codes but the parity check
matrices are different; H = H1 ∪ H2 where

1

0 0 1 1 1 0 1
H 0 1 0 1 0 1 1

1 0 0 0 1 1 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

and

2

1 1 0 0 1 1 0
H 1 1 1 0 0 0 1

0 1 0 1 0 1 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

.

 73

The set of bicodes are as follows: {(0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0
0), (0 0 0 0 0 0 0) ∪ (1 0 0 0 1 1), (1 0 0 0 1 1 1) ∪ (0 0 0 0 0 0
0), (0 1 0 0 1 0 1) ∪ (0 0 0 0 0 0 0), (0 0 0 0 0 0 0) ∪ (0 1 0 0 1
1 1), (1 1 1 0 0 0 1) ∪ (1 1 1 0 0 0 1), (1 1 1 1 1 1 1) ∪ (1 1 1 1
1 1 1), …, (1 1 0 0 0 1 0) ∪ (1 1 0 0 0 1 1) and so on.

Next we proceed on to define the notion of binary Hamming
tricode.

DEFINITION 2.1.12: Let us consider a binary Hamming tricode
given by a tricode C =

1mC ∪
2mC ∪

3mC where 2 im – 1 = ni; i

= 1, 2, 3 mi ≥ 2. The parity check trimatrix H = H1 ∪ H2 ∪ H3,
is such that we have each Hi to have all of its columns to be non
zero vectors of length mi; i = 1, 2, 3.

Note: Even if m1 = m2 = m3 still we can have a binary Hamming
tricode, if each of the parity check matrices give way to a set of
distinct codes. We can have a binary Hamming tricode provided

1mC ≠
2mC ,

1mC ≠
3mC and

2mC ≠
3mC . We illustrate this by a

simple example.

Example 2.1.23: Let C = C1 ∪ C7 ∪ C7 be a binary Hamming
tricode where H = H1 ∪ H2 ∪ H3 is the associated parity check
trimatrix of C which gives distinct sets of codes.

1 1 1 0 1 0 0
H 1 0 0 0 1 1 1

1 0 1 1 0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

0 0 0 1 1 1 1
0 1 1 1 0 1 0
1 1 0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 0 1 0 1 1 0
1 0 1 1 0 0 1
0 1 1 1 1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

 74

We see the parity check matrices associated with the trimatrix
are distinct. Thus this gives a set of codes which are of same
length and have the same collection of message symbols. Hence
if one wishes to make use of the same set up to first 4
coordinates but with different elements in the 3 end coordinates
in such cases we can make use of these Hamming trimatrix.

Next we proceed on to give yet another new Hamming trimatrix
of different lengths.

Example 2.1.24: Let us consider the associated Hamming
trimatrix of a binary Hamming tricode C of different lengths;
say C = C7 ∪ C15 ∪ C7 where C is given by the parity check
Hamming trimatrix H = H1 ∪ H2 ∪ H3 where

1

0 0 0 1 1 1 1
H 0 1 1 1 0 1 0

1 1 0 1 0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,

2

1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
1 1 0 0 1 0 1 0 0 1 1 1 0 1 1

H
1 0 0 1 1 0 0 1 1 1 0 0 0 0 1
1 0 0 0 0 1 1 1 1 1 0 1 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

and

3

1 0 1 0 1 1 0
H 1 0 1 1 0 0 1

0 1 1 1 1 0 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

.

We see this binary Hamming tricode is of different lengths.

It is left as an exercise for the interested reader to work with
these Hamming tricodes.

Now we proceed on to define a binary Hamming n-code n ≥ 4.

 75

DEFINITION 2.1.13: Let us consider a code C =
1mC ∪

2mC ∪

… ∪
nmC where mi ≥ 2, with parity check n-matrix H = H1 ∪

H2 ∪ … ∪ Hn; we call this code C to be a binary Hamming n-
code; n ≥ 4, it may so happen mi = mj (i ≠ j) but Hi and Hj must
be distinct matrices which generate distinct set of codes.

Now we illustrate by an example a Hamming n-code, n = 5.

Example 2.1.25: Let us consider the Hamming 5-code given by
C = C7 ∪ C7 ∪ C15 ∪ C7 ∪ C15 generated by the parity check 5-
matrix H = H1 ∪ H2 ∪ H3 ∪ H4 ∪ H5 where

1

1 1 1 0 1 0 0
H 1 0 0 0 1 1 1

1 0 1 1 0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,

2

1 0 1 0 1 1 0
H 1 0 1 1 0 0 1

0 1 1 1 1 0 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,

3

1 1 0 0 1 1 1 1 0 1 1 1 0 0 0
1 0 1 1 1 1 1 0 0 1 0 0 1 0 0

H
1 1 1 0 0 1 0 1 1 0 0 0 0 1 0
1 1 1 1 1 0 0 0 1 0 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

4

0 0 0 1 1 1 1
H 0 1 1 1 0 1 0

1 1 0 1 0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

and

5

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 1 0 0 0 1 1 1 1

H
0 0 1 1 0 0 0 1 1 1 1 0 0 1 1
0 0 0 0 0 1 1 1 0 1 1 1 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

 76

Now we proceed on to define the notion of cyclic bicodes.

DEFINITION 2.1.14: Let C = C1 ∪ C2 be a linear (n1, k1) ∪ (n2,
k2) bicode over Fq (or Z2). If each of C1 and C2 are cyclic linear
codes then we call the bicode C to be a linear cyclic bicode.

We illustrate a cyclic bicode by an example. We can also say a
cyclic bicode will be generated by a bimatrix or a cyclic bicode
can be associated with a parity check bimatrix. Before we give
the definition of cyclic bicode using a bipolynomial we will
give an example.

Example 2.1.26: Let us consider the bicode generated by the
generator bimatrix

G = G1 ∪ G2

=
1 0 0 1 0 0 1 1 1 0 1 0 0
0 1 0 0 1 0 0 1 1 1 0 1 0
0 0 1 0 0 1 0 0 1 1 1 0 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

.

The message symbols associated with this cyclic bicode are (0 0
0) ∪ (0 0 0), (0 0 0) ∪ (1 0 0), (0 0 0) ∪ (0 1 0), (0 0 0) ∪ (0 0
1), (0 0 0) ∪ (1 1 0), (0 0 0) ∪ (0 1 1), (0 0 0) ∪ (1 0 1), (0 0 0)
∪ (1 1 1), (1 0 0) ∪ (0 0 0), (1 0 0) ∪ (1 0 0), … (1 1 1) ∪ (1 1
1). The cyclic bicodes generated by G = G1 ∪ G2, is given by C
= {(0 0 0 0 0 0) ∪ (0 0 0 0 0 0 0), (0 0 0 0 0 0) ∪ (1 1 1 0 1 0 0),
(0 0 0 0 0 0) ∪ (0 1 1 1 0 1 0), (0 0 0 0 0 0) ∪ (0 0 1 1 1 0 1),
…, (1 1 1 1 1 1) ∪ (1 0 1 0 0 1 1) and so on}.

Now one can define a cyclic bicode to be a code following a
cyclic bishift.

The mapping η : 1n
qF ∪ 2n

qF → 1n
qF ∪ 2n

qF such that (a0, …,

1n 1a −) ∪ (b0, …,
2n 1b −) → (

1n 1a − , a0, …,
1n 2a −) ∪ (

2n 1b − , b0, …,

2n 2b −) is a linear mapping called a cyclic bishift.

 77

Now we proceed on to say a bicode C = C1 ∪ C2 to be a
cyclic bicode if and only if for all ν = ν1 ∪ ν2 in C such that if
for all ν = (a0, …,

1n 1a −) ∪ (b0, b1, …
2n 1b −) in C = C1 ∪ C2 we

have ν ∈ C implies (
1n 1a − , a0, …,

1n 2a −) ∪ (
2n 1b − , b0, …,

2n 2b −)

is in C = C1 ∪ C2.
We now define the generator and parity check bimatrices of

a cyclic bicode using generator bipolynomial.
Let us define V =

1nV ∪
2nV to be a linear bispace where V

= {v ∈ Fq[x] / degree v < n1} ∪ {u ∈ Fq[x] / degree u < n2} =
{v0 + v1x + … + 1

1

n 1
n 1v x −
− / vi ∈ Fq, 0 ≤ i ≤ n1–1} ∪ {u0 + u1x +

… + 2
2

n 1
n 1u x −

− / ui ∈ Fq, 0 ≤ i ≤ n2 – 1}.
We can define a biisomorphism of the two bispaces as

T = T1 ∪ T2: 1n

qF ∪ 2n
qF →

1nV ∪
2nV ;

T : (v0, v1, …,
1n 1v −) ∪ (u0, u1, …,

2n 1u −) → (v0 + v1x + … +
1

1

n 1
n 1v x −
−) ∪ (u0 + u1x + … + 2

2

n 1
n 1u x −

−).

If R = (Fq(x), +, .) is any polynomial ring with coefficients from
Fq then we can form R / 〈 in 1x − 〉 modulo the principal ideal
generated by in 1x − in R; i = 1, 2.

The bimapping w = w1 ∪ w2 : 1n

qF ∪ 2n
qF → R/〈 1n 1x − 〉 ∪

R/〈 2n 1x − 〉 where
w (v, u) = (w1 ∪ w2) (v, u)
 = w1(v) ∪ w2(u)
 = w1 (v0 v1, …,

1n 1v −)

 ∪ w2 (u0, u1, …,
2n 1u −)

 = (v0 + v1x + … + 1
1

n 1
n 1v x −
−) ∪

 (u0 + u1x + … + 2
2

n 1
n 1u x −

−).

w can be checked to be a biisomorphism of the additive bigroup

1n
qF ∪ 2n

qF onto the factor bigroup of all bipolynomials of

 78

bidegree < ni over Fq, i = 1, 2 denoted by
inV ; i = 1, 2.

inV is
also an algebra and

1nV ∪
2nV is a bialgebra over Fq.

Let us define linear cyclic bicodes using generating
bipolynomials. A polynomial is a bipolynomial of the form p(x)
∪ q(x) where p(x), q(x) ∈ Fq[x]. ‘∪’ is just a symbol and
nothing more. The only criteria that too in case of cyclic bicodes
generated by bipolynomials is that we need them to be distinct
i.e. p(x) ≠ q(x) for we need different sets of polynomials.

Using this concept of bipolynomial we generate a bicode which
is cyclic.

DEFINITION 2.1.15: Let g(x) = g1(x) ∪ g2(x) be a bipolynomial
such that gi(x) ∈

inV ; i = 1, 2 and gi(x) / (inx – 1); i = 1, 2 with

degree gi(x) = mi < ni; i = 1, 2. Let C = C1 ∪ C2 be a bicode
with Ci a (ni, ki) code i.e. ki = ni – mi defined by the generator
bimatrix G = G1 ∪ G2; where

1

1 1

1

1 1 1
0 1

1 1 1
0 1

1

1 1 1
0 1

0 0
0 0

0 0

m

m m

m

g g g
g g g

G

g g g

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

" "
" "

#
"

=

1

1

1

1
1

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
k

g
xg

x g

with g1(x) = 1

0g + 1
0g x + … + 1

1

1 m
mg x ∈

1qF [x].
Now

 79

2 2

2

2 2 2
0 1 2

2 2 2
0 1

2

2 2 2
0 1

0 0
0 0

0 0

m

m m

m

g g g
g g g

G

g g g

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

" "
" "

#
" "

=

2

2

2

1
2

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
k

g
xg

x g

with g2(x) = 2

0g + 2
0g x + … + 2

2

2 m
mg x ∈

2qF [x].

It is easily verified that the bimatrix G = G1 ∪ G2 generates a
cyclic bicode.

Now we know if we have a generator matrix of a code we can
obtain a parity check matrix; like wise a natural question would
be can we find for a generator bimatrix obtained by
bipolynomials a parity check bimatrix which also gives the
same cyclic bicode.

The answer is yes and just we give a parity check bimatrix
associated with the cyclic bicode whose generator matrix G =
G1 ∪ G2.

We see
in

i
i

x 1h (x)
g (x)

−
= , i = 1, 2.

Let i i
i i

k k 1i i i i
i k k 1 1 0h (x) h x h x h x h−

−= + + + +" ; i = 1, 2. Now we
obtain the parity check bimatrix H = H1 ∪ H2 associated with
the bipolynomial h1(x) ∪ h2(x).

 80

1

1 1

1

1 1 1
k 1 0

1 1 1
k k 1 0

1 2

1 1
k 0

0 0 h h h

0 0 h h h 0
H H H

h h 0 0

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ∪ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

" "
" "

" " " " " " " "

" " " "

 ∪

2

2 2

2

2 2 2
k 1 0

2 2 2
k k 1 0

2 2
k 0

0 0 h h h

0 0 h h h 0

h h 0 0

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

" " "
" "
" " " " " "

" " " "

It is easily verified the parity check bimatrix for the cyclic
bicode generated by G = G1 ∪ G2 is H = H1 ∪ H2.

Now we illustrate this by the following example.

Example 2.1.27: Let us consider the cyclic bicode generated by
the bipolynomial (x3 + x +1) ∪ (x3 + x2 + 1) = g1(x) ∪ g2(x)
with g1(x)/x7 – 1 and g2(x)/x7 – 1. The generator bimatrix
associated with this bipolynomial is given by

G = G1 ∪ G2

=

1 1 0 1 0 0 0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 0 1 0 1 1 0 0
0 0 1 1 0 1 0 0 0 1 0 1 1 0
0 0 0 1 1 0 1 0 0 0 1 0 1 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∪
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

.

The parity check bipolynomial associated with the generator
bipolynomial is given by (x-1) (x3 + x2 + 1) ∪ (x-1) (x3 + x + 1)
= (x4 + x2 + x + 1) ∪ (x4 + x3 + x + 1).

 81

The associated parity check bimatrix with the parity check
bipolynomial is given by
H = H1 ∪ H2 =

0 0 1 0 1 1 1 1 1 1 0 1 0 0
0 1 0 1 1 1 0 0 1 1 1 0 1 0
1 0 1 1 1 0 0 0 0 1 1 1 0 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

.

The bicode is given by {(0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0 0), (1 1 0
1 0 0 0) ∪ (1 0 0 0 1 0 1), (1 0 0 1 0 1 1) ∪ (1 1 1 1 1 1 1), (0 0
0 0 0 0 0) ∪ (1 1 1 1 1 1 1), (1 0 1 1 1 0 0) ∪ (1 1 0 0 0 1 0) and
so on }.

We can also have cyclic bicodes of different lengths which is
seen by the following example.

Example 2.1.28: Let us consider a cyclic bicode generated by
the bipolynomial

g = g1(x) ∪ g2(x) = (x3 + 1) ∪ (x4 + x3 + x2 + 1).

The generator bimatrix associated with the generator
bipolynomial of the cyclic bicode C = C1 ∪ C2 is given by G =
G1 ∪ G2 where

1

1 0 0 1 0 0
G 0 1 0 0 1 0

0 0 1 0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

and

2

1 0 1 1 1 0 0 0
0 1 0 1 1 1 0 0

G
0 0 1 0 1 1 1 0
0 0 0 1 0 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

;

 82

i.e. G =

1 0 1 1 1 0 0 0
1 0 0 1 0 0

0 1 0 1 1 1 0 0
0 1 0 0 1 0

0 0 1 0 1 1 1 0
0 0 1 0 0 1

0 0 0 1 0 1 1 1

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

.

The associated parity check bipolynomial of the given generator
polynomial is (x3 + 1) ∪ (x3 + x2 + 1). The corresponding parity
check bimatrix is given by

H = H1 ∪ H2 =

0 0 0 0 1 1 0 1
0 0 1 0 0 1 0 0 0 1 1 0 1 0
0 1 0 0 1 0 0 0 1 1 0 1 0 0
1 0 0 1 0 0 0 1 1 0 1 0 0 0

1 1 0 1 0 0 0 0

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

.

The bicode which is cyclic is given by { (0 0 0 0 0 0) ∪ (0 0 0 0
0 0 0 0), (1 0 0 1 0 0) ∪ (1 0 1 1 1 0 0 0), (1 1 0 1 1 0) ∪ (1 0 1
1 1 0 0 0), (1 0 0 1 0 0) ∪ (1 1 1 0 0 1 0 0), (1 1 1 1 1 1) ∪ (1 1
0 1 1 1 0 1) and so on}, we see the lengths of the codes of the
cyclic bicodes are 6 and 8. Thus we can also have cyclic bicodes
of different lengths.

Now we proceed on to define the notion of cyclic tricodes
before which we will just recall the new notion of tripolynomial.

DEFINITION 2.1.16: Let R[x] be a polynomial ring. A
tripolynomial p(x) = p1(x) ∪ p2(x) ∪ p3(x); where pi(x) ∈ R[x]; i
= 1, 2, 3. ‘∪’ is only a symbol to denote a tripolynomial.

For example x2 – 1 ∪ (x2 + 3) (x – 4) ∪ x7 + x3 – 2x2+1 is a
tripolynomial. If p(x) = (x – 1) ∪ (x7 – 1) ∪ (x2 + 2x – 1) and
q(x) = x2 – 1 ∪ x2+1 ∪ x8 – 3 be two tripolynomials then

 83

p(x) + q(x) = {(x – 1) ∪ (x7 – 1) ∪ (x2 + 2x – 1)} + {x2 – 1 ∪
 x2 + 1 ∪ x8 – 3}

= {(x – 1) + (x2 – 1)} ∪ {(x7 – 1) + x2 + 1} ∪
 {x8 –3 + x2 + 2x – 1}

= (x2 + x – 2) ∪ (x7 + x2) ∪ (x8 + x2 + 2x – 4)
is again a tripolynomial.

Likewise we can define the product
p(x) q(x) = {(x – 1) ∪ (x7 – 1) ∪ (x2 + 2x – 1)} × {x2 – 1 ∪
 x2 + 1 ∪ x8 – 1}

= (x – 1) (x2 – 1) ∪ (x7 – 1) (x2 + 1) ∪ (x2 + 2x –
 1) × (x8 – 1)

= (x3 – x2 – x + 1) ∪ (x9 – x7 + x2 – 1) ∪ (x10 +
 2x9 – x8 – x2 – 2x + 1)

is again a tripolynomial.
Thus we can say R1[x] ∪ R2[x] ∪ R3[x] is a tripolynomial ring
under polynomial addition and polynomial multiplication.

Now we define a cyclic tricode.

DEFINITION 2.1.17: A tricode C = C (n1, k1) ∪ C (n2, k2) ∪
C(n3, k3) where each C (ni, ki) is a code i = 1, 2, 3. The only
thing we demand is that each C (ni, ki) is distinct i.e., the code
C(ni, ki) ≠ C (nj, kj); i ≠ j; 1 ≤ i, j ≤ 3.

We illustrate this by the following example.

Example 2.1.29: C = C (5, 3) ∪ C (7, 3) ∪ C (6, 2) is a tricode.

DEFINITION 2.1.18: Let C = C (n1, k1) ∪ C (n2, k2) ∪ C (n3, k3)
be a tricode. If each of C (ni, ki) is a cyclic code; i = 1, 2, 3, then
we call C to be a cyclic tricode.

We illustrate with examples and define the generator and parity
check trimatrices.

 84

Example 2.1.30: Let C = C1 ∪ C2 ∪ C3 be a cyclic tricode
where Ci is generated by the generator matrix, Gi, i = 1, 2, 3;
i.e., G = G1 ∪ G2 ∪ G3 is the generator trimatrix given by

1

1 1 1 0 1 0 0
G 0 1 1 1 0 1 0

0 0 1 1 1 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,

2

1 0 0 1 0 0
G 0 1 0 0 1 0

0 0 1 0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

and

3

1 1 0 1 0 0 0
0 1 1 0 1 0 0

G
0 0 1 1 0 1 0
0 0 0 1 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

The cyclic tricode given by G is as follows {(0 0 0 0 0 0 0) ∪ (0
0 0 0 0 0) ∪ (0 0 0 0 0 0 0), (1 1 1 0 1 0 0) ∪ (1 0 0 1 0 0) ∪ (1
1 0 1 0 0 0), (1 0 0 1 1 1 0) ∪ (1 0 0 1 0 0) ∪ (1 0 1 1 1 0 0), (1
0 1 0 0 1 1) ∪ (1 1 1 1 1 1) ∪ (1 0 0 1 0 1 1) and so on}.

Note the codes C1 and C3 are codes of same length 7 but are
distinct. Thus C is a cyclic tricode generated by the generator
trimatrix G = G1 ∪ G2 ∪ G3.

Now we define the cyclic tricode in terms of the generator
tripolynomial.

DEFINITION 2.1.19: Let g(x) = g1(x) ∪ g2(x) ∪ g3(x) be a
tripolynomial which generates a cyclic tricode, here each gi(x)
divides inx – 1, i = 1, 2, 3. Each Ci is a cyclic (ni, ki) code i = 1,

2, 3 where C = C1 ∪ C2 ∪ C3.
1()

()
−

=
in

i
i

xh x
g x

 is the parity check

polynomial of the cyclic code Ci, i = 1, 2, 3.

 85

 h(x) = h1(x) ∪ h2(x) ∪ h3(x) is the parity check
tripolynomial related with the generator tripolynomial g(x) =
g1(x) ∪ g2(x) ∪ g3(x).

Now we illustrate a cyclic tricode together with its generator
trimatrix and parity check trimatrix.

Example 2.1.31: Let C = C1 ∪ C2 ∪ C3 be a cyclic tricode
generated by the tripolynomial g(x) = g1(x) ∪ g2(x) ∪ g3(x) =
(x3 + 1) ∪ (x3 + x2 + 1) ∪ (x4 + x3 + x2 + 1).

The related parity check tripolynomial h(x) = x3 + 1 ∪ x4 + x3 +
x2 + 1 ∪ (x3 + x2 + 1). The generator trimatrix

G = G1 ∪ G2 ∪ G3

=
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 ∪

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

generates the cyclic tricode. The related parity check trimatrix H
= H1 ∪ H2 ∪ H3 =

 86

0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

0 0 1 1 1 0 1
0 1 1 1 0 1 0
1 1 1 0 1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∪

0 0 0 1 1 0 1
0 0 1 1 0 1 0
0 1 1 0 1 0 0
1 1 0 1 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

,

is the associated parity check trimatrix of the cyclic tricode C =
C1 ∪ C2 ∪ C3. The cyclic tricode words are as follows: {(0 0 0 0
0 0) ∪ (0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0 0), (0 0 0 0 0 0) ∪ (1 0 1 1
0 0 0) ∪ (0 0 0 0 0 0 0), (0 0 0 0 0 0) ∪ (0 0 0 0 0 0 0) ∪ (1 0 1
1 1 0 0), (1 0 0 1 0 0) ∪ (1 1 0 1 0 0) ∪ (1 1 0 0 1 0 1), (1 1 1 1
1 1) ∪ (1 1 0 1 0 0 1) ∪ (1 1 0 0 1 0 1), (1 1 1 1 1 1) ∪ (1 1 0 0
0 1 0) ∪ (1 1 1 0 0 1 0) and so on}.
Thus we have shown how a cyclic tricode is generated.

It is left as an exercise for the reader to determine the
number of code words in the cyclic tricode given in the above
example. If C = C(n1, k1) ∪ C(n2, k2) ∪ C(n3, k3) is a cyclic
tricode find the number of tricode words in C.

Now we show how many tricodes does the cyclic tricode C
= C(4, 2) ∪ C(5, 2) ∪ C(6, 2), given the generator tripolynomial
g(x) = x2 + 1 ∪ x4 + x3 + x + 1 ∪ x4 + x2 + 1. The related
generator trimatrix

G = G1 ∪ G2 ∪ G3 =

1 0 1 0
0 1 0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪

 87

1 1 0 1 1 0
0 1 1 0 1 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪

1 0 1 0 1 0
0 1 0 1 0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

.

The cyclic tricode is given by

{(0 0 0 0) ∪ (0 0 0 0 0 0) ∪ (0 0 0 0 0 0),
(0 0 0 0) ∪ (0 0 0 0 0 0) ∪ (1 0 1 0 1 0),
(0 0 0 0) ∪ (0 0 0 0 0 0) ∪ (0 1 0 1 0 1),
(0 0 0 0) ∪ (0 0 0 0 0 0) ∪ (1 1 1 1 1 1),
(0 0 0 0) ∪ (1 1 0 1 1 0) ∪ (0 0 0 0 0 0),
(0 0 0 0) ∪ (1 1 0 1 1 0) ∪ (1 0 1 0 1 0),
(0 0 0 0) ∪ (1 1 0 1 1 0) ∪ (0 1 0 1 0 1),
(0 0 0 0) ∪ (1 1 0 1 1 0) ∪ (1 1 1 1 1 1),
(0 0 0 0) ∪ (0 1 1 0 1 1) ∪ (0 0 0 0 0 0),
(0 0 0 0) ∪ (0 1 1 0 1 1) ∪ (1 0 1 0 1 0),
(0 0 0 0) ∪ (0 1 1 0 1 1) ∪ (1 0 1 0 1 0),
(0 0 0 0) ∪ (0 1 1 0 1 1) ∪ (1 1 1 1 1 1),
(0 0 0 0) ∪ (1 0 1 1 0 1) ∪ (0 0 0 0 0 0),
(0 0 0 0) ∪ (1 0 1 1 0 1) ∪ (1 0 1 0 1 0),
(0 0 0 0) ∪ (1 0 1 1 0 1) ∪ (0 1 0 1 0 1),
(0 0 0 0) ∪ (1 0 1 1 0 1) ∪ (1 1 1 1 1 1),
(1 0 1 0) ∪ (0 0 0 0 0 0) ∪ (0 0 0 0 0 0),
(1 0 1 0) ∪ (0 0 0 0 0 0) ∪ (1 0 1 0 1 0),
(1 0 1 0) ∪ (0 0 0 0 0 0) ∪ (0 1 0 1 0 1),
(1 0 1 0) ∪ (0 0 0 0 0 0) ∪ (1 1 1 1 1 1),
(1 0 1 0) ∪ (1 1 0 1 1 0) ∪ (0 0 0 0 0 0),
(1 0 1 0) ∪ (1 1 0 1 1 0) ∪ (1 0 1 0 1 0),
(1 0 1 0) ∪ (1 1 0 1 1 0) ∪ (0 1 0 1 0 1),
(1 0 1 0) ∪ (1 1 0 1 1 0) ∪ (1 1 1 1 1 1),
(1 0 1 0) ∪ (0 1 1 0 1 1) ∪ (0 0 0 0 0 0),
(1 0 1 0) ∪ (0 1 1 0 1 1) ∪ (1 0 1 0 1 0),
(1 0 1 0) ∪ (0 1 1 0 1 1) ∪ (0 1 0 1 0 1),
(1 0 1 0) ∪ (0 1 1 0 1 1) ∪ (1 1 1 1 1 1),

 88

(1 0 1 0) ∪ (1 0 1 1 0 1) ∪ (0 0 0 0 0 0),
(1 0 1 0) ∪ (1 0 1 1 0 1) ∪ (1 0 1 0 1 0),
(1 0 1 0) ∪ (1 0 1 1 0 1) ∪ (0 1 0 1 0 1),
(1 0 1 0) ∪ (1 0 1 1 0 1) ∪ (1 1 1 1 1 1),
(0 1 0 1) ∪ (0 0 0 0 0 0) ∪ (0 0 0 0 0 0),
(0 1 0 1) ∪ (0 0 0 0 0 0) ∪ (1 0 1 0 1 0),
(0 1 0 1) ∪ (0 0 0 0 0 0) ∪ (0 1 0 1 0 1),
(0 1 0 1) ∪ (0 0 0 0 0 0) ∪ (1 1 1 1 1 1),
(0 1 0 1) ∪ (1 1 0 1 1 0) ∪ (0 0 0 0 0 0),
(0 1 0 1) ∪ (1 1 0 1 1 0) ∪ (1 0 1 0 1 0),
(0 1 0 1) ∪ (1 1 0 1 1 0) ∪ (0 1 0 1 0 1),
(0 1 0 1) ∪ (1 1 0 1 1 0) ∪ (1 1 1 1 1 1),
(0 1 0 1) ∪ (0 1 1 0 1 1) ∪ (0 0 0 0 0 0),
(0 1 0 1) ∪ (0 1 1 0 1 1) ∪ (1 0 1 0 1 0),
(0 1 0 1) ∪ (0 1 1 0 1 1) ∪ (0 1 0 1 0 1),
(0 1 0 1) ∪ (0 1 1 0 1 1) ∪ (1 1 1 1 1 1),
(0 1 0 1) ∪ (1 0 1 1 0 1) ∪ (0 0 0 0 0 0),
(0 1 0 1) ∪ (1 0 1 1 0 1) ∪ (1 0 1 0 1 0),
(0 1 0 1) ∪ (1 0 1 1 0 1) ∪ (0 1 0 1 0 1),
(0 1 0 1) ∪ (1 0 1 1 0 1) ∪ (1 1 1 1 1 1),
(1 1 1 1) ∪ (0 0 0 0 0 0) ∪ (0 0 0 0 0 0),
(1 1 1 1) ∪ (0 0 0 0 0 0) ∪ (1 1 1 1 1 1),
(1 1 1 1) ∪ (0 0 0 0 0 0) ∪ (1 0 1 0 1 0),
(1 1 1 1) ∪ (0 0 0 0 0 0) ∪ (0 1 0 1 0 1),
(1 1 1 1) ∪ (1 1 0 1 1 0) ∪ (0 0 0 0 0 0),
(1 1 1 1) ∪ (1 1 0 1 1 0) ∪ (1 1 1 1 1 1),
(1 1 1 1) ∪ (1 1 0 1 1 0) ∪ (0 1 0 1 0 1),
(1 1 1 1) ∪ (1 1 0 1 1 0) ∪ (1 0 1 0 1 0),
(1 1 1 1) ∪ (0 1 1 0 1 1) ∪ (0 0 0 0 0 0),
(1 1 1 1) ∪ (0 1 1 0 1 1) ∪ (1 1 1 1 1 1),
(1 1 1 1) ∪ (0 1 1 0 1 1) ∪ (0 1 0 1 0 1),
(1 1 1 1) ∪ (0 1 1 0 1 1) ∪ (1 0 1 0 1 0),
(1 1 1 1) ∪ (1 0 1 1 0 1) ∪ (0 0 0 0 0 0),
(1 1 1 1) ∪ (1 0 1 1 0 1) ∪ (0 1 0 1 0 1),
(1 1 1 1) ∪ (1 0 1 1 0 1) ∪ (1 0 1 0 1 0),

and (1 1 1 1) ∪ (1 0 1 1 0 1) ∪ (1 1 1 1 1 1)},

 89

The number of tricode words in this cyclic tricode is 64.

Thus if we have a cyclic tricode C = C1 ∪ C2 ∪ C3 with |C1| =

12m , |C2| = 22m and |C3| = 32m , then C has 1 2 32m m m+ + number of
tricode words.

We now proceed on to define a cyclic n-code, n ≥ 4.

DEFINITION 2.1.20: A cyclic n-code C = C(n1, k1) ∪ C(n2, k2) ∪
… ∪ C(nn, kn) is such that each C(ni, ki) is a distinct cyclic (ni,
ki) code of length ni with ki message symbols, i = 1, 2, …, n.
Thus every code word of the cyclic n code will be a n-tuple each
tuple will be of length ni; i = 1, 2, …, n.

The only demand made in this definition is that each of the
cyclic codes C(ni, ki) should be distinct, they can be of same
length we do not bother about it but what we need is, C(ni, ki) is
a cyclic code different from every C(nj, kj) if i ≠ j; i = 1, 2, …, n
and 1 ≤ j, i ≤ n.

Now having defined a cyclic n-code we give the definition of n-
polynomials in a n-polynomial ring, n ≥ 4.

DEFINITION 2.1.21: Let R[x] be a polynomial ring. A
polynomial p(x) = p1(x) ∪ p2(x) ∪ … ∪ pn(x) where pi(x) ∈
R[x], i = 1, 2, …, n is defined to be a n-polynomial. When n = 1
we just get the polynomial, n = 2 gives us the bipolynomial and
n = 3 is the tripolynomial. When n ≥ 4 we get the n-polynomial.

Example 2.1.32: Let p(x) = p1(x) + p2(x) + p3(x) + p4(x) + p5(x)
be a 5-polynomial where p(x) = (x3 – 1) ∪ (3x2 + 7x + 1) ∪ (8x5
+ 3x3 + 2x + 1) ∪ (7x8 + 4x + 4) ∪ (x5 – 1) is in R[x].

Note: Even if the polynomial pi(x) in the n-polynomial are not
distinct still we call them only as n-polynomials.

For instance p(x) = x7 ∪ (x8 – 1) ∪ x2 + 5x – 1 ∪ (x8 – 1) ∪
x7 + 5x + 1 is a 5 polynomial. We see the polynomials pi(x)
need not be distinct.

 90

Now we define the notion of generator n-polynomial of a
cyclic n-code.

DEFINITION 2.1.22: Let us consider a cyclic n-code C = C(n1,
k1) ∪ C(n2, k2) … ∪ C(nn, kn) where each of the C(ni, ki) are
cyclic codes generated by the polynomial gi(x), i = 1, 2, …, n.
Clearly each of the cyclic codes C(ni, ki) must be distinct for
otherwise the code C cannot be defined as the cyclic n-code. If
each of the cyclic codes is to be distinct then we have the
associated polynomials with them must also be distinct.

Let the n-polynomial which generates the cyclic n-code be
denoted by g(x) = g1(x) ∪ g2(x) ∪ … ∪ gn(x). Each gi(x) is
distinct, directly implies each of the generator matrices
associated with the generator polynomial gi(x) are distinct.
Thus let G denote the generator n-matrix, then G = G1 ∪ G2 ∪
… ∪ Gn where each of the matrices Gi are distinct i.e. Gi = Gk
if and only if i = k.
 Now using each of the generator polynomials gi(x) we can
obtain the parity check polynomial hi(x) given by

1()
()

in

i
i

xh x
g x

−
= ; i = 1, 2, …, n. Thus the parity check n-

polynomial h(x) is given by h(x) = h1(x) ∪ h2(x) ∪ … ∪ hn(x).
Now the parity check n-matrix H associated with each of these
parity check polynomial hi(x) i.e. with the parity check n-
polynomial h(x) = h1(x) ∪ h2(x) ∪ … ∪ hn(x) is given by H = H1
∪ H2 ∪ … ∪ Hn where each matrix Hi is the parity check
matrix associated with the parity check polynomial hi(x); i = 1,
2, 3, …, n.

We illustrate this definition by an example, when n = 4 i.e. the
cyclic 4-code.

Example 2.1.33: Let us consider a cyclic 4-code C = C(8, 4) ∪
C(3, 3) ∪ C(7, 3) ∪ C(7, 3), which is generated by the generator
4-polynomial g(x) = x4 + 1 ∪ x3 + 1 ∪ x3 + x + 1 ∪ x3 + x2 + 1
(we see each of the generator polynomials are distinct). The
generator 4-matrix G associated with the cyclic 4 code is given
by

 91

G = G1 ∪ G2 ∪ G3 ∪ G4 =

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 ∪

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 ∪

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

Now we give the parity check 4-polynomial h(x) and the
associated parity check 4-matrix

h(x) = h1(x) ∪ h2(x) ∪ h3(x) ∪ h4(x)

= (x4 + 1) ∪ (x3 + 1) ∪ (x4 + x2 + x + 1) ∪ (x4 + x3 +
 x2 + 1).

The related parity check 4-matrix

H = H1 ∪ H2 ∪ H3 ∪ H4 =

 92

0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 ∪

0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

0 0 1 0 1 1 1
0 1 0 1 1 1 0
1 0 1 1 1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

0 0 1 1 1 0 1
0 1 1 1 0 1 0
1 1 1 0 1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

The following are the cyclic 4-codes;

{(0 0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0) ∪ (0 0 0 0 0 0 0) ∪ (0 0 0 0 0
0 0), (0 0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0) ∪ (0 0 0 0 0 0 0) ∪ (1 0 1
1 0 0 0), (0 0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0) ∪ (1 1 0 1 0 0 0) ∪ (1
0 1 1 0 0 0), (0 0 0 0 0 0 0 0) ∪ (1 0 0 1 0 0) ∪ (1 1 0 1 0 0 0)
∪ (1 0 1 1 0 0 0), (0 0 0 0 0 0 0 0) ∪ (1 0 0 1 0 0) ∪ (1 1 0 1 0 0
0) ∪ (1 0 1 1 0 0 0), (1 0 0 0 1 0 0 0) ∪ (1 0 0 1 0 0) ∪ (0 0 0 0
0 0 0) ∪ (0 0 0 0 0 0 0), (0 0 1 1 0 0 1 1) ∪ (0 1 1 0 1 1) ∪ (0 1
1 1 0 0 1) ∪ (0 1 0 0 1 1 1) and so on}.

Interested reader is expected to find the number of code words
in the above example.

Now we proceed on to define dual or orthogonal bicodes,
orthogonal tricodes and the notion of orthogonal or dual n-
codes.

 93

DEFINITION 2.1.23: Let C be a bicode given by C = C1 ∪ C2,
the dual bicode of C is defined to be C⊥ = {u1 ⏐ u1.v1 = 0 for all
v1 ∈ C1} ∪ {u2 ⏐ u2.v2 = 0 for all v2 ∈ C2} = C1

⊥ ∪ C2
⊥. If C is a

(k1 ∪ k2) dimensional subbispace of the n1 ∪ n2 dimensional
vector space, the orthogonal vector space, i.e., the orthogonal
complement is of dimension (n1 – k1) ∪ (n2 – k2). Thus if C is a
(n1, k1) ∪ (n2, k2) bicode then C⊥ is a (n1, n1 – k1) ∪ (n2, n2 – k2)
bicode.
 Further if G = G1 ∪ G2 is the generator bimatrix and H =
H1 ∪ H2 is the parity check bimatrix then C⊥ has generator
bimatrix to be H = H1 ∪ H2 and parity check bimatrix G = G1
∪ G2. Orthogonality of two bicodes can be expressed by GHT =
HGT = (0). That is (G1 ∪ G2) (H1 ∪ H2)T = (H1 ∪ H2) (G1 ∪
G2)T = (G1 ∪ G2) (H1

T ∪ H2
T) = (H1 ∪ H2) (G1

T ∪ G2
T) = G1H1

T
∪ G2H2

T = H1G1
T ∪ H2G2

T = (0) ∪ (0).

Now using these properties we give an example of a bicode C =
C1 ∪ C2 and its orthogonal code C⊥ = (C1 ∪ C2)⊥ = C1

⊥ ∪ C2
⊥.

Example 2.1.34: Given the generator bimatrix of C a binary (7,
3) ∪ (4, 3) bicode; to find its dual or its orthogonal complement.
Given

G =
0 0 0 1 1 1 1 1 0 1 1
0 1 1 0 0 1 1 0 1 1 1
1 0 1 0 1 0 1 1 0 0 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

.

The bicode given by the bimatrix G is as follows: C = C1 ∪ C2 =
{ (0 0 0 0 0 0 0) ∪ (0 0 0 0), (0 0 0 0 0 0 0) ∪ (1 1 1 0), (0 0 0 0
0 0 0) ∪ (1 0 0 0), (0 0 0 0 0 0 0) ∪ (1 0 1 1), (0 0 0 0 0 0 0) ∪
(0 1 1 0), (0 0 0 0 0 0 0) ∪ (0 0 1 1), (0 0 0 0 0 0 0) ∪ (1 1 0 1),
(0 0 0 0 0 0 0) ∪ (0 1 0 1), and so on} We can find C⊥ = (C1 ∪
C2)⊥ = C1

⊥ ∪ C2
⊥.

The generator matrix of C serves as the parity check matrix of
C⊥. Thus using

 94

G =
0 0 0 1 1 1 1 1 0 1 1
0 1 1 0 0 1 1 0 1 1 1
1 0 1 0 1 0 1 1 0 0 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

as the parity check matrix i.e. G is taken as H. We find C⊥
which is as follows {(0 0 0 0 0 0 0) ∪ (0 0 0 0), (0 0 0 0 0 0 0)
∪ (1 1 0 1), (1 0 0 0 0 1 1) ∪ (0 0 0 0), (1 0 0 0 0 1 1) ∪ (1 1 0
1), (0 1 0 0 1 0 1) ∪ (0 0 0 0), (0 1 0 0 1 0 1) ∪ (1 1 0 1), (0 0 1
0 1 1 0) ∪ (0 0 0 0), (0 0 1 0 1 1 0) ∪ (1 1 0 1), (0 0 0 1 1 1 1) ∪
(0 0 0 0), (0 0 0 1 1 1 1) ∪ (1 1 0 1), (1 1 0 0 0 0 1) ∪ (0 0 0 0),
(1 1 0 0 0 0 1) ∪ (1 1 0 1), (1 0 1 0 1 0 1) ∪ (0 0 0 0), (1 0 1 0 1
0 1) ∪ (1 1 0 1), (1 0 0 1 1 0 0) ∪ (0 0 0 0), (1 0 0 1 1 0 0) ∪ (1
1 0 1), (0 1 1 0 0 1 1) ∪ (0 0 0 0), (0 1 1 0 0 1 1) ∪ (1 1 0 1), (0
1 0 1 0 1 0) ∪ (0 0 0 0), (0 1 0 1 0 1 0) ∪ (1 1 0 1), (0 0 1 1 1 0
0) ∪ (0 0 0 0), (0 0 1 1 1 0 0) ∪ (1 1 0 1), (1 1 1 0 0 0 0) ∪ (0 0
0 0), (1 1 1 0 0 0 0) ∪ (1 1 0 1), (1 1 0 1 0 0 1) ∪ (0 0 0 0), (1 1
0 1 0 0 1) ∪ (1 1 0 1), (1 0 1 1 0 1 0) ∪ (0 0 0 0), (1 0 1 1 0 1 0)
∪ (1 1 0 1), (0 1 1 1 0 1 0) ∪ (0 0 0 0), (0 1 1 1 0 1 0) ∪ (1 1 0
1), (1 1 1 1 1 1 1) ∪ (0 0 0 0), (1 1 1 1 1 1 1) ∪ (1 1 0 1) }

Now having defined the notion of the dual bicode of a bicode, C
= C1 ∪ C2 we now proceed on to define the notion of dual or
orthogonal tricode of a tricode and then pass onto generalize it
to n-codes (n ≥ 4).

DEFINITION 2.1.24: Let us consider a tricode C = C1 ∪ C2 ∪
C3 = C(n1, k1) ∪ C(n2, k2) ∪ C (n3, k3). Let C be generated by
the generator trimatrix G = G1 ∪ G2 ∪ G3. The orthogonal
complement of the tricode C or the dual tricode of C denoted by
C⊥ = (C1 ∪ C2 ∪ C3)⊥ = C1

⊥ ∪ C2
⊥ ∪ C3

⊥ is associated with the
trimatrix G = G1 ∪ G2 ∪ G3 which acts as the parity check
trimatrix i.e., G = H = H1 ∪ H2 ∪ H3. Thus the tricode having
H = H1 ∪ H2 ∪ H3 where G = H and Hi = Gi; i = 1, 2, 3 is a
dual tricode of C and is got by using the parity check trimatrix
H (= G) and the tricode C⊥ = C1

⊥ ∪ C2
⊥ ∪ C3

⊥ is a C(n1, n1 –
k1) ∪ C(n2, n2 – k2) ∪ C(n3, n3 – k3) tricode called the dual
tricode of C.

 95

We illustrate this by the following example.

Example 2.1.35: Let C = C1 ∪ C2 ∪ C3 be a C1(7, 4) ∪ C2(7, 3)
∪ C3(6, 3) tricode having the generator trimatrix

G = G1 ∪ G2 ∪ G3 =

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 ∪

1 0 0 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

The tricode generated by the trimatrix G = G1 ∪ G2 ∪ G3 is
given by { (0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0), (0 0
0 0 0 0 0) ∪ (0 0 0 0 0 0 0) ∪ (1 0 0 0 1 1), (0 0 0 0 0 0 0) ∪ (0
0 0 0 0 0 0) ∪ (0 1 0 1 0 1), (0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0 0) ∪
(0 0 1 1 1 0), (0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0 0) ∪ (1 1 0 1 1 0), (0
0 0 0 0 0 0) ∪ (0 0 0 0 0 0 0) ∪ (0 1 1 0 1 1), (0 0 0 0 0 0 0) ∪
(0 0 0 0 0 0 0) ∪ (1 0 1 1 0 1), (0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0 0)
∪ (1 1 1 0 0 0), (0 0 0 0 0 0 0) ∪ (1 0 0 1 1 1 1) ∪ (0 0 0 0 0 0),
(0 0 0 0 0 0 0) ∪ (0 1 1 0 0 1 1) ∪ (0 0 0 0 0 0), (0 0 0 0 0 0 0)
∪ (1 0 1 0 1 0 1) ∪ (0 0 0 0 0 0), …, (1 0 0 0 1 0 1) ∪ (1 1 1 1 1
1 1) ∪ (0 1 0 1 0 0 1) ∪ (1 1 1 0 0 0)} now we find the dual of
this tricode C using G the generator trimatrix of the tricode C as
the parity check trimatrix of the orthogonal tricode C⊥; i.e. G =
H consequently we have Gi = Hi, i = 1, 2, 3. Thus

 96

G = H = H1 ∪ H2 ∪ H3 =

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 ∪

1 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∪

1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

;

is the parity trimatrix of the dual tricode C⊥ of the tricode C.
Clearly C⊥ is a C1(7, 3) ∪ C1(7, 4) ∪ C(6, 3) tricode associated
with the parity check trimatrix H = H1 ∪ H2 ∪ H3.

The dual tricode C⊥ of C is given as follows: {(0 0 0 0 0 0 0) ∪
(0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0), (0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0 0)
∪ (0 1 1 1 0 0), (0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0 0) ∪ (1 0 1 0 1 0),
(0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0 0) ∪ (1 1 0 0 0 1), (0 0 0 0 0 0 0)
∪ (0 0 0 0 0 0 0) ∪ (1 1 0 1 1 0), (0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0
0) ∪ (0 1 1 0 1 1) ∪ (0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0 0) ∪ (1 0 1 1
0 1), (0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0 0) ∪ (0 0 0 1 1 1), and so
on}.

Interested reader is left to the task of finding the orthogonal
tricode C⊥ of the given tricode C.

Now we proceed onto define the concept of dual n-code of an n-
code C.

 97

DEFINITION 2.1.25: Let us consider the n-code C = C1 (n1, k1)
∪ C2(n2, k2) ∪ … ∪ Cn (nn, kn); the dual code of C or the
orthogonal code of C denoted by C⊥ is defined as C⊥ = [(C1 (n1,
k1) ∪ C2 (n2, k2) ∪ … ∪ Cn (nn, kn)]⊥ = C1

⊥ (n1, k1) ∪ C2
⊥ (n2,

k2) ∪ … ∪ Cn
⊥ (nn, kn) = C1 (n1, n1 – k1) ∪ C2 (n2, n2 – k2) ∪ …

∪ Cn (nn, nn – kn) n-code. If G = G1 ∪ G2 ∪ … ∪ Gn is the
generator n-matrix of the n-code C then the orthogonal n-code
C⊥ has G = G1 ∪ G2 ∪ … ∪ Gn to be its parity check n-matrix
i.e. the generator n-matrix of G acts as the parity check n-
matrix of C⊥ and the parity check n-matrix of C acts as the
generator n-matrix of C⊥. We assume n ≥ 4; when n = 1 we get
the usual code C and its dual code C⊥ when n = 2 we get the
bicode C = C1 ∪ C2 and the dual bicode C⊥ = C1

⊥ ∪ C2
⊥, when

n = 3 we get the tricode C = C1 ∪ C2 ∪ C3 and its dual C⊥ =
C1

⊥ ∪ C2
⊥ ∪ C3

⊥. When n ≥ 4 we get the n-code and its dual n-
code.

Now are illustrate the dual n-code by an example when n = 5.

Example 2.1.36: Consider the 5-code C = C1 ∪ C2 ∪ C3 ∪ C4 ∪
C5 generated by the 5-matrix

G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 =

1 0 1 1
0 1 0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪

1 0 1 1 0
0 1 0 1 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪

1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 0 1 1
0 1 1 1
1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

 98

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

Here C1 = C(4, 2) code, C2 = C(5, 2) code, C3 = C(6, 3) code, C4
= C(4, 3) code and C5 = C(7, 3) code. The 5-codes generated by
the 5-matrix G is as follows C = { (0 0 0 0) ∪ (0 0 0 0 0) ∪ (0 0
0 0 0 0) ∪ (0 0 0 0) ∪ (0 0 0 0 0 0 0), (1 0 1 1) ∪ (0 0 0 0 0) ∪
(0 0 0 0 0 0) ∪ (0 0 0 0) ∪ (0 0 0 0 0 0 0), (0 1 0 1) ∪ (0 0 0 0
0) ∪ (0 0 0 0 0 0) ∪ (0 0 0 0) ∪ (0 0 0 0 0 0 0), (1 1 1 0) ∪ (0 0
0 0 0) ∪ (0 0 0 0 0 0) ∪ (0 0 0 0) ∪ (0 0 0 0 0 0 0), (1 0 1 1) ∪
(1 0 1 1 0) ∪ (0 0 0 0 0 0) ∪ (0 0 0 0) ∪ (0 0 0 0 0 0 0), (1 0 1
1) ∪ (0 1 0 1 1) ∪ (0 0 0 0 0 0) ∪ (0 0 0 0) ∪ (0 0 0 0 0 0 0), (1
0 1 1) ∪ (1 1 1 0 1) ∪ (0 0 0 0 0 0) ∪ (0 0 0 0) ∪ (0 0 0 0 0 0 0),
(1 0 1 1) ∪ (1 0 1 1 0) ∪ (1 0 0 0 1 1) ∪ (0 0 0 0) ∪ (0 0 0 0 0 0
0) and so on}.

Now C⊥ the orthogonal 5-code of the 5-code works with G the
generator 5-matrix of the 5-code as the parity check 5-matrix.
Thus the parity check 5-matrix of the dual (orthogonal), 5-code
C⊥ is

H =
1 0 1 1
0 1 0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪

1 0 1 1 0
0 1 0 1 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪

1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

 99

1 0 1 1
0 1 1 1
1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

The 5-code associated with the parity check 5-matrix H is C⊥
given by
C⊥ = {(0 0 0 0) ∪ (0 0 0 0 0) ∪ (0 0 0 0 0 0) ∪ (0 0 0 0) ∪ (0 0
0 0 0 0 0), (1 0 1 0) ∪ (0 0 0 0 0) ∪ (0 0 0 0 0 0) ∪ (0 0 0 0) ∪
(0 0 0 0 0 0 0), (0 1 1 1) ∪ (0 0 0 0 0) ∪ (0 0 0 0 0 0) ∪ (0 0 0
0) ∪ (0 0 0 0 0 0 0), (1 1 0 1) ∪ (0 0 0 0 0) ∪ (0 0 0 0 0 0) ∪ (0
0 0 0) ∪ (0 0 0 0 0 0 0), (1 0 1 0) ∪ (1 0 0 1 1) ∪ (0 0 0 0 0 0) ∪
(0 0 0 0) ∪ (0 0 0 0 0 0 0), (0 1 1 1) ∪ (0 1 0 0 1) ∪ (0 0 0 0 0
0) ∪ (0 0 0 0) ∪ (0 0 0 0 0 0 0), (1 1 0 1) ∪ (1 1 1 0 1) ∪ (0 0 0
0 0 0) ∪ (0 0 0 0) ∪ (0 0 0 0 0 0 0), (1 0 1 0) ∪ (1 0 0 1 1) ∪ (0
0 0 0 0 0) ∪ (1 1 0 1) ∪ (0 0 0 0 0 0 0) and so on}.

Thus we have shown how the orthogonal n-code of a given n
code is obtained. It is also left for the reader to work with any n-
code; n ≥ 4 and obtain the dual n-code.

A code is said to be reversible if (a0, a1, …, an-1) ∈ C holds if
and only if (an-1, an-2, …, a1 a0) ∈ C. In general the reversible
bicode and n-code can be defined.

DEFINITION 2.1.26: A bicode C = C1 ∪ C2 is said to be a
reversible bicode , i.e., (a0 a1 … an-1) ∪ (b0 b1 … bm-1) ∈ C = C1
∪ C2 if and only if (an-1 an-2 an-3 … a1 a0) ∪ (bm-1 bm-2 bm-3 … b1
b0) ∈ C = C1 ∪ C2.

Likewise if C = C1 ∪ C2 ∪ C3 be a tricode then it is said to
be reversible i.e., (a0 a1 … an-1) ∪ (b0 b1 … bm-1) ∪ (c0 c1 … ct-1)
∈ C if and only if (an-1 an-2 … a1 a0) ∪ (bm-1 bm-2 … b1 b0) ∪ (ct-1
ct-2 … c1 c0) ∈ C.

 100

 The tricode generated by (1 1 1 1) ∪ (1 1 1 1 1 1) ∪ (1 1 1
1 1) is a reversible tricode.

 Is a cyclic n-code a reversible n-code? (n ≥ 2). To be more
precise is a cyclic code a reversible code? Recall a code C is
said to be self orthogonal if C ⊆ C⊥.

We give the definition of self orthogonal n-code.

DEFINITION 2.1.27: A bicode C = C1 ∪ C2 is said to be self
orthogonal bicode if each of C1 and C2 are self orthogonal
codes and we denote it by C ⊆ C⊥ i.e. C = C1 ∪ C2 ⊆ C⊥ = C1

⊥
∪ C2

⊥.

Note: If only one of C1 or C2 alone is a self orthogonal code of
the bicode C = C1 ∪ C2 then we define the new notion of semi
self orthogonal bicode.

DEFINITION 2.1.28: Let C = C1 ∪ C2 be a bicode we say C is
said to be semi self orthogonal bicode if in C only one of C1 or
C2 is self orthogonal. We denote a semi self orthogonal bicode
by CS

⊥ = C1
⊥ ∪ C2, C1 ⊆ C1

⊥ or CS
⊥ = C1 ∪ C2

⊥ and C2 ⊆ C2
⊥.

Now we proceed onto define the notion of self orthogonal
tricode and generalize the notion to n-codes.

DEFINITION 2.1.29: Let C = C1 ∪ C2 ∪ C3 be a tricode, we say
C is a self orthogonal tricode if each of codes in C i.e. each Ci (i
= 1, 2, 3) are self orthogonal and this is denoted by C ⊆ C⊥ i.e.
C1 ∪ C2 ∪ C2 ⊆ (C1 ∪ C2 ∪ C3)⊥ = C1

⊥ ∪ C2
⊥ ∪ C3

⊥.
 If even one of the Ci’s in C is not self orthogonal (i = 1, 2,
3) then we say C is not self orthogonal tricode but C is only a
semi self orthogonal tricode i.e. in case of semi self orthogonal
tricode we denote it by CS

⊥ = C1
⊥ ∪ C2

⊥ ∪ C3 where C1 ⊆ C1
⊥

and C2 ⊆ C2
⊥ but C3 ⊄ C3

⊥ or CS
⊥ = C1

⊥ ∪ C2 ∪ C3
⊥ where C1

⊆ C1
⊥, C2 ⊄ C2

⊥ and C3 ⊆ C3
⊥ or CS

⊥ = C1
⊥ ∪ C2 ∪ C3 i.e. C1

alone is self orthogonal but C2 and C3 are not self orthogonal.

 101

DEFINITION 2.1.30: Let C = C1 ∪ C2 ∪ … ∪ Cn be a n-code; C
is said to be self orthogonal if each of the n codes in C is self
orthogonal i.e. each Ci

⊥ ⊆ Ci; i = 1, 2, 3, …, n and denoted by
C ⊆ C⊥ i.e. C1 ∪ C2 ∪ … ∪ Cn ⊆ (C1 ∪ C2 ∪ … ∪ Cn)⊥ = C1

⊥
∪ C2

⊥ ∪ … ∪ Cn
⊥. Even if one of the Ci’s in C is not self

orthogonal then we do not call the n-code to be a self
orthogonal n-code.

However if in the n-code C = C1 ∪ C2 ∪ … ∪ Cn some of the
codes are self orthogonal and some of them are not self
orthogonal then we call the n-code to be a semi self orthogonal
n-code.

Now we illustrate some examples of self orthogonal n-code,
tricode and a bicode (n ≥ 4).

Example 2.1.37: Let us consider the bicode C = C1 ∪ C2 where
C1 is a C(4, 2) code, generated by x2 + 1 and C2 is a C(6, 3) code
generated by the polynomial x3 + 1. Clearly C = C1 ∪ C2 is a
self orthogonal bicode.

Example 2.1.38: Let C = C1 ∪ C2 ∪ C3 be a tricode. C1 the code
generated by x3 + 1, C2 = C(8, 4) is the code generated by x4 + 1
and C3 = C(4, 2) is the code generated by x2 + 1. Thus C = C1 ∪
C2 ∪ C3 is self orthogonal tricode.

Example 2.1.39: Let us consider the 6-code C generated by the
6-polynomial 〈(x4+1) ∪ (x3+1) ∪ (x5+1) ∪ (x6+1) ∪ (x2+1) ∪
(x7+1) 〉 where C = C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 with C1 =
C(8, 4), code generated by x4+1, C2 = C(6, 3) code generated by
the polynomial x3+1, C3 is a code having the generator
polynomial (x5+1), C4 is a code with generator polynomial x6+1,
the code C5 is generated by the polynomial x2+1. Finally the
polynomial x7 + 1 generates the code C6.

It is left as an exercise for the reader to verify that the 6-code is
a self orthogonal code with the generator 6-matrix G = G1 ∪ G2
∪ G3 ∪ G4 ∪ G5 ∪ G6

 102

=

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 ∪
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∪

1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 0 1 0
0 1 0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪

1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 .

 103

2.2 Error Detection and Error Correction in n-codes
(n ≥ 2)

Now having defined the notion of n-codes (n ≥ 4) we proceed
on to define the methods of decoding and error detection. We
know if we have any n-code C = C1 ∪ C2 ∪ … ∪ Cn (n ≥ 4),
associated with C is the generator n-matrix G = G1 ∪ G2 ∪ … ∪
Gn and the parity check n-matrix H = H1 ∪ H2 ∪ … ∪ Hn, then
G and H are related in such a fashion that GHT = (0) ∪ (0) ∪ …
∪ (0). Now any n-code word in a n-code would be of the form

1

1 1 1
1 2 n(x x x)… ∪

2

2 2 2
1 2 n(x x x)… ∪ … ∪

n

n n n
1 2 n(x x x)… .

Now the operation of any n-code word on the parity check
n-matrix H is carried out as follows:
HxT = H[

1

1 1 1
1 2 n(x x x)… ∪

2

2 2 2
1 2 n(x x x)… ∪… ∪

n

n n n
1 2 n(x x x)…]T

= H[
1

1 1 1
1 2 n(x x x)… T ∪

2

2 2 2
1 2 n(x x x)… T ∪ …

 ∪
n

n n n
1 2 n(x x x)… T]

= [H1 ∪ H2 ∪ … ∪ Hn]

[

1

1 1 1
1 2 n(x x x)… T ∪

2

2 2 2
1 2 n(x x x)… T ∪ … ∪

n

n n n
1 2 n(x x x)… T]

= H1 1

1 1 1
1 2 n(x x x)… T ∪ H2 2

2 2 2
1 2 n(x x x)… T ∪ … ∪

 Hn n

n n n
1 2 n(x x x)… T.

= (0) ∪ (0) ∪ … ∪(0) (I)

Equation (I) implies x is a n-code word of C associated with the
parity check n-matrix H. Even if one of T

i iH x ≠ (0), 1 ≤ i ≤ n,
then we conclude the code word is not from C. Thus we say x ∈
C = C1 ∪ C2 ∪ … ∪ Cn if and only if HxT = (0) ∪ (0) ∪ … ∪
(0) otherwise x ∉ C and error has occurred during transmission
of the n-code.

Before we proceed further we define the notion of
Hamming n-distance of two n-code words x and y from the n-
code C. Let

x =
1

1 1 1
1 2 n(x x x)… ∪

2

2 2 2
1 2 n(x x x)… ∪ … ∪

n

n n n
1 2 n(x x x)… ∈ C

where each
i

i i i
1 2 n(x x x)… ∈ Ci with Ci a (ni, ki) code.

 104

The Hamming n-distance between x and y is defined to be a n-
tuple of numbers (t1, …, tn) where

ti = d{
i

i i i
1 2 n(x x x)… ,

i

i i i
1 2 n(y y y)… }; 1 ≤ i ≤ n;

where y =
1

1 1 1
1 2 n(y y y)… ∪

2

2 2 2
1 2 n(y y y)… ∪ … ∪

n

n n n
1 2 n(y y y)… . So

d(x, y) = (d[
1

1 1 1
1 2 n(x x x)… ,

1

1 1 1
1 2 n(y y y)…],

 d[
2

2 2 2
1 2 n(x x x)… ,

2

2 2 2
1 2 n(y y y)…], …,

d[
n

n n n
1 2 n(x x x)… ,

n

n n n
1 2 n(y y y)…])

= (t1, t2, …, tn) .
d(x, x) = (0, 0, …, 0).

when
x = (1 1 0 1 0) ∪ (1 1 1 1 1 1 1) ∪ (0 0 0 0) ∪

 (1 0 1 0 1 0) ∪ (0 1 0 1 0 1 0 1 0 1) ∪
(1 1 1 0 0 0 1 1 0) ∈ C

and
y = (0 1 0 1 0) ∪ (1 0 1 0 1 0 1) ∪ (1 1 0 0) ∪

 (1 1 1 1 0 0) ∪ (1 0 1 0 1 1 1 1 0 1) ∪
(1 1 1 0 0 1 0 0 0) ∈ C.

Now
d(x, y) = {d[(1 1 0 1 0), (0 1 0 1 0)],

d[(1 1 1 1 1 1 1), (1 0 1 0 1 0 1)],
d[(0 0 0 0), (1 1 0 0)],
d[(1 0 1 0 1 0), (1 1 1 1 0 0)],
d[(0 1 0 1 0 1 0 1 0 1), (1 0 1 0 1 1 1 1 0 1)],

 d[(1 1 1 0 0 0 1 1 0), (1 1 1 0 0 1 0 0 0)]}
= (1, 3, 2, 3, 6, 3).

Here d is a Hamming 6-distance i.e., n = 6. The Hamming n-
weight of the a n-code x is defined as w(x) = d(x, 0). In case

x = (1 1 0 1 0) ∪ (1 1 1 1 1 1 1) ∪ (0 0 0 0) ∪
 (1 0 1 0 1 0) ∪ (0 1 0 1 0 1 0 1 0 1) ∪
 (1 1 1 0 0 0 1 1 0) ∈ C6

we have w(x) = d(x, 0) = (3, 7, 0, 3, 5, 5). When n = 1 we get
the usual Hamming distance and Hamming weight. When n = 2
we get the Hamming bidistance or Hamming 2 distance and
Hamming biweight or Hamming 2-weight. When n = 3 we get
the Hamming tridistance or Hamming 3-distance and Hamming

 105

3-weight or Hamming triweight and when n ≥ 4 we have the
Hamming n-distance and Hamming n-weight. So it is
analogously defined for linear n-codes d(x, y) = d(x – y, 0) =
w(x – y). Thus the minimum n-distance of a n-code C is equal
to the least of n-weight of all non zero n-code words. If (d1, d2,
…, dn), denotes the minimum distance of a linear (n, k) code
then we call this n-code C as ((n1, n2, …, nn), (k1, k2, …, kn),
(d1, d2, …, dn)) code.

Now this n-code equivalently be denoted by (n1, k1, d1) ∪
(n2, k2, d2) ∪ … ∪ (nn, kn, dn).

Now we proceed on to define the notion of n-sphere of
(r1, …, rn) radius of a n-code word x ∈ C1 ∪ C2 ∪ … ∪ Cn. Let
x = x1 ∪ x2 ∪ … ∪ xn ∈ C; xi ∈ Ci, 1 ≤ i ≤ n.

1 2 n(r ,r , , r)S (x)… =

1 2 n(r ,r , , r) 1 2 nS (x x x)∪ ∪ ∪… …
=

1r 1S (x) ∪
2r 2S (x) ∪ … ∪

nr nS (x)

= {y1 ∈ 1n
qZ /d(x1, y1) ≤ r1} ∪ {y2 ∈ 2n

qZ /d(x2,

 y2) ≤ r2} ∪ … ∪ {yn ∈ nn
qZ /d(xn, yn) ≤ rn}

where xi =
i

i i i
1 2 n(x x x)… ∈ Ci; 1 ≤ i ≤ n where Ci is a (ni, ki) -

code.
In decoding we distinguish between the detection and the

correction of errors. We say a n-code can correct (t1, …, tn) +
(s1, …, sn) ≥ 0 errors, if the structure of the n-code makes it
possible to correct upto (t1, …, tn) tuple of errors to detect (t1,
…, tn) + (j1, …, jn), 0 ≤ ji ≤ si, i = 1, 2, …, n, tuple errors, which
has occurred during the transmission over a channel. Now we
have the following result.

Result: A linear n-code C = C1 ∪ C2 ∪ … ∪ Cn with minimum
distance (d1, …, dn) can correct up to (t1, …, tn) tuple errors and
can detect (t1 + j1, t2 + j2, …, tn + jn) tuple errors with 0 ≤ j ≤ si, i
= 1, 2, …, n if and only if each 2ti + si ≤ di; 1 ≤ i ≤ n. Here Ci is
a (ni, ki, di) code, i = 1, 2, …, n.

Now we proceed on to define the notion of Hamming n-
bound. The parameter tuples (q1, …, qn), (n1, …, nn), (t1, …, tn),
(M1, …, Mn) of a (t1, …, tn) tuple error correcting n-code,

 106

C = C(n1, k1, d1) ∪ C(n2, k2, d2) ∪ … ∪ C(nn, kn, dn) over
1qF ∪

2qF ∪ … ∪
nqF of length (n1, …, nn) with (m1, …, mn), n-code

words satisfy the n tuple inequality

1

2

n

11 t
1 1 1

1

22 t
2 2 2

2

nn t
n n n

n

nn
M 1 (q 1) (q 1)

t1

nn
M 1 (q 1) (q 1)

t1

nn
M 1 (q 1) (q 1)

t1

⎛ ⎞⎛ ⎞⎛ ⎞
+ − + + − ∪⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞⎛ ⎞
+ − + + − ∪ ∪⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞⎛ ⎞
+ − + + −⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

…

… …

…

1 2 nn n n
1 1 n(q ,q , , q)≤ …

i.e., each

i ii t
i i i

i

nn
M (1 (q 1) (q 1)

t1
⎡ ⎤⎛ ⎞⎛ ⎞

+ − + + −⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

… inq≤ ; i = 1, 2, …, n.

As in case of linear codes we define in case of linear n-codes the
notion of a special class of n-codes where the n-tuple of vectors
are within or on n-spheres of radius tuple (t1, …, tn) about the n-
code words of a linear (((n1, …, nn) , (k1, …, kn))) code.

Now we illustrate a method by which error first is detected,
this is described for a n-code; n = 5.

Example 2.2.1: Let us consider a 5-code C = C1 ∪ C2 ∪ … ∪
C5 generated by the generator 5-matrix G = G1 ∪ G2 ∪ … ∪ G5
where

G =
1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 0 1 1
0 1 0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪

 107

1 0 0 0 1 0 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 ∪

1 0 1 0 1
0 1 0 1 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪

1 0 0 1 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

is a 5-matrix.

The corresponding parity check 5-matrix;

H = H1 ∪ H2 ∪ H3 ∪ H4 ∪ H5.

=
0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 0 1 0
1 1 0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪

1 1 0 1 1 0 0
0 0 1 1 0 1 0
0 1 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 0 1 0 0
0 1 0 1 0
1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

 108

1 0 0 1 0 0 0
1 1 0 0 1 0 0
0 1 1 0 0 1 0
1 0 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

Now we give some of the 5-codes generated by G in the
following;

{(0 0 0 0 0 0) ∪ (0 0 0 0) ∪ (0 0 0 0 0 0 0) ∪ (0 0 0 0 0) ∪
(0 0 0 0 0 0 0), (0 1 1 1 0 0) ∪ (1 0 1 0) ∪ (1 1 0 1 1 0 0) ∪
(1 0 1 0 0) ∪ (1 0 0 1 0 0 0), (0 0 0 1 1 1) ∪ (0 1 1 1) ∪
(1 0 0 0 1 1 1) ∪ (0 1 1 1 1) ∪ (1 0 0 1 1 1 1), (0 0 0 0 0 0) ∪
(1 1 0 1) ∪ (0 1 1 0 0 0 1) ∪ (1 0 0 0 1) ∪ (1 0 1 0 0 0 1) and so
on}.

Suppose we are sending a code x ∈ C = C(6, 3) ∪ C(4, 2) ∪
C(7, 3) ∪ C(5, 3) ∪ C(7, 4) the 5-code and we have received a
message

y = (1 1 1 1 0 0) ∪ (1 0 1 1) ∪ (1 1 0 1 1 0 1) ∪
 (1 1 1 0 0) ∪ (0 1 1 1 0 1 1);

HyT =
0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

⎡⎡ ⎤
⎢⎢ ⎥
⎢⎢ ⎥
⎢⎢ ⎥⎣ ⎦⎣

 ∪
1 0 1 0
1 1 0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪

1 1 0 1 1 0 0
0 0 1 1 0 1 0
0 1 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪
1 0 1 0 0
0 1 0 1 0
1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∪

 109

1 0 0 1 0 0 0
1 1 0 0 1 0 0
0 1 1 0 0 1 0
1 0 1 0 0 0 1

⎤⎡ ⎤
⎥⎢ ⎥
⎥⎢ ⎥
⎥⎢ ⎥
⎥⎢ ⎥

⎣ ⎦⎦

 ×

[(1 1 1 1 0 0) ∪ (1 0 1 1) ∪ (1 1 0 1 1 0 1) ∪ (1 1 1 0 0) ∪ (0 1

1 1 0 1 1)]T

=

1
1

0 1 1 1 0 0
1

1 0 1 0 1 0
1

1 1 0 0 0 1
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

 ∪

1
1 0 1 0 0
1 1 0 1 1

1

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

 ∪

1
1

1 1 0 1 1 0 0 0
0 0 1 1 0 1 0 1
0 1 1 0 0 0 1 1

0
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1

1 0 1 0 0 1
0 1 0 1 0 1
1 0 0 0 1 0

0

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

 110

0
1

1 0 0 1 0 0 0
1

1 1 0 0 1 0 0
1

0 1 1 0 0 1 0
0

1 0 1 0 0 0 1
1
1

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

 .

= [1 0 0]T ∪ [0 0]T ∪ [0 1 0]T ∪ [0 1 1]T ∪ [1 1 1 0]T.

This clearly shows the received message y is not a 5-code word
from C as HyT ≠ (0) ∪ (0) ∪ (0) ∪ (0) ∪ (0). Thus we have to
formulate a method to obtain the correct code word.

We make use of coset n-leader which we would be defining
now.

DEFINITION 2.2.1: Let G = G1 ∪ G2 ∪ … ∪ Gn be a n-group. H
is a n-subgroup of G i.e., H = H1 ∪ H2 ∪ … ∪ Hn where each
Hi is a subgroup of Gi; i = 1, 2, …, n. The coset of the n-
subgroup H of the n-group G is defined as,

gH = (g1 ∪ g2 ∪ … ∪ gn) H
where

g = g1 ∪ g2 ∪ … ∪ gn ∈ G
with gi ∈ Gi, 1 ≤ i ≤ n; now

gH = (g1 ∪ g2 ∪ … ∪ gn) H
= (g1 ∪ g2 ∪ … ∪ gn)(H1 ∪ ∪ … ∪ Hn)
= (g1H1 ∪ g2H2 ∪ … ∪ gnHn)

where giHi is the coset of Hi in Gi.
gH = {g1h1 / h1 ∈ H1} ∪ {g2h2 / h2 ∈ H2} ∪ … ∪

 {gnhn / hn ∈ Hn}.

Now we can have a n-field

1qF ∪
2qF ∪ … ∪

nqF or Z2 ∪ Z2 ∪
… ∪ Z2 also for when we have to define n codes we need the
notion of n-vector spaces and n-subspaces so we accept the

 111

structure of
1qF ∪

2qF ∪ … ∪
nqF even if each of qi are the same

prime number as special n-field which we can call as a pseudo
n-field. Thus Z5 ∪ Z7 ∪ Z3 ∪ Z11 ∪ Z19 is a n-field or to be
more precise a 5-field now, Z3 ∪ Z3 ∪ Z3 ∪ Z3 ∪ Z7 is a pseudo
n field; likewise Z2 ∪ Z2 ∪ Z2 ∪ Z2 ∪ Z2 ∪ Z2 ∪ Z2 is a pseudo
6-field. It is pertinent to mention here a n-field or a pseudo n-
field is not a field. Now we can define n-vector space over the
n-field or pseudo n-field. We say V = V1 ∪ V2 ∪ … ∪ Vn to be
n-vector space over the n-field, F =

1qF ∪
2qF ∪ ... ∪

nqF (qi –
prime number i = 1,2, ..., n) or over a n-pseudo field F = Z2 ∪
Z2 ∪ ... ∪ Z2 if each Vi is a vector space over

iqF (or Z2); true

for i = 1, 2, ..., n. So V = 1n
2Z ∪ 2n

2Z ∪ ... ∪ nn
2Z is a n-vector

space over the n-pseudo field F.
Now if each ni is distinct i.e. ni ≠ nj, if i ≠ j for 1 ≤ i, j ≤ n,

then we say V is a n-vector space even if some of the ni’s are
not distinct then we call V to be a pseudo n-vector space over F
a n-field or over a pseudo n-field. Clearly if V = V1 ∪ V2 ∪ ...
∪ Vn is a n-vector space over the n-field

1qF ∪
2qF ∪ ... ∪

nqF
then each Vi is a vector space over

iqF , i = 1, 2, ..., n. Further if
each of the vector space Vi over

iqF is finite dimensional say of

dimension ni then each Vi is isomorphic to i
i

n
qF ; i = 1, 2, ..., n.

Thus
V = 1

1

n
qF ∪ 2

2

n
qF ∪ ... ∪ n

n

n
qF

is a finite dimensional n-vector space over the n-field, F =
1qF ∪

2qF ∪ ... ∪
nqF and we say the n-vector space of finite

dimension i.e., V is (n1, n2, ..., nn)-dimension over F.
Suppose W = W1 ∪ W2 ∪ ... ∪ Wn be a n-subspace of V =

V1 ∪ V2 ∪ ... ∪ Vn i.e. each Wi is a subspace of Vi, i = 1, 2, ...,
n and if each Wi is of dimension ki over

iqF , 1 ≤ i ≤ n then we
say W is a n-subspace of the n-vector space over F =

1qF ∪

2qF ∪ ... ∪
nqF and W is a (k1, k2, ..., kn) dimensional subspace

of V and W = W1 ∪ W2 ∪ ... ∪ Wn ≅ 1
1

k
qF ∪ 2

2

k
qF ∪ ... ∪ n

n

k
qF ;

 112

where 1 ≤ ki ≤ ni; i = 1, 2, ..., n. When we have the n-code these
concepts will be used for error correction as well as error
detection.

Now we just recall when we have a n-code C = C1 ∪ C2 ∪
... Cn = C (n1, k1) ∪ C (n2, k2) ∪ ... ∪ C (nn, kn), then each C (ni,
ki) can be realized as a subspace of the vector space in

2Z over Z2
or to be more precise each C (ni, ki) is the subspace ik

2Z ⊂ in
2Z

over Z2; for i = 1, 2, ..., n. Thus we can say

C = C(n1, k1) ∪ C(n2, k2) ∪ ... ∪ C(nn, kn)

≅ 1k
2Z ∪ 2k

2Z ∪ ... ∪ nk
2Z ⊆ 1n

2Z ∪ 2n
2Z ∪ ... ∪ nn

2Z

over Z2. This clearly shows each code in C is of length ni having
ki number of messages and ni – ki check symbols; 1 ≤ i ≤ n.

Now we proceed onto define the coset n-leader.
We see V = V1 ∪ V2 ∪ ... ∪ Vn is a n-vector space over the
pseudo n-field F = Z2 ∪ Z2 ∪ ... ∪ Z2 of finite dimension (n1, n2,
..., nn). So

V = V1 ∪ V2 ∪ ... ∪ Vn

≅ 1n
2Z ∪ 2n

2Z ∪ ... ∪ nn
2Z .

Let C be a n code over Z2 where C is a (k1, k2, ..., kn)
dimensional code. Clearly C is a n-subspace of V and V ≅ 1n

2Z ∪
2n

2Z ∪ ... ∪ nn
2Z i.e. C = 1k

2Z ∪ 2k
2Z ∪ ... ∪ nk

2Z is contained in
1n

2Z ∪ 2n
2Z ∪ ... ∪ nn

2Z .
Now we see C is a n-subgroup of the n-group V, so that we

can define the n-coset of C in V to be

x + C = {(x = x1 ∪ x2 ∪ ... ∪ xn) + C ⏐ x ∈ V}

= {(x1 ∪ x2 ∪ ... ∪ xn) + (1k
2Z ∪ 2k

2Z ∪ ... ∪ nk
2Z)

(where x = (x1 ∪ x2 ∪ ... ∪ xn) ∈ 1n
2Z ∪ 2n

2Z ∪ ... ∪ nn
2Z) = {(x1

+ 1k
2Z) ∪ (x2 + 2k

2Z) ∪ ... ∪ (xn + nk
2Z) ⏐ x ∈ 1n

2Z ∪ 2n
2Z ∪ ... ∪

nn
2Z) i.e. xi ∈ in

2Z ; 1 ≤ i ≤ n }.

 113

 We know the coset of a subgroup H of a group G partitions
G; likewise the n-coset of a n-subgroup H of a n-group G will
partition G. In fact here we can realize V = 1n

2Z ∪ 2n
2Z ∪ ... ∪

nn
2Z , the n-group will be partitioned by its n-subgroup C = 1k

2Z
∪ 2k

2Z ∪ ... ∪ nk
2Z . The n-coset contains (1 2 nk k k2 , 2 , , 2…) n-

vectors. Thus V is partitioned in the form

V = 1n

2Z ∪ 2n
2Z ∪ ... ∪ nn

2Z
= { 1k

2Z ∪ 2k
2Z ∪ ... ∪ nk

2Z } ∪ {((1)
1x + 1n

2Z) ∪
 ((2)

1x + 1n
2Z) ∪ ... ∪ (1(t)

1x + 1n
2Z)} ∪ {((1)

2x + 2n
2Z) ∪

 ((2)
2x + 2n

2Z) ∪ ... ∪ (2(t)
2x + 2n

2Z } ∪ ... ∪ {((1)
nx + nn

2Z)
 ∪ ((2)

nx + nn
2Z) ∪ ... ∪ (n(t)

nx + nn
2Z)}

where ti = i in kq − – 1; i = 1, 2, ..., n. Thus we see a partition of
the n-group V = 1n

2Z ∪ 2n
2Z ∪ ... ∪ nn

2Z by C can be carried out
in the following way.
If
C = C1 ∪ C2 ∪ ... ∪ Cn
 = C (n1, k1) ∪ C (n2, k2) ∪ ... ∪ C (nn, kn)

be the n-code, then we see

V = 1n

2Z ∪ 2n
2Z ∪ ... ∪ nn

2Z
= {x + C⏐ x ∈ V}
= {(x1 ∪ x2 ∪ ... ∪ xn) + (C1 ∪ C2 ∪ ... ∪ Cn)
= {{x1 + C1} ∪ {x2 + C2} ∪ ... ∪ {xn + Cn}⏐ xi ∈ in

2Z ; i =
1, 2, …, n}.

Now if y is the received n-code word then certainly y = y1 ∪ y2
∪ ... ∪ yn is such that y is in one of the n-cosets. If the n-code
word x has been transmitted then the error n-vector

e = (e1 ∪ e2 ... ∪ en)

= (y – x)
= (y1 – x1) ∪ ... ∪ (yn – xn)

 114

where each (y1 – xi) ∈ xi
(j) + Ci, i = 1, 2, ..., n and 1 ≤ j ≤ ti.

We will illustrate this by an example.

Example 2.2.2: Let C = C1 ∪ C2 = C (4, 2) ∪ C (6, 3) be a
bicode associated with the parity check bimatrix,

H = H1 ∪ H2

=
1 0 1 0
1 1 0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪
0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

and generator bimatrix

G = G1 ∪ G2

=
1 0 1 1
0 1 0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪
1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

The set of bicodes are given by
{(0 0 0 0) ∪ (0 0 0 0 0 0), (1 0 1 1) ∪ (0 0 0 0 0 0), (0 1 0 1) ∪
(0 0 0 0 0 0), (1 1 1 0) ∪ (0 0 0 0 0 0), (0 0 0 0) ∪ (1 0 0 0 1 1),
(1 0 1 1) ∪ (1 0 0 0 1 1), (0 1 0 1) ∪ (1 0 0 0 1 1), (1 1 1 0) ∪
(1 0 0 0 1 1), (0 0 0 0) ∪ (0 0 1 1 1 0), (1 1 1 0) ∪ (0 0 1 1 1 0),
(0 1 0 1) ∪ (0 0 1 1 1 0), (1 0 1 1) ∪ (0 0 1 1 1 0) and so on}.

Now we give the partition of 4
2Z ∪ 6

2Z using the bicode C =
C1 ∪ C2.

0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 code
words

1 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0
0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 0
0 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0

other
cosets

 coset
 leader

 115

0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 code
words

1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
0 1 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 1
0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1
0 0 0 1 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 1 1 1
0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 1
0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 1 0
0 0 1 0 0 1 1 0 1 0 0 1 0 0 0 1 1 1 0 1 0 0 1 0

other
cosets

coset leader

1 1 0 1 1 0 1 1 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 code
words

0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0 1
1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1
1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1
1 1 0 0 1 0 1 1 1 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1
1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0
1 1 0 1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 0 1 0 0

other
cosets

coset leader
is the bicoset of C. Suppose y = (1 1 1 1) ∪ (1 0 0 1 1 1) be the
received bicode. We find

HyT =
0 1 1 1 0 0

1 0 1 0
1 0 1 0 1 0

1 1 0 1
1 1 0 0 0 1

⎡ ⎤⎡ ⎤
⎡ ⎤⎢ ⎥⎢ ⎥∪⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

× [(1 1 1 1) ∪ (1 0 0 1 1 1)]T

=

1
1 0

0 1 1 1 0 0
1 0 1 0 1 0

1 0 1 0 1 0
1 1 0 1 1 1

1 1 0 0 0 1
1 1

1

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎡ ⎤⎢ ⎥⎢ ⎥⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥∪ ∪⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦⎣ ⎦

 116

=

1
1 0

0 1 1 1 0 0
1 0 1 0 1 0

1 0 1 0 1 0
1 1 0 1 1 1

1 1 0 0 0 1
1 1

1

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ∪ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

= (0 1) ∪ (1 0 0)
≠ (0) ∪ (0).

So y ∉ C. Hence we now inspect from the coset bileader from
the table and we see the coset bileader where (1 1 1 1) ∪ (1 0 0
1 1 1) occurs is (0 1 0 0) ∪ (0 0 0 1 0 0) = e = e1 ∪ e2.

Now y = y1 ∪ y2. Find

x = e + y

= [(0 1 0 0) ∪ (0 0 0 1 0 0)] + [(1 1 1 1) ∪ (1 0 0 1 1 1)]
= [(0 1 0 0) + (1 1 1 1)] ∪ [(0 0 0 1 0 0) + (1 0 0 1 1 1)]
= (1 0 1 1) ∪ (1 0 0 0 1 1) ∈ C.

Thus the sent message is (1 0 1 1) ∪ (1 0 0 0 1 1).

Now we have the following set to be the bicoset bileader

{(0 0 0 0) ∪ (0 0 0 0 0 0), (1 0 0 0) ∪ (1 0 0 0 0 0), (1 0 0 0) ∪
(0 1 0 0 0 0), (1 0 0 0) ∪ (0 0 1 0 0 0), (1 0 0 0) ∪ (0 0 0 1 0 0),
(1 0 0 0) ∪ (0 0 0 0 0 0 0), (1 0 0 0) ∪ (0 0 0 0 1 0), (1 0 0 0) ∪
(0 0 0 0 0 1), (1 0 0 0) ∪ (0 0 1 0 0 1), (0 0 0 0) ∪ (1 0 0 0 0 0),
(0 0 0 0) ∪ (0 1 0 0 0 0), (0 0 0 0) ∪ (0 0 1 0 0 0), (0 0 0 0) ∪
(0 0 0 1 0 0), (0 0 0 0) ∪ (0 0 0 0 1 0), (0 0 0 0) ∪ (0 0 0 0 0 1),
(0 0 0 0) ∪ (0 0 1 0 0 1), (0 1 0 0) ∪ (0 0 0 0 0 0), (0 1 0 0) ∪
(1 0 0 0 0), (0 1 0 0) ∪ (0 1 0 0 0 0), (0 1 0 0) ∪ (0 0 1 0 0 0),
(0 1 0 0) ∪ (0 0 0 1 0 0), (0 1 0 0) ∪ (0 0 0 0 1 0), (0 1 0 0) ∪
(0 0 0 0 0 1), (0 1 0 0) ∪ (0 0 1 0 0 1, (0 0 1 0) ∪ (0 0 0 0 0 0),
(0 0 1 0) ∪ (1 0 0 0 0 0), (0 0 1 0) ∪ (0 1 0 0 0 0), (0 0 1 0) ∪
(0 0 1 0 0 0), (0 0 1 0) ∪ (0 0 0 1 0 0), (0 0 1 0) ∪ (0 0 0 0 1 0),
(0 0 1 0) ∪ (0 0 0 0 0 1), (0 0 1 0) ∪ (0 0 1 0 0 1)}

 117

for the code C = C(4, 2) ∪ C(6, 3).

Thus finding the sent message which is the bicode x and if y is
the received bicode and y ∉ C, y is determined by finding

HyT = (H1 ∪ H2)yT

= (H1 ∪ H2) (y1 ∪ y2)T
= (H1 ∪ H2) (y1

T ∪ y2
T)

= H1y1
T ∪ H2y2

T.

If H1yT ∪ H2y2

T = (0) ∪ (0) then y ∈ C if H1y1
T ∪ H2y2

T ≠ (0) ∪
(0), we find the coset leader to which the code y1 belongs to and
if e1 is the coset leader to which y1 belongs to, then we find the
coset leader to which y2 belongs to. Let e2 be the coset leader to
which y2 belongs to. Then e = e1 ∪ e2 is the bierror or the
bierror bivector. Now y + e = x gives the sent bicode word. e =
e1 ∪ e2 is the bicoset bileader which will be found in the class of
bicoset leaders.

Now we proceed on to describe how in the tricode the error
is both detected and corrected using the tricoset leaders.

Example 2.2.3: Let C = C1 ∪ C2 ∪ C3 be a tricode with the
associated parity check trimatrix

H = H1 ∪ H2 ∪ H3 =

1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 0 0 1 0 0

1 0 1 0
0 1 0 0 1 0

1 1 0 1
0 0 1 0 0 1

⎡ ⎤
⎡ ⎤⎢ ⎥ ∪ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

.

The related generator trimatrix of the tricode is given by

 118

G = G1 ∪ G2 ∪ G3 =

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 ∪

1 0 0 1 0 0

1 0 1 1
0 1 0 0 1 0

0 1 0 1
0 0 1 0 0 1

⎡ ⎤
⎡ ⎤⎢ ⎥ ∪ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

.

Clearly C = C (7, 4) ∪ C (6, 3) ∪ C (4, 2) is the tricode. The
elements of the tricode are as follows:

{(0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0) ∪ (0 0 0 0), (1 0 0 0 1 0 1) ∪
(1 0 0 1 0 0) ∪ (1 0 1 1), (0 1 0 1 1 1) ∪ (0 1 0 0 1 0) ∪
(0 1 0 1), (0 0 1 0 1 1 0) ∪ (0 0 1 1) ∪ (1 1 1 0), (0 0 1 0 1 1) ∪
(1 1 1 1 1 1) ∪ (0 0 0 0), (1 1 1 1 1 1 1) ∪ (1 1 1 1 1 1) ∪
(1 1 1 0), (1 1 0 0 0 1 0) ∪ (1 1 0 1 1 0) ∪ (1 1 1 0) and so on}.

Suppose y = (0 1 1 1 1 1 1) ∪ (0 1 1 1 1 1) ∪ (1 1 1 1) be the
received tricode word. Find whether the received tricode word
is the correct message. If y is to be a correctly received message
than we must have HyT = (0) ∪ (0) ∪ (0). Now consider

HyT =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

⎡⎡ ⎤
⎢⎢ ⎥ ∪⎢⎢ ⎥
⎢⎢ ⎥⎣ ⎦⎣

1 0 0 1 0 0

1 0 1 0
0 1 0 0 1 0

1 1 0 1
0 0 1 0 0 1

⎤⎡ ⎤
⎡ ⎤⎥⎢ ⎥ ∪ ⎢ ⎥⎥⎢ ⎥ ⎣ ⎦⎥⎢ ⎥⎣ ⎦ ⎦

 119

[] [] []0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
T

⎡ ⎤∪ ∪⎣ ⎦

=

0
0

1
1

1 1 1 0 1 0 0 1 0 0 1 0 01
1

0 1 1 1 0 1 0 0 1 0 0 1 01
1

1 1 0 1 0 0 1 0 0 1 0 0 11
1

1
1

1

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥∪ ∪⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥⎣ ⎦

1

1 0 1 0 1
1 1 0 1 1

1

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

 = [] [] []T T T1 0 1 1 0 0 0 1⎡ ⎤∪ ∪⎣ ⎦

≠ (0) ∪ (0) ∪ (0) .

Thus y has error, i.e. the received message has some error. Now
we have to detect the error and obtain the correct message.
Consider the coset trileader e = (1 0 0 0 0 0 0) ∪ (1 0 0 0 0 0) ∪
(0 0 0 1); for the vector (0 1 1 1 1 1 1) of Z2

7 falls in the coset
with coset leader (1 0 0 0 0 0 0); the vector (0 1 1 1 1 1) of Z2

6
falls in the coset with coset leader (1 0 0 0 0 0) and the vector (1
1 1 1) of Z2

4 falls in the coset with coset leader (0 0 0 1). Thus
the trivector (0 1 1 1 1 1 1) ∪ (0 1 1 1 1 1) ∪ (1 1 1 1) falls in
the tricoset with the tricoset leader (10 0 0 0 0 0) ∪ (1 0 0 0 0 0)
∪ (0 0 0 1) = e = e1 ∪ e2 ∪ e3. Thus y + e = x is the correct
tricode word which must be the sent message. Thus

y + e = [(0 1 1 1 1 1 1) ∪ (0 1 1 1 1 1) ∪ (1 1 1 1)] + [(1
 0 0 0 0 0 0) ∪ (1 0 0 0 0 0) ∪ (0 0 0 1)]

= [((0 1 1 1 1 1 1) + (1 0 0 0 0 0 0)] ∪ [(0 1 1 1 1 1) +
 (1 0 0 0 0 0)] ∪ ((1 1 1 1) + (0 0 0 1)) ∈ C

 120

= C1 ∪ C2 ∪ C3.

Now the same method can be used for any n-code; n ≥ 4.
However we illustrate for a 5-code by an explicit example
before we proceed to dewell about other methods.

Example 2.2.4: Consider the 5-code C = C1 ∪ C2 ∪ C3 ∪ C4 ∪
C5 associated with the parity check 5-matrix

H = H1 ∪ H2 ∪ H3 ∪ H4 ∪ H5 =

1 0 0 1 0 0
1 0 1 0

0 1 0 0 1 0
1 1 0 1

0 0 1 0 0 1

⎡ ⎤
⎡ ⎤⎢ ⎥ ∪ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

 ∪

1 1 1 1 1 0 0
0 1 0 1 0 1 0
1 0 1 0 0 0 1

⎡ ⎤
⎢ ⎥ ∪⎢ ⎥
⎢ ⎥⎣ ⎦

1 1 1 1 0 0 0
0 0 1 0 1 0 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0 1 1 1 0 1
0 1 1 0 0 0 1

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥ ∪ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

.

The corresponding generator 5 matrix

G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5

=
1 0 0 1 0 0

1 0 1 1
0 1 0 0 1 0

0 1 0 1
0 0 1 0 0 1

⎡ ⎤
⎡ ⎤⎢ ⎥ ∪ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

 121

1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 ∪

1 0 0 0 0 0

1 0 0 1 0 1 0
0 1 0 0 1 1

0 1 0 1 0 0 1
0 0 1 0 0 1

0 0 1 1 1 1 1
0 0 0 1 0 1

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∪ ∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

.

The related 5-code words are as follows:

{(0 0 0 0 0 0) ∪ (0 0 0 0) ∪ (0 0 0 0 0 0 0) ∪ (0 0 0 0 0 0 0) ∪
(0 0 0 0 0 0), (1 0 0 1 0 0) ∪ (1 0 1 1) ∪ (1 0 0 0 1 0 1) ∪
(1 0 0 1 0 1 0) ∪ (1 0 0 0 0 0), (0 1 0 0 1 0) ∪ (1 1 1 0) ∪
(0 1 0 0 1 1 0) ∪ (0 1 0 1 0 0 1) ∪ (0 1 0 0 1 1), (0 0 1 0 0 1) ∪
(1 1 1 0) ∪ (0 0 1 0 1 0 1) ∪ (0 0 1 1 1 1 1) ∪ (0 0 1 0 0 1) ∪
(0 0 1 0 0 1) ∪ (1 1 1 0) ∪ (0 0 1 0 1 0 1) ∪ (0 0 1 1 1 1 1) ∪
(0 0 0 1 0 1) and so on}.

Suppose y = y1 ∪ y2 ∪ y3 ∪ y4 ∪ y5 = ((1 1 1 1 0 0) ∪ (1 1 1 1)
∪ (1 1 1 1 1 0 0) ∪ (0 1 1 0 0 0 1) ∪ (0 1 0 1 0 1)) be the
received word, we have to find whether y is a correct received
message. The simple test for this is to find HyT, if HyT = (0) ∪
(0) ∪ (0) ∪ (0) ∪ (0) then y ∈ C i.e. y is the correct received
message. Now consider

HyT =
1 0 0 1 0 0

1 0 1 0
0 1 0 0 1 0

1 1 0 1
0 0 1 0 0 1

⎧⎡ ⎤
⎡ ⎤⎪⎢ ⎥ ∪⎨ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎪⎢ ⎥⎣ ⎦⎩

 ∪

1 1 1 1 1 0 0
0 1 0 1 0 1 0
1 0 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 122

1 1 1 1 0 0 0
0 0 1 0 1 0 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0 1 1 1 0 1
0 1 1 0 0 0 1

⎫⎡ ⎤
⎪⎢ ⎥ ⎡ ⎤⎪⎢ ⎥∪ ∪ ⎬⎢ ⎥⎢ ⎥ ⎣ ⎦⎪⎢ ⎥ ⎪⎣ ⎦ ⎭

× [(1 1 1 1 0 0)T ∪ (1 1 1 1)T ∪ (1 1 1 1 1 0 0)T ∪ (0 1 1 0 0 0
1)T ∪ (0 1 0 1 0 1)T]

=

1
1 1

1 0 0 1 0 0
1 1 0 1 0 1

0 1 0 0 1 0
1 1 1 0 1 1

0 0 1 0 0 1
0 1
0

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

∪

1
1

1 1 1 1 1 0 0 1
0 1 0 1 0 1 0 1
1 0 1 0 0 0 1 1

0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0
1

1 1 1 1 0 0 0
1

0 0 1 0 1 0 0
0

1 0 1 0 0 1 0
0

0 1 1 0 0 0 1
0
1

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥∪ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

0
1

0 1 0 0 1 0 0
0 1 1 1 0 1 1

0
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 123

=

T
T0

0
1

1
1

⎡ ⎤
⎡ ⎤⎢ ⎥ ∪ ∪⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

T
T

T
0

1
1 1

1
1 1

0
1

⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥∪ ∪ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

≠ (0) ∪ (0) ∪ (0) ∪ (0) ∪ (0) .

Thus the received vector y ∉ C i.e. y is not the correct message;
now we have detected that this message has error, now we
proceed on to correct the error. This is done by finding the
coset-5-leader in which the 5-vector y = y1 ∪ y2 ∪ y3 ∪ y4 ∪ y5
occurs. Suppose, e = e1 ∪ e2 ∪ e3 ∪ e4 ∪ e5 then y + e = x
would be the corrected message and x ∈ C = C1 ∪ C2 ∪ C3 ∪
C4 ∪ C5.

Now the coset 5-leader in which y occurs is given by

e = (0 1 1 0 0 0) ∪ (0 0 0 1) ∪ (0 0 0 0 1 0 0) ∪
 (0 0 1 1 0 0 0) ∪ (0 1 0 0 0 0).
y + e = [(1 1 1 1 0 0) ∪ (1 1 1 1) ∪ (1 1 1 1 1 0 0) ∪
 (0 1 1 0 0 0 1) ∪ (0 1 0 1 0 1)] + [(0 1 1 0 0 0) ∪
 (0 0 0 1) ∪ (0 0 0 0 1 0 0) ∪ (0 0 1 1 0 0 0) ∪
 (0 1 0 0 0 0)]
 = [(1 1 1 1 0 0) + (0 1 1 0 0 0)] ∪ [(1 1 1 1) +
 (0 0 0 1)] ∪ [(1 1 1 1 1 0 0) + (0 0 0 0 1 0 0)] ∪
 [(0 1 1 0 0 0 1) + (0 0 1 1 0 0 0)] ∪ [(0 1 0 1 0 1) +
 (0 1 0 0 0 0)]

= (1 0 0 1 0 0) ∪ (1 1 1 0) ∪ (1 1 1 1 0 0 0) ∪
 (0 1 0 1 0 0 1) ∪ (0 0 0 1 0 1)

= x.

Now find

HxT =
1 0 0 1 0 0

1 0 1 0
0 1 0 0 1 0

1 1 0 1
0 0 1 0 0 1

⎧ ⎡ ⎤
⎡ ⎤⎪ ⎢ ⎥ ∪ ∪⎨ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎪ ⎢ ⎥⎣ ⎦⎩

 124

1 1 1 1 0 0 0
1 1 1 1 1 0 0

0 0 1 0 1 0 0
0 1 0 1 0 1 0

1 0 1 0 0 1 0
1 0 1 0 0 0 1

0 1 1 0 0 0 1

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∪ ∪ ∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

0 1 0 0 1 0
0 1 1 1 0 1

⎫⎡ ⎤
⎬⎢ ⎥

⎣ ⎦ ⎭
 ×

[] [](1 0 0 1 0 0 1 1 1 0∪ ∪T T

[] []1 1 1 1 0 0 0 0 1 0 1 0 0 1T T∪ ∪

[])0 0 0 1 0 1 T

1
0

1 0 0 1 0 0
0

0 1 0 0 1 0
1

0 0 1 0 0 1
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

1
1

1
1 1 1 1 1 0 0 1

1 0 1 0 1
0 1 0 1 0 1 0 1

1 1 0 1 1
1 0 1 0 0 0 1 0

0
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎢ ⎥⎡ ⎤⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥∪ ∪⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

 125

0
0

1
1 1 1 1 0 0 0 0

0
0 0 1 0 1 0 0 0 1 0 0 1 0 0

1
1 0 1 0 0 1 0 0 1 1 1 0 1 1

0
0 1 1 0 0 0 1 0

0
1

1

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥⎢ ⎥∪ ∪ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

= (0 0 0)T ∪ (0 0 0 0)T ∪ (0 0 0)T ∪ (0 0 0 0)T ∪ (0 0)T.

Thus x is a 5-code word of C which is the corrected message i.e.
the sent message.
 Now we proceed on to describe this more technically by
defining the term n-syndrome n ≥ 4, bisyndrome and
trisyndrome.

DEFINITION 2.2.2: Let H = H1 ∪ H2 be a parity check bimatrix
of a linear (n1, k1) ∪ (n2, k2) bicode. Then the bivector

S(y) = S(y1) ∪ S(y2)
= HyT
= (H1 ∪ H2) (y1 ∪ y2)T
= (H1 ∪ H2) (y1

T ∪ y2
T)

= H1y1
T ∪ H2y2

T

of length (n1 – k1) ∪ (n2 – k2), is called the bisyndrome of the
bivector y = y1 ∪ y2.

S(y) = S(y1) ∪ S(y2) = (0) ∪ (0)
if and only if y ∈ C1 ∪ C2 = C.

S(y(1)) = S(y(2)) = S(y11
(1) ∪ y21

(1)) = S(y12
(2) ∪ y22

(2)) if and
only if y(1) + C = y(2) + C i.e. if and only if (y11

(1) ∪ y21
(1)) + (C1

∪ C2) = (y12
(2) ∪ y22

(2)) + (C1 ∪ C2) i.e. (y11
(1) + C1) ∪ (y21

(1) +
C2) = (y12

(2) + C1) ∪ (y22
(2) + C2).

If y = y1 ∪ y2 is the received message and e = e1 ∪ e2 is the
error with y = x + e then

 126

S(y) = S(y1) ∪ S(y2)
= S(x+e)
= S((x1 ∪ x2) + (e1 + e2))
= S((x1 + e1) ∪ (x2 + e2))
= S(x1 + e1) ∪ S(x2 + e2)
= {S(x1) + S(e1) } ∪ { S(x2) + S(e2) }
= S(e1) ∪ S(e2)

as x = x1 ∪ x2 ∈ C = C1 ∪ C2 so S(x) = S(x1 ∪ x2) = S(x1) ∪
S(x2) = (0) ∪ (0) i.e. y and e are in the same bicoset.

Let us consider how a trisyndrome of a tricode functions
and the tricoset leader. Let H = H1 ∪ H2 ∪ H3 be a parity check
trimatrix associated with the tricode C = C1 ∪ C2 ∪ C3. Any
tricode word in C would be of the form y = y1 ∪ y2 ∪ y3 where
y1 is the code word in C1, y2 a code word in C2 and y3 the code
word in C3. HyT = S(y) i.e.
S (y1 ∪ y2 ∪ y3) = (H1 ∪ H2 ∪ H3) (y1

T ∪ y2
T ∪ y3

T)
= H1y1

T ∪ H2y2
T ∪ H3y3

T
= S(y1) ∪ S(y2) ∪ S(y3).

This S(y) = (0) ∪ (0) ∪ (0) if and only if y = y1 ∪ y2 ∪ y3 ∈
C = C1 ∪ C2 ∪ C3. If S(y) ≠ (0) then y ∉ C. S(y) = S(y1) ∪ S(y2)
∪ S(y3) is of length (n1 – k1) ∪ (n2 – k2) ∪ (n3 – k3) is called the
trisyndrome of the trivector y = y1 ∪ y2 ∪ y3. Thus S(y) = S(y1)
∪ S(y2) ∪ S(y3) = (0) ∪ (0) ∪ (0) if and only if y ∈ C1 ∪ C2 ∪
C3 = C.

S(y(1)) = S(y(2)) = S(y11
(1) ∪ y21

(1) ∪ y31
(1)) = S(y12

(2) ∪ y22
(2) ∪

y32
(2)) if and only if

[y11
(1) ∪ y21

(1) ∪ y31
(1)] + (C1 ∪ C2 ∪ C3)

= (y12
(2) ∪ y22

(2) ∪ y32
(2)) + (C1 ∪ C2 ∪ C3)

= (y11
(1) + C1) ∪ (y21

(1) + C2) ∪ (y31
(1) + C3)

= (y12
(2) + C1) ∪ (y22

(2) + C2) ∪ (y32
(2) + C3).

If y = y1 ∪ y2 ∪ y3 is the received message and e = e1 ∪ e2 ∪ e3
is the error with y = x + e then

S(y) = S(y1) ∪ S(y2) ∪ S(y3)
= S(x + e)
= S((x1 ∪ x2 ∪ x3) + (e1 ∪ e2 ∪ e3))

 127

= S (x1 + e1) ∪ S(x2 + e2) ∪ S(x3 + e3)
= (S(x1) + S(e1)) ∪ (S(x2)+S(e2)) ∪ (S(x3) + S(e3))
= S(e1) ∪ S(e2) ∪ S(e3)

as S(xi) = (0) for i = 1, 2, 3. i.e., y and e are in the same tricoset
and e is taken as the leader of the tricoset to which the trivector
y = y1 ∪ y2 ∪ y3 belongs.

Now in a similar manner we have the notion of n-syndrome
and n coset leader and n-error vector associated with the n-
code.

Let C = C1 ∪ C2 ∪ ... ∪ Cn be a n code where C = C(n1, k1)
∪ C(n2, k2) ∪ ... ∪ C(nn, kn) a n-code (n ≥ 4). Any n vector y
would be of the form y = y1 ∪ y2 ∪ ... ∪ yn. Any n-code x = x1 ∪
x2 ∪ ... xn would be such that each xi ∈ C (ni, ki) is a code of
length ni with ki number of message symbols; i = 1, 2, ..., n.

Let H = H1 ∪ H2 ∪ ... ∪ Hn be the parity check n-matrix
associated with C = C1 ∪ C2 ∪ ... ∪ Cn, the n-code. Let x = x1
∪ x2 ∪ ... ∪ xn ∈ C = C1 ∪ C2 ∪ ... ∪ Cn. HxT = (H1 ∪ H2 ∪ ...
∪ Hn) (xT) = (H1 ∪ H2 ∪ ... ∪ Hn) (x1

T ∪ x2
T ∪ ... ∪ xn

T) = H1x1
T

∪ H2x2
T ∪ ... ∪ Hnxn

T = (0) ∪ (0) ∪ ... ∪ (0).
If y is any n-vector if HyT ≠ (0) ∪ (0) ∪ ... ∪ (0) then y ∉ C

= C1 ∪ C2 ∪ ... ∪ Cn.
 Now

S(y) = HyT
 = (H1 ∪ H2 ∪ ... ∪ Hn) (y1 ∪ y2 ∪ ... ∪ yn)T
 = H1y1

T ∪ H2y2
T ∪ ... ∪ Hnyn

T
is a (n1 – k1) ∪ (n2 – k2) ∪ ... ∪ (nn – kn) length n-vector defined
to be the n-syndrome of y. S(y) = (0) ∪ (0) ∪ … ∪ (0) if and
only if y ∈ C = C1 ∪ C2 ∪ ... ∪ Cn.

Now if y is a received message to find the correct sent
message. In the first stage we detect whether the received
message is correct or not. This is done by calculating S(y) i.e.
by finding the n-syndrome of y. i.e.

S(y) = HyT
= (H1 ∪ H2 ∪ ... ∪ Hn)yT
= (H1 ∪ H2 ∪ ... ∪ Hn) (y1

T ∪ y2
T ∪ ... ∪ yn

T)
= H1y1

T ∪ H2y2
T ∪ ... ∪ Hnyn

T.

 128

If S(y) = H1y1

T ∪ H2y2
T ∪ ... ∪ Hnyn

T
= (0) ∪ (0) ∪ ... ∪ (0);

then we say the received message is a correct message and we
accept y as the sent message. If on the other hand S(y) ≠ (0) ∪
(0) ∪ ... ∪ (0) then we say the received message y has error.
The error has to be detected as S(y) ≠ (0) ∪ (0) ∪ ... ∪ (0).

Now we find the error n-vector e = e1 ∪ e2 ∪ ... ∪ en and
add e with y which is the corrected message. Suppose y = y1 ∪
y2 ∪ ... ∪ yn where each yi is a ni-length vector with ki message
symbols and ni – ki check symbols; true for i = 1, 2, ..., n.

Now we find the n-coset leader for the n vector y = y1 ∪ y2
∪ ... ∪ yn. Suppose e = e1 ∪ e2 ∪ ... ∪ en is the coset leader then
we see y + e = x = x1 ∪ x2 ∪ ... ∪ xn. We have each ei is the
coset leader of the vector yi in y for i = 1, 2, ..., n.

Now it is easily verified x ∈ C = C1 ∪ C2 ∪ ... ∪ Cn i.e. HxT
= S(x) = (0) ∪ (0) ∪ ... ∪ (0).

Note: It may so happen that at times when y = y1 ∪ y2 ∪ ... ∪ yn
is the received n-vector and H = H1 ∪ H2 ∪ ... ∪ Hn the parity
check matrix of the n-code we have

HyT = (H1 ∪ H2 ∪ ... ∪ Hn) (y1
T ∪ y2

T ∪ ... ∪ yn
T)

= H1y1
T ∪ H2y2

T ∪ ... ∪ Hnyn
T

≠ (0) ∪ (0) ∪ ... ∪ (0)

but some of the Hiyi

T = (0), and some of the Hjyj
T ≠ (0); i ≠ j so

that resulting in HyT ≠ (0) ∪ (0) ∪ ... ∪ (0) in which case we
take the coset leaders of those i for which Hiyi

T = (0) to be (0 0
... 0) i.e. the coset leader of the n-code, C = C1 ∪ C2 ∪ ... ∪ Cn.
Thus we may not or need not in general have each Htyt

T = (0); t
= 1, 2, ..., n; some may be zero and some may not be zero, at
times it may so happen each Htyt

T ≠ (0), t = 1, 2, ..., n in which
case we will have each coset leader to be non zero. We have
illustrated this case in the 5-code given in the earlier example.

Now we proceed onto give the pseudo best n-approximation
to the received message when the received message has errors.

 129

This method gives us approximately the best n-code word
which is very close to the received message. To this end we
define the new notion of pseudo best n-approximation and
pseudo n inner product of a finite dimensional n-vector space V
= V1 ∪ V2 ∪ ... ∪ Vn over n-field Z2 ∪ Z2 ∪ ... ∪ Z2. For the
sake of completeness we recall the definition of n-vector space,
n-subvector space and a n-code.

Just for the sake of clarity and simplicity of understanding
we use the prime field Z2 of characteristic 2. It is stated that the
results and definitions are true for any prime field Zp of
characteristic p (p a prime) or even over any non prime field of
characteristic p.

DEFINITION 2.2.3: Let V = V1 ∪ V2 ∪ ... ∪ Vn be a n-vector
space of finite dimension (n1, n2, ..., nn) over the n-field F = Z2
∪ Z2 ∪ ... ∪ Z2 i.e. each Vi is a ni dimensional vector space over
Z2; i = 1, 2, ..., n. The pseudo n-inner product on the n-vector
space V = V1 ∪ V2 ∪ ... ∪ Vn is a n-map 〈 , 〉p (Here p = 2) from
V × V → F = Z2 ∪ Z2 ∪ ... ∪ Z2 satisfying the following
conditions.

(1) The n-map 〈 ,〉p = 〈 〉1p ∪ 〈 〉2p ∪ ... ∪ 〈 〉np : (V1 ∪ V2 ∪ ...

∪ Vn) x (V1 ∪ V2 ∪ ... ∪ Vn) → Z2 ∪ Z2 ∪ ... ∪ Z2 such
that 〈 x, x〉p ≥ 0 for all x ∈ V i.e. (x1 ∪ x2 ∪ ... ∪ xn) ∈ V1
∪ V2 ∪ ... ∪ Vn i.e. 〈 x1, x1〉1p ∪ 〈x2, x2〉2p ∪ ... ∪ 〈 xn, xn〉np
≥ 0 ∪ 0 ∪ ... ∪ 0 i.e. each 〈xi, xi〉ip ≥ 0 for i = 1, 2, ..., n
with xi ∈ Vi i.e. 〈 , 〉i : Vi x Vi → Z2 and 〈x, x〉p = 0 does not
imply each x = x1 ∪ x2 ∪ ... ∪ xn = (0) ∪ (0) ∪ ... ∪ (0).

(2) 〈x, y〉p = 〈y, x〉p for all x, y ∈ V = V1 ∪ V2 ∪ ... ∪ Vn where

x = x1 ∪ x2 ∪ ... ∪ xn and y = y1 ∪ y2 ∪ ... ∪ yn i.e. 〈xi,
yi〉ip = 〈yi, xi〉ip; i = 1, 2, ..., n.

(3) 〈 x + z, y〉p = 〈x, y〉p + 〈z, y〉p for all x, y, z ∈ V i.e. 〈(x1 ∪

x2 ∪ ... ∪ xn) + (z1 ∪ z2 ∪ ... ∪ zn) , (y1 ∪ y2 ∪ ... ∪ yn)〉
= {(〈x1, y1〉1p ∪ 〈 x2, y2〉2p ∪ ... ∪ 〈 xn, yn〉np)} + { 〈z1, y1〉1p
∪ 〈z2, y2〉2p ∪ ... ∪ 〈 zn, yn〉np } for all x, y, z ∈ V.

 130

(4) 〈 x, y + z〉p = 〈 x1 ∪ x2 ∪ ... ∪ xn, (y1 ∪ y2 ∪ ... ∪ yn) +
(z1 ∪ z2 ∪ ... ∪ zn)〉 = 〈x1 ∪ x2 ∪ ... ∪ xn, (y1 + z1) ∪ (y2 +
z2) ∪ ... ∪ (yn + zn)〉 = (〈x1, y1〉1p ∪ 〈x2, y2〉2p ∪ ... ∪ 〈xn,
yn〉np) + (〈x1, z1〉1p ∪ 〈x2, z2〉2p ∪ ... ∪ 〈xn, zn〉np) for all x, y,
z ∈ V = V1 ∪ V2 ∪ ... ∪ Vn.

(5) 〈αx, y 〉p = α 〈 x, y〉p where
 α = α1 ∪ α2 ∪ ... ∪ αn ∈ Z2 ∪ Z2 ∪ ... ∪ Z2
 x = x1 ∪ x2 ∪ ... ∪ xn ∈ V = V1 ∪ V2 ∪ ... ∪ Vn

and
y = y1 ∪ y2 ∪ ... ∪ yn ∈ V = V1 ∪ V2 ∪ ... ∪ Vn.

〈α x, y〉p
= 〈(α1 ∪ α2 ∪ ... ∪ αn) (x1 ∪ x2 ∪ ... ∪ xn), (y1 ∪ y2 ∪
 ... ∪ yn) 〉p
= 〈(α1 x1 ∪ α2 x2 ∪ ... αn xn), (y1 ∪ y2 ∪ ... ∪ yn) 〉p
= 〈α1 x1, y1〉1p ∪ 〈α2 x2, y2〉 2p ∪ ... ∪ 〈 αn xn, yn〉np
= α1 〈x1, y1 〉1p ∪ α2 〈 x2, y2〉 2p ∪ ... ∪ αn 〈 xn, yn〉np
= (α1 ∪ α2 ∪ ... ∪ αn) [〈 x1 , y1 〉1p ∪ 〈 x2 , y2 〉2p ∪ ...
 ∪ 〈 xn, yn 〉np]
= α [〈 x, y 〉p].

Similarly 〈 x, βy 〉p = β 〈 x, y 〉p for all α, β ∈ F = Z2 ∪ Z2 ∪ ...
∪ Z2 and x, y ∈ V = V1 ∪ V2 ∪ ... ∪ Vn. We say the n-vector
space V = V1 ∪ V2 ∪ ... ∪ Vn over the n-field F = Z2 ∪ Z2 ∪ ...
∪ Z2 of characteristic 2 to be a pseudo n-inner product space if
the n-map 〈 ,〉p = 〈 〉1p ∪ 〈 〉p2 ∪ ... ∪ 〈 〉np which is a pseudo n-
inner product defined on the n-vector space V = V1 ∪ V2 ∪ ... ∪
Vn over the pseudo n-field F = Z2 ∪ Z2 ∪ ... ∪ Z2.

Now we define the notion of n-subspace of the n-vector space V
over the n-field F.

DEFINITION 2.2.4: Let V = V1 ∪ V2 ∪ ... ∪ Vn be a n-vector
space over the n-field F = Z2 ∪ Z2 ∪ ... ∪ Z2 of dimension (n1 ∪
n2 ∪ … ∪ nn) over F or of dimension (n1, n2, …, nn) over F = Z2
∪ Z2 ∪ … ∪ Z2, then we have V ≅ 1

2
nZ ∪ 2

2
nZ ∪ ... ∪ 2

nnZ . Let
W be a proper subset of V i.e. W = W1 ∪ W2 ∪ ... ∪ Wn where

 131

each Wi is a subspace of dimension ki over Z2, for i = 1, 2, ..., n,
then W is a n-subspace of dimension (k1 ∪ k2 ∪ ... ∪ kn) or (k1,
k2, ..., kn) dimension over F = Z2 ∪ Z2 ∪ ... ∪ Z2 i.e. W = W1 ∪
W2 ∪ ... ∪ Wn where each Wi is a subspace of dimension ki over
Z2 for i = 1, 2, ..., n then W is a n-subspace of dimension (k1 ∪
k2 ∪ ... ∪ kn) or (k1, k2, ..., kn) dimension over F = Z2 ∪ Z2 ∪ ...
∪ Z2 i.e.

W = W1 ∪ W2 ∪ ... ∪ Wn
≅ 1

2
kZ ∪ 2

2
kZ ∪ ... ∪ 2

nkZ ⊆ 1
2
nZ ∪ 2

2
nZ ∪ ... ∪ 2

nnZ

i.e. ki ≤ ni, for i = 1, 2, ..., n.

Now we proceed on to define the notion of pseudo best n-
approximation of any n-vector β = β1 ∪ β2 ∪ ... ∪ βn ∈ V
relative to the (k1, k2, ..., kn) subspace W of V; i.e. W = W1 ∪ W2
∪ ... ∪ Wn ⊂ V = V1 ∪ V2 ∪ ... ∪ Vn is a n-subspace of
dimension (k1, k2, ... kn) i.e. W ≅ 1

2
kZ ∪ 2

2
kZ ∪ ... ∪ 2

nkZ ⊆ 1
2
nZ ∪

2
2
nZ ∪ ... ∪ 2

nnZ . Let the n-vector space V = V1 ∪ V2 ∪ ... ∪ Vn
over F = Z2 ∪ Z2 ∪ ... ∪ Zn be a pseudo n-inner product space
with the pseudo n-inner product 〈 〉p = 〈 〉1p ∪ 〈 〉2p ∪ ... ∪
〈 〉np defined on V. Let β = β1 ∪ β2 ∪ ... ∪ βn ∈ V = V1 ∪ V2 ∪
... ∪ Vn. Let W = W1 ∪ W2 ∪ ... ∪ Wn ⊆ V = V1 ∪ V2 ∪ ... ∪ Vn
be a n-subspace of dimension (k1 ∪ k2 ∪ ... ∪ kn) of V. The
pseudo best n-approximation to β related to W is defined as
follows. Let α = { α1, α2, ..., αk } be a n-basis of W i.e. α1 = 1

1α
∪ 1

2α ∪ ... ∪ 1
nα , α2 = 2

1α ∪ 2
2α ∪ ... ∪ 2

nα , ..., αk = 1
kα ∪

2
kα ∪ ... ∪ k

nα is the n-basis of W = W1 ∪ W2 ∪ ... ∪ Wn i.e., α
= { 1

1α ∪ 1
2α ∪ ... ∪ 1

nα , 2
1α ∪ 2

2α ∪ ... ∪ 2
nα , ..., 1

kα ∪ 2
kα ∪

... ∪ k
nα } is the chosen n-basis of the k = (k1 ∪ k2 ∪ ... ∪ kn)

dimensional subspace W of V. The pseudo best n-approximation
to β related to W if it exists is defined as follows:

1

,
=

〈 〉∑
k

i p i
i

β α α =
11

,
==

〈 〉∑∪
k n

t t t
t i p i

ti

β α α .

 132

If
1

,
=

〈 〉∑
k

i p i
i

β α α = 0 we say the pseudo best n-approximation

does not exist for this set of k-basis {α1, ..., αk} = {(1
1α

1
2α ...

1
nα) ∪ (2

1α
2
2α ... 2

nα) ∪ ... ∪ (1
kα 2

kα ... k
nα)}. In this case we

choose yet another set of k-basis for W say (γ1, γ2, ..., γk) and

calculate
1

,
=

〈 〉∑
k

i p i
i

β γ γ and take this as the pseudo best n-

approximation to β.

Now we apply this pseudo best n-approximation to get the most
likely n-code word. Let C be the n-code over the n field Z2 ∪ ...
∪ Z2 = F; i.e. C = C1 ∪ C2 ∪ ... ∪ Cn be a (k1, n1) ∪ (k2, n2) ∪ ...
∪ (kn, nn)) n-code i.e. C is a n-subspace of V = V1 ∪ V2 ∪ ... ∪
Vn ≅ 1n

2Z ∪ 2n
2Z ∪ ... ∪ nn

2Z = V.
C ≅ 1k

2Z ∪ 2k
2Z ∪ ... ∪ nk

2Z . Now in the above definition we
take C = W in the definition of n-pseudo best approximation. If
some n-code word is transmitted and β is the received n-code
word then

(1) If β ∈ C, then β is accepted as a correct message.
(2) If β ∉ C then we apply the notion of pseudo n-best

approximation to β related to the n-subspace C in 1n
2Z ∪

2n
2Z ∪ ... ∪ nn

2Z .

Let us consider a k-basis for C say α = {c1, c2, ..., ck} of C.
Now β ∉ C so relative to this basis we have the pseudo best n-
approximation as i ip

,c c 0〈β 〉 ≠∑ each ci is a basis of the code

Ci which is a (ni, ki) code i.e., ci = (i
1c , i

2c , ...,
i

i
kc), i = 1, 2, ...,

k. Thus α = {(1
1c , 1

2c , ...,
1

1
kc) ∪ (2

1c , 2
2c , ...,

2

2
kc) ∪ ... ∪ (k

1c ,
k
2c , ...,

k

k
kc)}.

 133

If Σ 〈βi ci〉p ci = 0 then choose another set of k-basis D = {D1,

D2, ..., Dk} of C and find
k

i i
p

i 1
x ,D D

=

= 〈β 〉∑ .

Then x is the pseudo best n-approximated message to β and
x ∈ C = C1 ∪ C2 ∪ ... ∪ Cn.

Note: With the advent of computers it is left for the computer
scientist to find programs to obtain the sets of basis for any C
code and also a program to find the pseudo best n-
approximation of β say α in C, β ∉ C.

It is still a challenge for them to find sets of n-basis for the
n-code C = C1 ∪ C2 ∪ ... ∪ Cn and find the pseudo best n-
approximation to β in order to use the formula

k

i p i
i 1

,c c
=

α = 〈β 〉∑ .

Here it is pertinent to mention that a nice programming can be
made by the computer scientist / engineer to find a method of
obtaining different sets of basis. Once this is made it is easy for
any coding theorist to obtain the pseudo best n-approximation to
any received message which has error.

Still it is interesting to note that one can find sets of n basis
for the given n-code C which is the n-subspace of the space C
over Z2. Using these sets of n-basis the approximately correct
set of codes can be obtained.

Now using the Hamming n-distance i.e. if x = (1
1x , 1

2x , ...,

1

1
nx) ∪ (2

1x , 2
2x , ...,

2

2
nx) ∪ ... ∪ (n

1x , n
2x , ...,

n

n
nx) and y =

(1
1y , 1

2y , ...,
1

1
ny) ∪ (2

1y , 2
2y , ...,

2

2
ny) ∪ ... ∪ (n

1y , n
2y , ...,

n

n
ny)

are in C = C1 ∪ C2 ∪ ... ∪ Cn, then the Hamming n-distance
between x and y is the Hamming distance between each of (i

1x
i
2x …

i

i
nx) and (i

1y i
2y …

i

i
ny) say ti, 1 ≤ i ≤ n then the

Hamming n distance between x and y is the n-tuple given by (t1,
t2, ..., tn) where any tj is the usual Hamming distance between
(j

1x j
2x … j

nx) and (j
1y j

2y … j
ny), j = 1, 2, ..., n. We will choose

 134

that best approximated message y′ which has least number of
differences from the sent and received message y.

We illustrate this by the following example.

Example 2.2.5: Let us consider the 4-code C = C1 ∪ C2 ∪ C3 ∪
C4 where C1 = C (4, 2), C2 = C(6, 3), C3 = C (6,3) and C4 = C
(5,2) with generator 4-matrix

G = G1 ∪ G2 ∪ G3 ∪ G4 with

1

1 0 1 1
G

0 1 0 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,

G2 =
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,

3

1 0 0 1 0 0
G 0 1 0 0 1 0

0 0 1 0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

and

4

1 0 1 1 0
G

0 1 0 1 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

.

Now the 4-codes are the collection of 4-code words

C = C1 ∪ C2 ∪ C3 ∪ C4
= {(0 0 0 0), (1 0 1 1), (0 1 0 1), (1 1 1 0)} ∪ {(0 0 0 0 0 0),

(1 0 0 0 0 1), (0 1 0 0 1 0), (0 0 1 1 0 0), (1 1 0 0 1 1),
(1 0 1 1 0 1), (0 1 1 1 1 0), (1 1 1 1 1 1)} ∪ {(0 0 0 0 0 0),
(1 0 0 1 0 0), (0 1 0 0 1 0), (0 0 1 0 0 1), (1 1 0 1 1 0),
(1 0 1 1 0 1), (1 1 1 1 1 1) (0 1 1 0 1 1)} ∪ {(0 0 0 0 0),
(1 0 1 1 0), (0 1 0 1 1), (1 1 1 0 1)}.

 135

Any 4-code word x = x1 ∪ x2 ∪ x3 ∪ x4, where xi ∈ Ci, i =
1, 2, 3, 4. Now C = C1 ∪ C2 ∪ C3 ∪ C4 is a 4-subspace of the 4-
vector space V = 4

2Z ∪ 6
2Z ∪ 6

2Z ∪ 5
2Z i.e., C ≅ 2

2Z ∪ 3
2Z ∪

3
2Z ∪ 2

2Z . Clearly all the four subspaces 2
2Z , 3

2Z , 3
2Z and 2

2Z
are distinct as Ci ≠ Cj; i ≠ j; 1 ≤ i, j ≤ 4.

Suppose we have received the message y = (1 1 1 1) ∪ (1 1
1 1 0 0) ∪ (0 1 1 1 1 1) ∪ (1 1 1 1 1) = y1 ∪ y2 ∪ y3 ∪ y4.
Clearly y ∉ C as the 4-syndrome S(y) = S(y1) ∪ S(y2) ∪ S(y3)
∪ S(y4) ≠ (0) ∪ (0) ∪ (0) ∪ (0). This is attained by using

H = H1 ∪ H2 ∪ H3 ∪ H4

=
1 1 1 0
0 1 0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

∪
0 0 1 1 0 0
0 1 0 0 1 0
1 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∪
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 0 1 0 0
1 1 0 1 0
0 1 0 0 1

⎡ ⎤
⎢ ⎥∪ ⎢ ⎥
⎢ ⎥⎣ ⎦

;

as
S(y) = HyT

= (H1 ∪ H2 ∪ H3 ∪ H4) (y1 ∪ y2 ∪ y3 ∪ y4)T
= H1y1

T ∪ H2y2
T ∪ H3y3

T ∪ H4y4
T

≠ (0) ∪ (0) ∪ (0) ∪ (0).

We get the basis of the 4-subspace C of V. Let

 136

B = {(1 0 1 1), (0 1 0 1)} ∪ {(1 0 0 0 0 1), (1 0 1 1 0 1),
 (0 1 0 0 1 0)} ∪ {(1 0 0 1 0 0), (0 1 0 0 1 0),
 (0 0 1 0 0 1)} ∪ {(1 0 1 1 0) ∪ (0 1 0 1 1)}

be a 4-basis of C ⊆ V. To find the pseudo best 4-approximation
of y relative to the 4-subspace C. Clearly y ∉ C. Let x be the
pseudo best 4-approximation to y. Then

x = {〈(1 1 1 1), (1 0 1 1)〉p (1 0 1 1) + 〈(1 1 1 1), (0 1 0 1)〉p

(0 1 0 1)} ∪ {〈(1 1 1 1 0 0), (1 0 0 0 0 1)〉p (1 0 0 0 0 1)
+ 〈(1 1 1 1 0 0〉, (1 0 1 1 0 1)〉p (1 0 1 1 0 1) + 〈(0 1 0 0 1
0), (1 1 1 1 0 0)〉p (0 1 0 0 1 0)} ∪ {〈(0 1 1 1 1 1), (1 0 0
1 0 0)〉p (1 0 0 1 0 0) + 〈(0 1 1 1 1 1), (0 1 0 0 1 0)〉p (0 1
0 0 1 0) + 〈(0 1 1 1 1 1), (0 0 1 0 0 1)〉p (0 0 1 0 0 1)} ∪
〈(1 1 1 1 1), (1 0 1 1 0)〉p (1 0 1 1 0) + 〈(1 1 1 1 1), (0 1
0 1 1)〉p (0 1 0 1 1)〉}

= {(1 0 1 1) + 0} ∪ {(1 0 0 0 0 1) + (1 0 1 1 0 1) + (0 1 0
0 1 0)} ∪ {(1 0 0 1 0 0) + 0 + 0} ∪ {(1 0 1 1 0) + (0 1 0
1 1)}

= (1 0 1 1) ∪ (0 1 1 1 1 0) ∪ (1 0 0 1 0 0) ∪ (1 1 1 0 1).

This x belong to C. Now the 4-Hamming distance is given by
(1, 3, 5, 1). Now if we {φ} is put small {φ} wish we can take
this as our sent code. Otherwise we now use a different set of
basis for the subcodes which gave the distance as 3 and 5 and
work for a better approximation. Let the set of new-basis for C
be {φ} ∪ {(1 0 0 0 0 1), (0 1 0 0 1 0), (0 0 1 1 0 0)} ∪ {(1 0 0 1
0 0), (0 0 1 0 0 1), (1 1 0 1 1 0)} ∪ {φ}. As the differences
hamming distance between the x1 and y1 is 1 and that of x4 and
y4 be 1. The new pseudo best 4-approximated code is

z = (1 0 1 1) ∪ {〈(1 1 1 1 0 0) (1 0 0 0 0 1)〉p (1 0 0 0 0 1) +

〈(1 1 1 1 0 0), (0 1 0 0 1 0)〉p (0 1 0 0 1 0) + 〈(1 1 1 1 0
0), (0 0 1 1 0 0)〉p (0 0 1 1 0 0)} ∪ {〈(0 1 1 1 1 1) (1 0 0
1 0 0)〉p (1 0 0 1 0 0) + 〈(0 1 1 1 1 1), (0 0 1 0 0 1)〉p (0 0
1 0 0 1) + 〈(0 1 1 1 1 1), (1 1 0 1 1 0)〉p (1 1 0 1 1 0)〉 ∪
{(1 1 1 0 1)}

 137

= (1 0 1 1) ∪ {(1 0 0 0 0 1) + (0 1 0 0 1 0) + 0} ∪ {(1 0 0
1 0 0) + 0 + (1 1 0 1 1 0)} ∪ (1 1 1 0 1)

= (1 0 1 1) ∪ (1 1 0 0 1 1) ∪ (0 1 0 0 1 0) ∪ (1 1 1 0 1).

Now the Hamming 4-distance between the received vector and z
is (1, 4, 3, 1). Clearly z ∈ C. Now one can take this as the
received vector z or y, some may prefer z to y and others may
prefer y to z.

Now we have seen the methods of finding, detecting error
and correcting it by finding the pseudo best n-approximations.

The main use of pseudo best n-approximation than finding
the correct code by the n-coset method is by the n-coset leader
method we would get only one solution but in case of pseudo
best n-approximations we can find for the closest solution as
close to the received message by both varying the n-basis or the
very pseudo dot product used in the construction of the pseudo
vector space. So we have choice to choose the pseudo best
approximated message when the received message is erroneous.

We have mainly used these n-codes to construct the new
class Periyar linear codes. The n-codes will find their
applications in computers, in successfully sending the message
to satellites in cryptography and so on. These n-codes can also
used as the data storage matrices. We as a last class of n-codes
define the new notion of false n-code (n ≥ 2).

2.3 False n-matrix and Pseudo False n-matrix

We define the new notion of false n-matrix and m-pseudo false
n-matrix (m < n). This is mainly introduced for the sake of both
defining the 1-pseudo false generator n-matrix, m-pseudo false
generator n-matrix in case of generator matrices of these special
codes. Also for defining the 1-pseudo false parity check n-
matrix, m-pseudo false parity check n-matrix (m < n) and the
notion of false parity check matrix.

DEFINITION 2.3.1: Let M = M1 ∪ M2 ∪ … ∪ Mn if all of them
are equal i.e. M1 = M2 = M3 = … = Mn then we call M to be a
false n-matrix. Mi can be a square matrix or a rectangular

 138

matrix. If each of the matrix Mi is a square matrix then we call
M a false square n-matrix. If each of the matrix Mi is a
rectangular matrix then we call M to be a false rectangular n-
matrix. Now when n = 2 we get the false bimatrix, when n = 3
we get the false trimatrix for n ≥ 4 we get the false n-matrix.

Now we proceed on to define the notion of 1-pseudo false n-
matrix.

DEFINITION 2.3.2: Let M = M1 ∪ M2 ∪ … ∪ Mi ∪ … ∪ Mn be
a union of n(n ≥ 3) matrices if M1 = M2 = … = Mi–1 = Mi+1 = …
= Mn and Mi alone distinct in this collection then we call M to
be a 1-pseudo false n-matrix. If n = 2 we get the usual bimatrix.
If n = 3 we get the 1-pseudo false trimatrix, for n ≥ 4 we have 1-
pseudo false n-matrix. If all the n matrices M1, M2, …, Mi-1, Mi,
Mi+1, …, Mn are m × m square matrices then we call M to be a
1-pseudo false n, m × m square matrix. If all the n-matrices M1,
M2, …, Mi–1, Mi, Mi+1, …, Mn are t × s rectangular matrices then
we call M to be a 1-pseudo false t × s rectangular n-matrix.

If all the matrices M1, …, Mi-1, Mi+1, …, Mn are m × m
square matrices and Mi a t × t square matrix (t ≠ s) then we call
M to be a 1-pseudo false mixed square n-matrix.

If all the matrices M1, M2, …, Mi–1, Mi+1, …, Mn are
rectangular s × t matrices and Mi is a p × q rectangular matrix
then we call M to be a 1-pseudo false mixed rectangular n-
matrices.

Now we illustrate them by simple examples.

Example 2.3.1: Let M = M1 ∪ M2 ∪ M3 ∪ M4 ∪ M5 where

1

3 0 1 2
2 1 8 9

M
1 6 5 1
0 7 2 5

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥−
⎢ ⎥
⎣ ⎦

M2 = M3 = M5

and

 139

4

5 1 2 3
4 5 6 7

M
8 9 0 1
2 3 4 5

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

Clearly M is a 1-pseudo false square 5-matrix.

Example 2.3.2: Let M = M1 ∪ M2 ∪ M3 ∪ M4 where

1

5 7 9 11 8
1 2 3 4 5

M 6 7 8 9 10
11 12 13 4 3
2 1 0 9 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= M2 = M4

and

M3 =

1 2 3 4
5 6 7 8
9 0 1 2
3 4 5 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

,

clearly M is a 1-pseudo false mixed square 4-matrix.

Example 2.3.3: Consider M = M1 ∪ M2 ∪ M3 ∪ M4 ∪ M5 ∪
M6 where

1

1 2 3 4 5 6 7
8 9 0 1 2 3 4

M
6 7 8 9 2 1 2
1 9 0 0 8 5 9

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 M2 = M3 = M4 = M5

and

 140

6

0 1 0 1 9 6 5
9 0 1 8 3 2 1

M
1 3 5 7 6 1 5
2 4 6 9 0 5 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

We see M6 is also a rectangular 4 × 7 matrix. M is a 1-pseudo 4
× 7 rectangular false 6-matrix.

Example 2.3.4: Consider the 1-pseudo false 5-matrix N = N1 ∪
N2 ∪ N3 ∪ N4 ∪ N5 where

1

3 1 1 2 3 1
0 5 1 0 5 0

N
1 0 1 2 6 3
2 1 1 4 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 = N3 = N4 = N5

and

N2 =

3 1 2
9 8 7
6 7 8
4 3 2
1 0 5
1 1 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

We see Ni, i = 1, 3, 4, 5 is the same 4 × 6 rectangular matrix

where as N2 is a 6 × 3 rectangular matrix. Hence N is a 1-
pseudo false mixed rectangular 5-matrix.

Now we give examples of 1-pseudo false mixed n-matrices.

Example 2.3.5: Consider the 1-pseudo false 5-matrix M = M1 ∪
M2 ∪ M3 ∪ M4 ∪ M5 where

 141

M1 = M2 = M3 = M4 =

3 9 0 1 6
0 8 1 2 7
1 7 2 3 8
1 6 3 4 9
4 5 4 5 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,

a 5 × 5 square matrix and

5

3 4 7 3 7 2
M 1 5 8 1 5 6

2 6 9 8 4 9

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 a 3 × 6 rectangular matrix.

We call M to be 1-pseudo mixed false 5-matrix.

Example 2.3.6: Let M = M1 ∪ M2 ∪ M3 ∪ M4 ∪ M5 ∪ M6 be a
1-pseudo false 6-matrix where

M2 = M3 = M4 = M5 = M6 =

3 4 1 2
9 8 7 6
1 2 3 4
5 0 1 0
7 8 1 2
9 3 0 9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

and

1

2 1 4 3
9 8 6 7

M
3 9 7 5
4 0 1 9

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 142

the 4 × 4 square matrix. Clearly M is a 1-pseudo mixed false 6-
matrix.

Now having seen all the 5 types of 1-pseudo false n-
matrices we now proceed on to define the notion of 2-pseudo
false n-matrix (n ≥ 4). We see when n = 3 we will have only
false trimatrix and the notion of 1-pseudo false trimatrix, cannot
exist i.e., we do not have the notion of 2-pseudo false trimatrix.
For 2-pseudo false trimatrix to be defined we need n ≥ 4.

DEFINITION 2.3.3: Let M = M1 ∪ M2 ∪ … ∪ Mn (n ≥ 4) be a
false matrix in which M1 = M2 = … = Mn-2 and Mn-1 = Mn. We
call M to be a 2-pseudo false n-matrix.

Before we proceed on to discuss more properties about these
class of matrices we give an example of it.

Example 2.3.7: Let M = M1 ∪ M2 ∪ M3 ∪ M4 ∪ M5 ∪ M6 ∪
M7 be a false 7-matrix.

Suppose

1

3 4 5 6 7 8 1
M 1 0 2 3 4 5 6

7 8 9 0 1 2 3

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

= M3 = M4 = M5 = M6

and

2

3 0 1 2 3
4 4 5 6 7

M 5 8 9 0 1
7 2 3 4 5
1 6 7 8 9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= M7

then we call M to be a 2-pseudo false 7-matrix.

 143

It is very important to note that in case of 2-pseudo false n
matrix n ≥ 4. We give a few subclasses of 2-pseudo false n-
matrices.

DEFINITION 2.3.4: Let M = M1 ∪ M2 ∪ … ∪ Mn be a 2-pseudo
false n-matrix, suppose M1 = M2 = … = Mn–2 be the same
square m × m matrix

11 12 1

21 22 2

1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

…
…

#
…

m

m

m m mm

a a a
a a a

a a a

and

Mn–1 = Mn

11 12 1

21 22 2

1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

…
…

#
…

m

m

m m mm

b b b
b b b

b b b

a square m × m matrix where Mi ≠ Mn–1; i = 1, 2, …, n – 2, then
we call M to be a 2-pseudo m × m square false n-matrix.

We give an example of a 2-pseudo m × m square false n-matrix.

Example 2.3.8: Let M = M1 ∪ M2 ∪ M3 ∪ M4 ∪ M5 ∪ M6
where

M1= M3 = M4 = M5 =

3 2 0 1 1
5 1 9 8 3
7 3 2 9 0
8 5 1 8 9
6 6 7 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

and

 144

M2 = M6 =

1 2 3 4 5
6 7 8 9 0
1 3 5 7 9
2 4 6 8 0
8 7 9 2 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

be 5 × 5 matrices. M is a 2-pseudo false square 6-matrix.

DEFINITION 2.3.5: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ … ∪ Gm be a
2-pseudo false M matrix if G1 = G2 = G3 = …= Gm–2 = (aij) be a
square n × n matrix and Gm-1 = Gm be a square t × t matrix (t ≠
n) then we call G to be the 2-pseudo false m-matrix to be a 2-
pseudo false mixed square m-matrix.

We illustrate this by the following example.

Example 2.3.9: Consider the 2-pseudo false 7-matrix given by
M = M1 ∪ M2 ∪ M3 ∪ M4 ∪ M5 ∪ M6 ∪ M7 where

M1 = M3 = M4 = M6 = M7 =

3 8 11 4 5
7 12 1 2 3
4 5 6 7 8
9 10 11 12 13
1 2 12 5 15

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

a 5 × 5 square matrix.

M2 = M5 =
3 1 7
1 2 3
4 5 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

be a 3 × 3 square matrix. We call M to be a 2-pseudo false
mixed square 7-matrix.

 145

Now we proceed on to define the notion of 2-pseudo false
rectangular n-matrix.

DEFINITION 2.3.6: Let M =M1 ∪ M2 ∪ … ∪ Mn be a 2-pseudo
false n-matrix. We call M to be a 2-pseudo false s × t
rectangular n-matrix if M1 = M2 =…= Mn-2 = (aij), 1 ≤ i ≤ s and
1 ≤ j ≤ t and Mn–1= Mn–2 = (bij); 1 ≤ i ≤ s and 1 ≤ j ≤ t; aij ≠ bij.

We now illustrate this by a simple example.

Example 2.3.10: Let M = M1 ∪ M2 ∪ M3 ∪ M4 ∪ M5 where

M1 = M3 = M5 =

3 0 1 2 3 4
1 5 6 7 8 9
2 1 1 0 2 2
5 3 0 4 0 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

be a 4 × 6 rectangular matrix and

M2 = M4 =

1 5 9 3 7 1
2 6 0 4 8 2
3 7 1 5 9 3
4 8 2 6 0 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

a 4 × 6 rectangular matrix. We call M to be a 2-pseudo false 4 ×
6 rectangular 5- matrix.

Now we proceed on to define the notion of 2-pseudo false
mixed rectangular 5-matrix.

DEFINITION 2.3.7: Consider the 2-pseudo false m-matrix N =
N1 ∪ N2 ∪ N3 ∪ … ∪ Nm (m ≥ 4). We say N is a 2-pseudo false
mixed rectangular m-matrix if M1 =M2 =…= Mm–2 = (aij) is a s
× t rectangular matrix s ≠ t and 1 ≤ i ≤ s and 1 ≤ j ≤ t and Mm-1
= Mm = (bij), a p × q rectangular matrix p ≠ q and p ≠ s (or t ≠
q).

 146

Now we illustrate this by the following example.

Example 2.3.11: Let M = M1 ∪ M2 ∪ M3 ∪ M4 ∪ M5 ∪ M6 ∪
M7 ∪ M8 be a 2-pseudo false 8-matrix.

M1 = M2 = M4 = M5 = M6 = M8 =
2 6 3 4 1 2 3
0 1 2 3 4 5 6
7 8 9 0 1 3 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

be a 3 × 7 matrix. Let

M3 = M7 =

3 1 3 1 5 9
4 2 5 2 6 0
5 0 2 3 7 1
6 1 8 4 8 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

a 4 × 6 rectangular matrix. M is a 2-pseudo mixed rectangular
false 8-matrix.

Now we proceed on to define the notion of 2-pseudo mixed
false n-matrix.

DEFINITION 2.3.8: Let M = M1 ∪ M2 ∪ M3 ∪ … ∪ Mn be a 2-
pseudo false n-matrix. If M1 = M2 = … = Mn-2 be a rectangular
(or square) p × q (t × t) matrix and Mn-1 = Mn be the square (or
rectangular) t × t (or p × q) matrix, then we define M to be a 2-
pseudo false mixed n-matrix. Here ‘or’ is used in the mutually
exclusive sense.

We now illustrate this by the following example.

Example 2.3.12: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 be a 2-
pseudo false 5-matrix where

 147

G1 = G3 = G5 =

1 3 4 5 6 7 8
2 9 8 7 6 5 4
3 2 3 2 1 0 6
4 1 0 1 5 2 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

is a 4 × 7 matrix and

G2 = Gn =

3 4 5 6
7 8 9 0
1 2 3 4
0 1 9 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

is a 4 × 4 square matrix. Hence G is a 2-pseudo false mixed 5-
matrix.

Example 2.3.13: Let P = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5 ∪ P6 ∪ P7 be a
2-pseudo false 7-matrix. Here

P1 = P3 = P4 = P5 = P6 =

1 2 3 4 5
6 7 8 9 10

11 12 1 3 14
15 7 14 10 1
6 5 4 3 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

is a 5 × 5 square matrix and

P2 = P7 =
1 4 7 0 15 3
2 5 8 1 7 18
3 6 9 10 8 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

is a 3 × 6 matrix. Thus P is a 2-pseudo false mixed 7-matrix.

 148

Now we proceed on to define the notion of 3-pseudo false n-
matrix n ≥ 6. We see when n = 3 (or 4 and 5) we can get only a
1-pseudo false matrix (or a two pseudo false matrix)
respectively. For n = 4 we cannot have a 3-pseudo false matrix
for it will turn out to be a 1-pseudo false matrix.

Thus for one to define even the notion of 3-pseudo false n-
matrix we need n ≥ 6.

DEFINITION 2.3.9: Let M = M1 ∪ M2 ∪ … ∪ Mn be a pseudo
false n-matrix (n ≥ 6) where M1 = M2 = … = Mn–3 = (aij) = A, a
matrix and Mn–2 = Mn–1 = Mn = B with A ≠ B. Then we call M to
be a 3-pseudo false n-matrix. If in a 3-pseudo false n-matrix M
both A and B are m × m square matrices then we call M to be a
3-pseudo false square n-matrix. If in the 3-pseudo false n-matrix
M both A and B happen to be a p × q rectangular matrices then
we call M to be a 3-pseudo false rectangular n-matrix.

If in the 3-pseudo false n-matrix M = M1 ∪ M2 ∪ … ∪ Mn,
A = M1 = M2 = … = Mn-3 happen to be a m × m square matrix
and B = Mn–2 = Mn–1 = Mn be a t × t square matrix (m ≠ t) then
we call M to be a 3-pseudo mixed square false n-matrix. If in
the 3-pseudo false n-matrix M = M1 ∪ M2 ∪ … ∪ Mn, M1 = M2
= … = Mn–3 = A be a m × m square matrix (or a t × s
rectangular matrix) and Mn–2 = Mn–1 = Mn = B be a p × q
rectangular matrix (or a s × s square matrix) then we call M to
be a 3-pseudo false mixed n-matrix.

Now we will illustrate this by the following examples.

Example 2.3.14: Let M = M1 ∪ M2 ∪ … ∪ M8 be a 3-pseudo
false 8-matrix where

M1 = M3 = M5 = M7 = M8 =
3 7 1 5 8 10
1 2 3 4 5 6
7 8 9 10 11 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

and

 149

M2 = M4 = M6 =
1 2 3 4 5 6
7 8 9 0 1 2
3 4 5 6 7 8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

where both the matrices are 3 × 6 rectangular matrices. Clearly
M is a 3-pseudo rectangular false 8-matrix.

Now we proceed on to give an example of a 3-pseudo
square false n-matrix.

Example 2.3.15: Let M = M1 ∪ M2 ∪ M3 ∪ … ∪ M7 be a 3-
pseudo false 7-matrix, where

M2 = M3 = M4 = M7 =

3 1 5 9
1 2 6 0
5 3 7 1
6 4 8 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

be 4 × 4 matrix and

M1 = M5 = M6 =

1 2 3 4
5 6 7 8
9 0 1 2
3 4 5 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

a 4 × 4 square matrix.
We see M is a 3-pseudo square false 7-matrix.
Now we give an example of a 3-pseudo mixed square false

n-matrix.

Example 2.3.16: Let M = M1 ∪ M2 ∪ M3 ∪ … ∪ M6 be a 3-
pseudo mixed rectangular matrix where

M1 = M2 = M3 =

1 5 9 3 7 1
2 6 0 4 8 2
3 7 1 5 9 3
4 8 2 6 0 4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 150

and

M4 = M5 = M6 =

1 2 3 4 5
6 7 8 9 0
1 2 3 4 6
7 8 9 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

Clearly one set of matrices is a 4 × 6 rectangular matrix where
as another set of matrices is a 4 × 5 rectangular matrices. Thus
M is a 3-pseudo mixed rectangular false 6-matrix.

Example 2.3.17: Let M = M1 ∪ M2 ∪ M3 ∪ … ∪ M8 where

M1 = M2 = M5 = M6 = M8 =

1 5 6 7
2 8 9 0
3 1 2 3
4 5 6 7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

and

M3 = M4 = M7 =

4 3 2 1 9
6 7 8 9 0
1 3 5 7 4
2 4 6 8 5
1 0 8 7 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

We see M is a 3-pseudo mixed square false 8-matrix. Now we
present an example of a 3-pseudo mixed false n-matrix.

Example 2.3.18: Let M = M1 ∪ M2 ∪ M3 ∪ … ∪ M9 be a 3-
pseudo 9 matrix where

1 2 3 4 5 6 7
8 9 10 3 11 12 13
3 14 15 6 16 8 9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 = M1 = M2 =

 151

M4 = M5 = M7 = M8

and

M3 = M6 = M9 =

3 4 5 6
1 2 3 4
5 0 1 8
1 8 9 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

a 4 × 4 square matrix. M is a 3-pseudo mixed false 9-matrix.

Example 2.3.19: Let M = M1 ∪ M2 ∪ M3 ∪ … ∪ M7 where

M1 = M3 = M5 = M7 =

1 2 3 4
5 8 11 1
6 9 2 15
7 10 5 8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

and

M2 = M4 = M6 =
1 4 5 6 7 8
2 9 10 1 2 3
3 4 5 6 7 11

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

a 3 × 6 rectangular matrix. M is a 3-pseudo mixed false 7-
matrix.

Now we proceed on to define the notion of m-pseudo false
n-matrix m < n and (n ≥ 2m) m > 3.

DEFINITION 2.3.10: Let M = M1 ∪ M2 ∪ … ∪ Mn be a pseudo
false n-matrix we call M to be a m-pseudo false n-matrix (n ≥
2m and m ≥ 4) if M1 = M2 = … = Mm = A and Mm+1 = Mm+2 =
… = Mn = B with A ≠ B. If in the m-pseudo false n-matrix (n ≥
2m and m ≥ 4) M = M1 ∪ M2 ∪ … ∪ Mn if we have M1 = M2 =
… = Mm = A be a t × t square matrix and Mm+1 = Mm+2 = … =

 152

Mn = B be a t × t square matrix but A ≠ B then we define M to
be a m-pseudo t × t square false n-matrix.

We see if the conditions on m and n are not put we may not

have the definition to be true.
Now we proceed on to give an illustration of the same.

Example 2.3.20: Let M = M1 ∪ M2 ∪ … ∪ M9 be a false 9-
matrix where M1 = M3 = M5 = M7 = M9 = A and M2 = M4 = M6
= M8 = B (A ≠ B). We see M is a 4-pseudo false 9-matrix.

The following observations are important. (1) when the
false n-matrix is a false 9-matrix we cannot have 5-pseudo 9-
matrix to be defined we can have only 4-pseudo 9-matrix or 3-
pseudo 9-matrix or 2-pseudo 9-matrix or 1-pseudo 9-matrix to
be defined. Clearly 9 > 2.4 here n = 9 and m = 4.

Example 2.3.21: Let us consider M = M1 ∪ M2 ∪ … ∪ M12 be
a pseudo false 12-matrix. We see M can only be a maximum 6-
pseudo false 12-matrix however it can be a m-pseudo false 12-
matrix m = 1, 2, 3, 4, 5 and 6. Clearly M is not a 7-pseudo false
12-matrix. We see if M1 = M3 = M5 = M7 = M9 = M11 = A and
M2 = M4 = M6 = M8 = M10 = M12 = B (A ≠ B) then M is a 6-
pseudo false 12-matrix.

Now we proceed on to define various classes of m-pseudo
false n-matrices (n ≥ 2m, m < n).

DEFINITION 2.3.11: Let M = M1 ∪ M2 ∪ … ∪ Mn (n ≥ 2m and
m < n) be a m-pseudo false n-matrix. If M1 = M2 = M5 = … =
Mm = A where A is a t × t square matrix and Mm+1 = Mm+2 = …
= Mn = B, B also a t × t square matrix with A ≠ B then we call
M to be a m-pseudo square false n-matrix. If on the other hand
in M1 = M2 = … = Mm = A, A happens to be a p × q
rectangular matrix (p ≠ q) and Mm+1 = Mm+2 = … = Mn = B, (A
≠ B) but B is also a p × q rectangular matrix than we call M to
be a m-pseudo rectangular false n-matrix. Suppose we have M1
= M2 = … = Mm = A to be a p × p square matrix and Mm+1 =
Mm+2 = … = Mn = B to be a t × t square matrix (p ≠ t) then we
call M to be a m-pseudo mixed square false n-matrix if we have
in the false n matrix M = M1 ∪ M2 ∪ … ∪ Mn, M1 = M2 = … =

 153

Mm = A, A a p × q rectangular matrix and Mm+1 = Mm+2 = … =
Mn = B, a t × s rectangular matrix p ≠ t (or q ≠ s) (or not in the
mutually exclusive sense) then we define M to be a m-pseudo
mixed rectangular false n-matrix.

Let M = M1 ∪ M2 ∪ … ∪ Mn be a m-pseudo false n-matrix
we say M is a m-pseudo mixed false n-matrix if M = M1 ∪ M2 ∪
… ∪ Mm = A is a p × p square matrix (or a t × s t ≠ s a
rectangular matrix) and Mm+1 = Mm+2 = … = Mn = B is a t × s
rectangular (or a p × p square matrix) then we call M to be a
m-pseudo mixed false n-matrix.

Now we illustrate these by the following examples:-

Example 2.3.22: Let M = M1 ∪ M2 ∪ … ∪ M10 be 4-pseudo
false matrix where

M1 = M3 = M4 = M6 = M7 = M8 =

3 1 2 3
1 4 5 6
2 7 8 9
5 0 1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

a 4 × 4 square matrix and

M2 = M5 = M9 = M10 =

0 9 8 7
6 5 4 3
2 1 0 1
2 3 4 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

a 4 × 4 square matrix. Clearly M is a 4-pseudo false to matrix
which is a 4-pseudo square false 10 matrix.

Example 2.3.23: Let M = M1 ∪ M2 ∪ M3 ∪ … ∪ M12 be a 6-
pseudo false 12-matrix where

 154

M1 = M3 = M5 = M7 = M9 = M11 =
1 4 5 6 7 8 9
2 9 7 5 3 1 8
3 8 6 4 2 0 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

be a 3 × 7 rectangular matrix and

M2 = M4 = M6 = M8 = M10 = M12 =
9 6 5 4 3 2 1
8 1 3 5 7 9 8
7 2 4 6 8 0 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

be a 3 × 7 rectangular matrix. We see M is a 6-pseudo
rectangular false 12-matrix.

We see a twelve matrix can maximum be only a 6-pseudo
false 12-matrix and can never be a 7 or 8 or 9 or 10 or 11
pseudo false 12-matrix.

Example 2.3.24: Consider the false n-matrix M = M1 ∪ M2 ∪
… ∪ M15 where

M1 = M2 = M3 = M4 = M5 = M6 = M15 =

3 8 9 0
4 1 2 3
5 4 5 6
6 7 8 9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

be a 4 × 4 square matrix and

M7 = M8 = M9 = M10 = M11 = M12 = M13 = M14 =
3 2 1
0 5 6
9 8 7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

a 3 × 3 square matrix. Clearly M is a 7-pseudo mixed square
false 15-matrix.

 155

Example 2.3.25: Suppose M = M1 ∪ M2 ∪ M3 ∪ … ∪ M17 be a
false pseudo 17-matrix where

M1 = M2 = M6 = M7 = M8 = M9 = M10 = M17

=

1 5 6 7 8 9 0
2 1 2 3 4 5 6
3 7 8 9 0 11 1
4 12 6 8 4 3 10

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

a 4 × 7 rectangular matrix and

M3 = M4 = M5 = M11 = M12 = M13 = M14 = M15 = M16

=

3 1 2
5 9 0
6 4 2
7 1 9
8 3 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 be a 5 × 3 rectangular matrix, then M is a 8-pseudo mixed
rectangular false 17-matrix.

Example 2.3.26: Let us consider the 18-matrix M = M1 ∪ M2 ∪
M3 ∪ … ∪ M18 where

M1 = M2 = M3 = … = M8 = M9 =

1 6 7 8 9
2 10 9 8 7
3 6 5 4 3
4 2 1 11 9
5 8 7 6 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

a 5 × 5 square matrix and

 156

M10 = M11 = … = M18 =

3 0 1 2 3 4 5 6 7
1 8 9 1 9 2 8 7 3
4 4 5 9 8 7 6 5 4
5 3 2 1 4 5 6 7 8
6 0 1 3 0 7 0 9 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

a 5 × 9 rectangular matrix. We see M is a 9-pseudo mixed false
18-matrix.

Example 2.3.27: Let M = M1 ∪ M2 ∪ … ∪ M9 be a false 9-
matrix, where

M1 = M3 = M5 = M7 = M9 =

1 0 3 4 8 9
2 5 1 0 2 1
3 4 8 7 6 0
4 1 2 3 4 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

be a 4 × 6 rectangular matrix and

M2 = M4 = M6 = M8 =
3 6 1
4 7 0
5 10 9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

be a a 3 × 3 square matrix. M is a 4-pseudo mixed false 9-
matrix. Clearly M is not a 5-pseudo mixed false 9-matrix.

2.4 False n-codes (n ≥ 2)

In this section we introduce yet another new class of codes
called false n-codes which can find its applications in
cryptography. If false n-codes are used it is very difficult to
hack the secrets. They can also be used in the place of codes
with ARQ protocols.

 157

DEFINITION 2.4.1: Let C = C1 ∪ C2 be a bicode if C1 = C2 then
we call C is a false bicode.

Example 2.4.1: Let C = C1 ∪ C2 where C1 is generated by

1

1 0 0 0 0 1
G 0 1 0 0 1 0

0 0 1 1 0 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

and C2 generated by

2

1 0 0 0 0 1
G 0 1 0 0 1 0

0 0 1 1 0 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

.

i.e. C = {(0 0 0 0 0 0), (1 0 0 0 0 1), (0 1 0 0 1 0), (0 0 1 1 0 0),
(1 1 0 0 1 1), (1 0 1 1 0 1), (0 1 1 1 1 0), (1 1 1 1 1 1)} ∪
{(0 0 0 0 0 0), (1 0 0 0 0 1), (0 1 0 0 1 0), (0 0 1 1 0 0),
(1 1 0 0 1 1); (1 0 1 1 0 1), (0 1 1 1 1 0), (1 1 1 1 1 1)}.

This false bicode has the following main advantages or
purposes.

1. If they want ARQ messages they can use false bicode so
that when the message is received if both vary one can
take the better of the two or at times one may be a correct
message and other a wrong message.

2. Also when they are not in a position to get or transform
the channel as ARQ protocols then also these false
bicodes may be helpful.

3. When false codes are used in crypto system it can easily
mislead the hacker thereby maintaining security.

We will however illustrate this by one simple example.

Example 2.4.2: Let C = C1 ∪ C1 be a false bicode where C1 = C
(7.3) code C1 is generated by the generator matrix

 158

1

1 0 0 1 0 1 0
G 0 1 0 0 1 0 1

0 0 1 1 0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

.

The false bicode is given by
C = {(0 0 0 0 0 0 0), (1 0 0 1 0 1 0), (0 1 0 0 1 0 1),

(0 0 1 1 0 0 1), (1 1 0 1 1 1 1), (1 0 1 0 0 1 1),
(0 1 1 1 1 0 0), (1 1 1 0 1 1 0)} ∪ {(0 0 0 0 0 0 0),
(1 0 0 1 0 1 0), (0 1 0 0 1 0 1), (0 0 1 1 0 0 1),
(1 1 0 1 1 1 1), (1 0 1 0 0 1 1), (0 1 1 1 1 0 0),
(1 1 1 0 1 1 0)}.

Suppose some message x = (x1 x2 x3 ... x7) ∪ (x1 x2 x3 ... x7) ∈ C
the false bicode is sent and if y = (1 1 1 1 1 1 1) ∪ (1 1 0 1 1 1
1) is the received message, we see (1 1 1 1 1 1 1) ∉ C1 only (1 1
0 1 1 1 1) ∈ C1 so the correct message is taken as (1 1 0 1 1 1 1)
or one assumes (1 1 0 1 1 1 1) to be the sent message.

This false bicode save the user from unnecessarily spending
money over sending the message or asking them to send the
message several times that too when the ARQ protocols are
impossible. We give another important use of these false
bicodes. If the sender wants to maintain some confidentiality he
would send from the false bicode C = C1 ∪ C1 a bicode word x
∪ y ∈ C where the sender knows only one message is relevant
and the other is only to misguide the person who would try to
know the confidentiality of the message. He would be certainly
mislead. Thus the confidentiality can be preserved.

Now we proceed onto to define false tricode and false n-
code.

DEFINITION 2.4.2: Let C = C1 ∪ C2 ∪ C3 be a tricode where C1
= C2 = C3 then we call the tricode to be a false tricode.

We illustrate this by the following example.

Example 2.4.3: Let C = C1 ∪ C2 ∪ C3 be a tricode where C1 =
C2 = C3 = C (7, 4) a linear code i.e. the generator trimatrix of C
is

 159

G = G1 ∪ G2 ∪ G3

=

1 0 0 0 1 0 1 1 0 0 0 1 0 1
0 1 0 0 1 1 0 0 1 0 0 1 1 0
0 0 1 0 0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0 1 0 1 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∪ ∪
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 0 1
0 0 0 1 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

The false tricode
C = {(0 0 0 0 0 0 0), (1 0 0 0 1 0 1), (0 1 0 0 1 1 0),

(0 0 1 0 0 0 1), (0 0 0 1 0 1 1), (1 1 0 0 0 1 1),
(0 1 1 0 1 1 1), (0 0 1 1 0 1 0), (1 0 1 0 1 0 0),
(0 1 0 1 1 1 1), (1 0 0 1 1 1 0), (1 1 1 0 0 1 0),
(0 1 1 1 1 0 0), (1 1 0 1 0 0 0), (1 0 1 1 0 1 0),
(1 1 1 1 0 0 1)} ∪ {(0 0 0 0 0 0 0), (1 0 0 0 1 0 1),
(0 1 0 0 1 1 0), (0 0 1 0 0 0 1), (0 0 0 1 0 1 1),
(1 1 0 0 0 1 1), (0 1 1 0 1 1 1), (0 0 1 1 0 1 0),
(1 0 1 0 1 0 0), (0 1 0 1 1 1 1), (1 0 0 1 1 1 0),
(1 1 1 0 0 1 0), (0 1 1 1 1 0 0), (1 1 0 1 0 0 0),
(1 0 1 1 0 1 0), (1 1 1 1 0 0 1)} ∪ { (0 0 0 0 0 0 0),
(1 0 0 0 1 0 1), (0 1 0 0 1 1 0), (0 0 1 0 0 0 1),
(0 0 0 1 0 1 1), (1 1 0 0 0 1 1), (0 1 1 0 1 1 1),
(0 0 1 1 0 1 0), (1 0 1 0 1 0 0), (0 1 0 1 1 1 1 1),
(1 0 0 1 1 1 0), (1 1 1 0 0 1 0), (0 1 1 1 1 0 0),
(1 1 0 1 0 0 0), (1 0 1 1 0 1 0), (1 1 1 1 0 0 1)}.

Any x, y, z ∈ C is of the form x = x1 ∪ x2 ∪ x3, y = y1 ∪ y2 ∪
y3, z = z1 ∪ z2 ∪ z3, zi, xi, yi ∈ Ci, 1 ≤ i ≤ 3.

Now if x is sent and y is received where y = (1 1 1 1 0 0 1)
∪ (1 1 1 0 0 1 0) ∪ (0 1 1 1 1 0 0) = y1 ∪ y2 ∪ y3 and if the
messages in x = x1 ∪ x2 ∪ x3 only x1 is aimed to be the code to

 160

be sent or used where as x2 and x3 are used to mislead the
hacker then while decoding this tricode the receiver will not
bother about y2 and y3 he will only decode y1. Thus when one
uses such trick the data will be protected to some extent. If we
increase the tricode from 3 to an arbitrarily large number say n
then even pitching at the truly sent message would be
impossible. To this end we define the false n code.

DEFINITION 2.4.3: A code C = C1 ∪ C2 ∪ ... ∪ Cn where C is
an n-code (n ≥ 4) but in which C1 = C2 = C3 = ... = Cn then we
call C to be a false n-code.

We just give an example of a false n-code.

Example 2.4.4: Let C = C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 where each Ci
is a linear code generated by the generator matrix

i

1 0 0 0 1 1 0 0
0 1 0 0 0 1 1 0

G
0 0 1 0 0 0 1 1
0 0 0 1 0 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

i = 1,2 ..., 5. The 5-code

C = C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 (C1 = C2 = 3 = C4 = C5)

= {(0 0 0 0 0 0 0 0), (1 0 0 0 1 1 0 0), (0 1 0 0 0 1 1 0),
(0 0 1 0 0 0 1 1), (0 0 0 1 0 1 0 1), (1 1 0 0 1 0 1 0),
(0 1 1 0 0 1 0 1), (0 0 1 1 0 1 1 0), (1 0 1 0 1 1 1 1),
(0 1 0 1 0 0 1 1), (1 0 0 1 1 0 0 1), (1 1 1 0 1 0 0 1),
(0 1 1 1 0 0 0 0), (1 1 0 1 1 1 1 1), (1 0 1 1 1 0 1 0),
(1 1 1 1 1 1 0 0)} ∪ {(0 0 0 0 0 0 0 0), (1 0 0 0 1 1 0 0),
(0 1 0 0 0 1 1 0), (0 0 1 0 0 0 1 1), (0 0 0 1 0 1 0 1),
(1 1 0 0 1 0 1 0), (0 1 1 0 0 1 0 1), (0 0 1 1 0 1 1 0),
(1 0 1 0 1 0 1 1), (0 1 0 1 0 0 1 1), (1 0 0 1 1 0 0 1),
(1 1 1 0 1 0 0 1), (0 1 1 1 0 0 0 0), (1 1 0 1 1 1 1 1),
(1 0 1 1 1 0 0 0), (1 1 1 1 1 1 0 0)} ∪ {(0 0 0 0 0 0 0 0),
(1 0 0 0 1 1 0 0), (0 1 0 0 0 1 1 0), (0 0 1 0 0 0 1 1),
(0 0 0 1 0 1 0 1), (1 1 0 0 1 0 1 0), (0 1 1 0 0 1 0 1),

 161

(0 0 1 1 0 1 1 0), (1 0 1 0 1 0 1 1), (0 1 0 1 0 0 1 1),
(1 0 0 1 1 0 0 1), (1 1 1 0 1 0 0 1), (0 1 1 1 0 0 0 0),
(1 1 0 1 1 1 1 1), (1 0 1 1 1 0 0 0), (1 1 1 1 1 1 0 0)} ∪
{(0 0 0 0 0 0 0 0), (1 0 0 0 1 1 0 0), (0 1 0 0 0 1 1 0),
(0 0 1 0 0 0 1 1), (0 0 0 1 0 1 0 1), (1 1 0 0 1 0 1 0),
(0 1 1 0 0 1 0 1), (0 0 1 1 0 1 1 0), (1 0 1 0 1 0 1 1),
(0 1 0 1 0 0 1 1), (1 0 0 1 1 0 0 1), (1 1 1 0 1 0 0 1),
(0 1 1 1 0 0 0 0), (1 1 0 1 1 1 1 1), (1 0 1 1 1 0 0 0),
(1 1 1 1 1 1 0 0)} ∪ {(0 0 0 0 0 0 0 0), (1 0 0 0 1 1 0 0),
(0 1 0 0 0 1 1 0), (0 0 1 0 0 0 1 1), (0 0 0 1 0 1 0 1),
(1 1 0 0 1 0 1 0), (0 1 1 0 0 1 0 1), (0 0 1 1 0 1 1 0),
(1 0 1 0 1 0 1 1), (0 1 0 1 0 0 1 1), (1 0 0 1 1 0 0 1),
(1 1 1 0 1 0 0 1), (0 1 1 1 0 0 0 0), (1 1 0 1 1 1 1 1),
(1 0 1 1 1 0 0 0), (1 1 1 1 1 1 1 0 0)}.

Note if x ∈ C then x = x1 ∪ x2 ∪ x3 ∪ x4 ∪ x5 where xi ∈ C1, 1
≤ i ≤ 5; each of the xi’s can be distinct or xi’s can be the same.
For instance let x = (0 1 1 1 0 0 0 0) ∪ (1 1 0 1 1 1 1 1) ∪ (1 0 1
1 1 0 0 0) ∪ (1 1 1 1 1 1 0 0) ∪ (1 0 0 0 1 1 0 0) we see each of
the elements in x is distinct.

Let y = (0 1 1 1 0 0 0 0) ∪ (0 1 1 1 0 0 0 0) ∪ (0 1 1 1 0 0 0
0) ∪ (0 1 1 1 0 0 0 0), (0 1 1 1 0 0 0 0) ∈ C1 we see each of the
elements in y are one and the same. Both x, y ∈ C = C1 ∪ C1 ∪
C1 ∪ C1 ∪ C1.

Now we proceed onto give the uses.

When one wants to use confidentiality in sending the message
so that the intruder should not break the message in such cases
we can use these false n-codes. That is in the false n-code x = x1
∪ x2 ∪ ... ∪ xn he can enclose the message say in one or more
of the code and just sent the code x when he receives the
message he need not decode or even verify whether the codes in
other coordinates are correct code words but just decode only
the codes which carries the message. Thus false codes play a
major role in keeping the key intact i.e. the hacker cannot hack
it. This can be ones private e-mail or any other thing in which
confidentiality is needed.

Yet another use of this false n-code is when the message is
sent and if the received message has error then they make an

 162

automatic repeat request this can be avoided instead the
message after calculating the time period they can so place the
length of the code so that we get the same message transmitted.
This can be done any desired number of times. Use of this false
n code would certainly be economically better when compared
to using the method of ARQ protocols where it is at times
impossible to capture the message after a time like photographs
by moving satellites or missiles.

Now we proceed on to define the notion of 1-pseudo false
n-code (n ≥ 3). For when n = 2 we have the 1-pseudo false
bicode coincides with the usual bicode which is not at all a false
bicode.

DEFINITION 2.4.4: Let C = C1 ∪ C2 ∪ C3 be a tricode in which
C1 = C2 and C3 is different from C1, then we define C to be a 1-
pseudo false tricode.

We illustrate this 1-pseudo false tricode by the following
example.

Example 2.4.5: Let us consider the 1-pseudo false tricode C =
C1 ∪ C2 ∪ C2 where C1 ≠ C2 generated by the pseudo false
trimatrix

G = G1 ∪ G2 ∪ G2 =

1 0 0 1 1 0 0
0 1 0 0 1 1 0
0 0 1 0 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∪
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∪
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

;

 163

The 1-pseudo false tricode

C = {(0 0 0 0 0 0 0), (1 0 0 1 1 0 0), (0 1 0 0 1 1 0),

(0 0 1 0 0 1 1), (1 1 0 1 0 1 0), (0 1 1 0 1 0 1),
(1 0 1 1 1 1 1), (1 1 1 1 0 0 1)} ∪ {(0 0 0 0 0 0),
(1 0 0 1 0 0), (0 1 0 0 1 0), (0 0 1 0 0 1), (1 1 0 1 1 0),
(0 1 1 0 1 1), (1 0 1 1 0 1), (1 1 1 1 1 1)} ∪
{(0 0 0 0 0 0), (1 0 0 1 0 0), (0 1 0 0 1 0), (0 0 1 0 0 1),
(1 1 0 1 1 0), (0 1 1 0 1 1), (1 0 1 1 0 1), (1 1 1 1 1 1)}.

Any x = x1 ∪ x2 ∪ x3 is such that x1 ∈ C1 and x2 ∈ C2, x3 ∈ C3
i.e. x = (1 0 0 1 1 0 0) ∪ (1 0 0 1 0 0) ∪ (1 1 1 1 1 1) or x = (1 1
1 1 0 0 1) ∪ (0 1 1 0 1 1) ∪ (0 1 1 0 1 1).

Now we proceed onto define 1-pseudo false n-code n > 3.

DEFINITION 2.4.5: Let C = C1 ∪ C2 ∪ ... ∪ Ci ∪ ... ∪ Cn be a
union of n number of codes (n ≥ 4). If C1 = C2 = ... = Ci-1 = Ci+1
= ... = Cn and Ci ≠ Cj if i ≠ j, j = 1, 2, 3, ..., i – 1, i + 1, ..., n
then we call C to be a 1-pseudo false n-code i.e. in the set of n
number of codes C1, C2, ..., Ci-1, Ci, Ci+1, ..., Cn only Ci is
different and all the other n-1 codes are one and the same.

Now we give an example of a 1-pseudo n-code, n > 3.

Example 2.4.6: Let C = C1 ∪ C2 ∪ C1 ∪ C1 ∪ C1 ∪ C1 be a 1-
pseudo false six code generated by the 1-pseudo false 6-matrix

G = G1 ∪ G2 ∪ G1 ∪ G1 ∪ G1 ∪ G1
where

1

1 0 1 1 0 1 1
G

0 1 0 1 1 0 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

and

2

1 0 0 1 0 0 1
G 0 1 0 1 1 1 0

0 0 1 1 0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

.

 164

The 1-pseudo false 6-code

C = {(0 0 0 0 0 0 0), (1 0 1 1 0 1 1), (0 1 0 1 1 0 1),

(1 1 1 0 1 1 0)} ∪ {(0 0 0 0 0 0 0), (1 0 0 1 0 0 1),
(0 1 0 1 1 1 0), (0 0 1 1 0 0 1), (1 1 0 0 1 1 1),
(0 1 1 0 1 1 1), (1 0 1 0 0 0 0), (1 1 1 1 1 1 0)} ∪
{(0 0 0 0 0 0 0), (1 0 1 1 0 1 1), (0 1 0 1 1 0 1),
(1 1 1 0 1 1 0)} ∪ {(0 0 0 0 0 0 0), (1 0 1 1 0 1 1),
(0 1 0 1 1 0 1), (1 1 1 0 1 1 0)} ∪ {(0 0 0 0 0 0 0),
(1 0 1 1 0 1 1), (0 1 0 1 1 0 1), (1 1 1 0 1 1 0)} ∪
{(0 0 0 0 0 0 0), (1 0 1 1 0 1 1), (0 1 0 1 1 0 1),
(1 1 1 0 1 1 0)}.

Any element x in C would be of the form x = x1 ∪ x2 ∪ x3 ∪ x4
∪ x5 ∪ x6 where x2, x1, x3, x4, x5 and x6 are of length seven but
x2 ∈ C2 and xi ∈ C1, i = 1, 3, 4, 5, 6, i.e. x = (1 0 1 1 0 1 1) ∪ (1
1 1 1 1 1 0) ∪ (0 1 0 1 1 0 1) ∪ (1 0 1 1 0 1 1) ∪ (1 1 1 0 1 1 0)
∪ (1 0 1 1 0 1 1) or if y = y1 ∪ y2 ∪ y3 ∪ y4 ∪ y5 ∪ y6 = (1 0 1 1
0 1 1) ∪ (1 0 1 0 0 0 0) ∪ (1 0 1 1 0 1 1) ∪ (1 0 1 1 0 1 1) ∪ (1
0 1 1 0 1 1) ∪ (1 0 1 1 0 1 1) i.e., all the yi are equal to (1 0 1 1
0 1 1) for i = 1, 2, 3, 4, 5, 6 and y2 = (1 0 1 0 0 0 0) ∈ C2. Note it
is interesting to mention when n = 3 we get the 1-pseudo false
tricode.

Note: It is interesting to note that if n ≥ 2m we can have
maximum only a m-pseudo false code we can never have m + r
–pseudo false n-code where r ≥ 1. Another interesting factor to
make a note of, is if n = 2m + 1 then also we can have
maximum only a m-pseudo false (2m + 1)-code. Here also we
cannot have a m + r-pseudo false (2m + 1) code r ≥ 1. This is
the very property of t-pseudo false n codes. These class of t-
pseudo false n-codes will be very useful when we want to send
2-repeated messages of different lengths we can use it to send 2-
different messages of different length when we are not in a
position to demand for ARQ protocols or when we want to send
secret message which should be kept as very confidential (n ≥
2t; t < n).

 165

Now we define yet another new class of pseudo false codes.

DEFINITION 2.4.6: Let us consider a n code C = C1 ∪ C2 ∪ …
∪ Cn where Ci = C (nr, kr); Cj = C(nj, kj) (i ≠ j and r ≠ j) and C1
= C2 = … = Ci-1 = Ci+1 = … =Cj-1 = Cj+1 = … = Cn = (np, kp) p
≠ j, p ≠ r and then we call C to be a (1, 1) pseudo false n-code, n
≥ 4.

We illustrate this by an example.

Example 2.4.7: Let us consider a 6-code C = C1 ∪ C2 ∪ C3 ∪
C4 ∪ C5 ∪ C6 where C2 is a (6, 4) code generated by G = G1 ∪
… ∪ G6 where

G2 =

1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 1 1
0 0 0 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

C5 is a (7, 3) code generated by

G5 =
1 0 0 1 1 0 0
0 1 0 0 1 1 0
0 0 1 0 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

C1, C3, C4 and C6 are (5, 2) codes generated by the generator
matrix

G1 =
1 0 1 1 0
0 1 1 0 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 = G3 = G4 = G6.

Thus the generator 6 matrix G is of the form

 166

G =
1 0 1 1 0
0 1 1 0 1
⎡ ⎤

∪⎢ ⎥
⎣ ⎦

1 0 0 0 1 0
0 1 0 0 0 1 1 0 1 1 0
0 0 1 0 1 1 0 1 1 0 1
0 0 0 1 0 1

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥∪ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

∪
1 0 0 1 1 0 0

1 0 1 1 0
0 1 0 0 1 1 0

0 1 1 0 1
0 0 1 0 1 1 1

⎡ ⎤
⎡ ⎤ ⎢ ⎥∪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

1 0 1 1 0
0 1 1 0 1
⎡ ⎤

∪⎢ ⎥
⎣ ⎦

.

C = (5, 2) ∪ (6, 4) ∪ (5, 2) ∪ (5, 2) ∪ (7, 3) ∪ (5, 2) is a (1, 1)
pseudo false 6-code given by

C = {(0 0 0 0 0), (1 0 1 1 0), (0 1 1 0 1), (1 1 0 1 1)} ∪

{(0 0 0 0 0 0), (1 0 0 0 1 0), (0 1 0 0 0 1), (0 0 1 0 1 1),
(0 0 0 1 0 1), (1 1 0 0 1 1) (0 1 1 0 1 0), (0 0 1 1 1 0),
(1 0 1 0 0 1), (0 1 0 1 0 0), (1 0 0 1 1 1), (1 1 1 0 0 0),
(0 1 1 1 1 1), (1 1 0 1 1 0), (1 0 1 1 0 0), (1 1 1 1 0 1)}
∪ {(0 0 0 0 0), (1 0 1 1 0), (0 1 1 0 1), (1 1 0 1 1)} ∪
{(0 0 0 0 0), (1 0 1 1 0), (0 1 1 0 1), (1 1 0 1 1)} ∪
{(0 0 0 0 0 0 0), (1 0 0 1 1 0 0), (0 1 0 0 1 1 0),
(0 0 1 0 1 1 1), (1 1 0 1 0 1 0), (0 1 1 0 0 0 1),
(1 0 1 1 0 1 1), (1 1 1 1 1 0 1)} ∪ {(0 0 0 0 0)
(1 0 1 1 0), (0 1 1 0 1), (1 1 0 1 1)}.

The main advantage of this code is it can be used in
transmission when one is interested in sending 3 types of
messages one a repeating one, where as the other two are just
two different messages.

 167

Another use of this code is when one wants to fool the
hacker he will not be in any position to known which of the
code in C that carries the true message so that it may be
impossible for him to hack the information, thus this will be of
immense use to a cryptologist.

Now we can like wise define any (t, t)-pseudo n-code when t =
2, n ≥ 5 and (t, t)-pseudo n-code when n ≥ 2t + 1 and t < n. This
new class of codes will be very much helpful in several places.

DEFINITION 2.4.7: Let C = C1 ∪ C2 ∪ … ∪ Cn be any false n-
code, we define C to be a (t, t)-pseudo false n-code (n ≥ 2t + 1),
t ≥ 2 if C1 = C2 = … = Ct = A; Ct+1 = Ct+2 = … = C2t = B (A ≠
B) C2t+1 = C2t+2 = … = Cn = C; where A ≠ C and B ≠ C.

We now proceed on to give an example of it and proceed on to
define new classes.

Example 2.4.8: Let C = C1 ∪ C2 ∪ … ∪ C16 be any false 16
code we define C to be a (5, 5) pseudo false 16 code (16 ≥ 10 +
1) if

C1 = C2 = … = C5 = A = C(7, 3);
C6 = C7 = … = C10 = B = C(9, 6); (A ≠ B);

and
C11 = C12 =… = C16 = D = C(7, 4);

where A ≠ B, D ≠ B and D ≠ A.

DEFINITION 2.4.8: Let C = C1 ∪ C2 ∪ … ∪ Cn be a pseudo
false n-code we call C a (t, m)-pseudo false n-code (t ≠ m) if n >
t + m + 1 and C1 = C2 = … = Ct = A, a (nt, kt) code, Ct = Ct+1 =
… = Ct+m = C(nm, km) = P, t ≠ m and Ct+m+1 = … = Cn = C(ni,
ki) = B, i ≠ t, i ≠ m and P ≠ B.

This code will also be very useful to maintain secrecy of the

message and it will be very difficult for the intruder to easily
break open the key.

Now we illustrate it by an example.

 168

Example 2.4.9: Let C = C1 ∪ C2 ∪ C3 ∪ … ∪ C19 be a (5, 8)-
pseudo false 19-code where C1 = C2 = … = C5 is a C(8, 4) code
C7 = C8 = C9 = C10 = C12 = C13 = C14 = C15 is a C(7, 3) code and
C6 = C16 = C17 = C19 is a C(6, 3) code.

Now we show a n-code communication n-channel by
figure 2.4.1.

 CHANNEL1 CHANNEL n-1

 SENDER

 CODING

 CODING

 CODING

 CODING

 CHANNEL2 CHANNEL n

 RECEIVER

 DECODING

 DECODING

 DECODING

 DECODING

.

.

.

.

.

.

FIGURE 2.4.1

 169

Chapter Three

PERIYAR LINEAR CODES

This chapter has two sections. In section one we introduce a
new class of codes called Periyar linear codes and in section two
the applications of these new classes of codes are given.

3.1 Periyar Linear Codes and their Properties

In this section for the first time we introduce the new class of
codes called Periyar Linear Codes and enumerate some of its
properties. We proceed on to define a Periyar Linear Code. The
authors to honour Periyar in his 125th birthday have named this
code in his name.

DEFINITION 3.1.1: A n-code C = C1 ∪ C2 ∪ … ∪ Cn (n ≥ 2) is
said to be a Periyar linear code (P-linear code) if it has a (ni, ki)
subcode Ci ⊆ C such that no other subcode in C is a (ni, ki)
code, i fixed. C may have a subcode with i ≠ j. Further C \/ Ci
has no (nj, kj) subcode (By subcode of C we mean any Ci of C; 1
≤ i ≤ n).

We first illustrate this by the following example.

 170

Example 3.1.1: Consider the bicode C = C1 ∪ C2 where C1 is a
(5, 3) code and C2 is a (7, 4) code. C is a Periyar linear code as
C contains a subcode C1 which is a (5, 3) and C1 does not
contain any (5, 3) code. Also C2 is a (7, 4) subcode of C. C \ C2
does not contain any (7, 4) code. Thus this bicode is a Periyar
linear code.

We cannot always say every bicode is a P-linear code to this we
give the following example.

Example 3.1.2: Consider the bicode C = C1 ∪ C2 where C1 and
C2 are both (7, 3) codes given by the parity check matrices H1
and H2 where

H1 =

1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

and

H2 =

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

C1 = {(0 0 0 0 0 0 0), (1 0 0 1 1 1 1), (0 1 0 0 1 0 0), (0 0 1 0 0 1
0), (1 1 0 1 1 0 0), (1 0 1 1 0 1 0), (0 1 1 0 1 1 0), (1 1 1 1 1 1
0)} and C2 = {(0 0 0 0 0 0 0), (1 0 0 1 0 1 1), (0 1 0 1 1 0 1), (0
0 1 0 1 1 1), (1 1 0 0 1 1 0), (0 1 1 1 0 1 0), (1 0 1 1 1 0 0), (1 1
1 0 0 0 1)}. We see both C1 and C2 are (7, 3) codes and C is a
bicode but C is not a P-linear code for we cannot find a subcode
other than (7, 3) subcodes.

We have a class of n-codes (n ≥ 2) which are Periyar linear
codes which is clear from the following.

THEOREM 3.1.1: Every n-code C = C1 ∪ C2 ∪ … ∪ Cn where
Ci is a (ni, ki) code, i = 1, 2, …, n and ni ≠ nj if i ≠ j and (or) ki ≠
kj if i ≠ j, i ≤ i, j ≤ n is a P-linear code.

 171

Proof: Clearly we see if ni ≠ nj for i ≠ j then the n-code C = C1
∪ C2 ∪ … ∪ Cn = C(n1, k1) ∪ C(n2, k2) ∪ … ∪ C(nn, kn) is such
that each Ci = C(ni, ki) is distinct from Cj = C(nj, kj). So C has
(ni, ki) subcodes hence C is a P-linear code. Here it may so
happen ki = kj even if i ≠ j. Still ni ≠ nj for i ≠ j is sufficient to
produce P-linear codes.

Now we have a n-code C = C1 ∪ C2 ∪ … ∪ Cn = C1(n1, k1)
∪ C2(n2, k2) ∪ … ∪ Cn(nn, kn) where some ni = nj, i ≠ j but none
of the ki = kj if i ≠ j then also C is a P-linear code.

Clearly if both ni ≠ nj (i ≠ j) and ki ≠ kj (i ≠ j) then also C is
a P-linear code.

Note: According to the definition of P-linear codes C we should
not have two distinct subcodes B and B′ in C such that both B
and B′ are (nt, kt) linear codes with B ⊄ B′ and B′ ⊄ B.

We will illustrate all the three cases by the following
examples.

Example 3.1.3: Let us consider a bicode C = C1 ∪ C2 where C1
is a (7, 3) linear code and C2 is a (7, 4) linear code. We see both
the codes C1 and C2 are of same length 7 but k1 ≠ k2 hence C is a
P-linear code.

Example 3.1.4: Consider a bicode C = C1 ∪ C2 where C1 = C(9,
5) and C2 = C(7, 5) both C1 and C2 are linear codes having same
number of message symbols but have different lengths viz., 9
and 7. Hence C is a P-linear code.

Example 3.1.5: Consider a bicode C = C1 ∪ C2 where C1 is a (7,
3) code and C2 is a (8, 4) code then C is a P-linear code.

Now consider a tricode C = C1 ∪ C2 ∪ C3 = C1(7, 5) ∪
C2(6, 3) ∪ C3(6, 3) with C2 ≠ C3 still C is not a P-linear code; it
is only a tricode.

Now we proceed on to define a new notion called weak Periyar
linear code.

 172

DEFINITION 3.1.2: Let C = C1 ∪ C2 ∪ … ∪ Cn be a linear n-
code (n ≥ 3) we say C is a weak Periyar linear code (weak P-
linear code) if C has a subcode Cj which is different from other
subcodes Ci i.e. C has atleast one subcode different from Cj.

It is important to see that we may have several subcodes of
same length and number of message symbols in C = C1 ∪ C2 ∪
… ∪ Cn (n ≥ 3). We still cannot say they are not P-linear codes
but only they are weak P-linear codes.

Example 3.1.6: Let C = C1 ∪ C2 ∪ C3 ∪ C4 be a 4-code where
C1 = (7, 3) code C2 = (7, 3) code, C3 = (6, 3) code and C4 = (6,
2) where C1 is generated by

G1 =
1 0 0 1 1 0 0
0 1 0 1 0 0 1
0 0 1 0 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,

C2 generated by

G2 =
1 0 0 1 0 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,

C3 is generated by

G3 =
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

and C4 is generated by

G4 =
1 0 1 1 1 0
0 1 0 1 1 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

.

 173

C1 = {(0 0 0 0 0 0 0), (1 0 0 1 1 0 0), (0 1 0 1 0 0 1),

(0 0 1 0 1 1 0), (1 1 0 0 1 0 1), (0 1 1 1 1 1 1),
(1 0 1 1 0 1 0), (1 1 1 0 0 1 1)},

C2 = {(0 0 0 0 0 0 0), (1 0 0 1 0 0 1), (0 1 0 0 1 1 1),

(0 0 1 0 1 1 0), (1 1 0 1 1 1 0), (0 1 1 0 0 0 1),
(1 0 1 1 1 1 1), (1 1 1 1 0 0 0)},

C3 = {(0 0 0 0 0 0), (1 0 0 1 1 0), (0 1 0 1 0 1), (0 0 1 0 1 1),

(1 1 0 0 1 1), (0 1 1 1 1 0), (1 0 1 1 0 1), (1 1 1 0 0 0)}
and

C4 = {(0 0 0 0 0 0), (1 0 1 1 1 0), (0 1 0 1 1 1), (1 1 1 0 0 1)}.

We see if we take C4 or C3 as a subcode of C then C is a P-
linear code. But if we take C2 or C1 as a subcode then clearly C
= C1 ∪ C2 ∪ C3 ∪ C4 is not a P-linear but only a weak Periyar
linear code. Thus from this example we see C is both a P-linear
code as well as weak P-linear code. So we are forced to define a
new concept because we see the notion of weak P-linear code
and P-linear code does not divide C into two classes which are
disjoint but we have a over lap.

So we define a new notion called duo Periyar linear code.

DEFINITION 3.1.3: Let us consider a n-code C = C1 ∪ C2 ∪ …
∪ Cn, (n ≥ 3) if C is both a P-linear code as well as a weak P-
linear code then we call C to be a duo Periyar linear code (duo
P-linear code).

All P-linear nodes need not be duo P-linear codes or a all

weak P-linear codes need not be duo P-linear code or a P-linear
code need not be a weak P-linear code or vice versa.

THEOREM 3.1.2: A P-linear code in general need not be a weak
P-linear code. Likewise a weak P-linear code need not always
be a P-linear code.

 174

Proof: To prove these above statements we give in support
some examples.

Let C = C(6, 3) ∪ C(6 3) ∪ C(7, 4) ∪ C(7, 4) be a 4-code where
C = C1 ∪ C2 ∪ C3 ∪ C4 with C having the generator 4-matrix G
= G1 ∪ G2 ∪ G3 ∪ G4 where

G1 =
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,

G2 =
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,

G3 =

1 0 0 0 1 0 1
0 1 0 0 0 1 0
0 0 1 0 0 1 1
0 0 0 1 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

and

G4 =

1 0 0 0 0 1 0
0 1 0 0 1 1 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

where the code generated by G1 is {(0 0 0 0 0 0), (1 0 0 0 0 1),
(0 1 0 0 1 0), (0 0 1 1 0 0), (1 1 0 0 1 1), (0 1 1 1 1 0), (1 0 1 1 0
1), (1 1 1 1 1 1)} = C(6, 3) = C1.

The code generated by G2 is {(0 0 0 0 0 0), (1 0 0 1 1 0), (0
1 0 1 0 1), (0 0 1 0 1 1), (1 1 0 0 1 1), (0 1 1 1 1 0), (1 0 1 1 0 1),
(1 1 1 0 0 0)} = C(6, 3) = C2.

Clearly C1 ≠ C2 The code generated by G3 is {(0 0 0 0 0 0
0), (1 0 0 0 1 0 1), (0 1 0 0 0 1 0), (0 0 1 0 0 1 1), (0 0 0 1 1 1 0),

 175

(1 1 0 0 1 1 1), (1 0 1 0 1 1 0), (0 1 1 0 0 0 1), (0 0 1 1 1 0 1), (0
1 0 1 1 0 0), (1 0 0 1 0 1 1), (1 1 1 0 1 0 0), (0 1 1 1 1 1 1), (1 1
0 1 0 0 0), (1 0 1 1 1 0 1), (1 1 1 1 0 1 1)} = C3 a C(7, 3) code.

Now the code generated by G4 is {(0 0 0 0 0 0 0), (1 0 0 0 0
1 0), (0 1 0 0 1 1 1), (0 0 1 0 0 1 1), (0 0 0 1 1 1 0), (1 1 0 0 1 0
1), (0 1 1 0 1 0 0), (0 0 1 1 1 0 1), (1 0 1 0 0 0 1), (0 1 0 1 0 0 1),
(1 0 0 1 1 0 0), (1 1 1 0 1 1 0), (0 1 1 1 0 1 0), (1 1 0 1 0 0 1), (1
0 1 1 0 1 1), (1 1 1 1 0 0 0)} = C(7, 3) = C9 Clearly C3 ≠ C4. All
the four codes are distinct, but C is not a P-linear code it is only
a weak S linear code. Thus we see a code can be weak P-linear
code but not a P-linear code.

Example 3.1.7: Consider the 3 code C = C1 ∪ C2 ∪ C3 = C(7, 3)
∪ C(6, 3) ∪ C(5, 3) where C(7, 3) is generated by the matrix

G1 =
1 0 0 1 1 0 0
0 1 0 0 1 1 0
0 0 1 0 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 .

The C(6, 3) code is generated by the matrix

G2 =
1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

The code C(5, 3) is generated by the matrix

G3 =
1 0 0 1 1
0 1 0 0 1
0 0 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 .

The code generated by G1 is {(0 0 0 0 0 0 0), (1 0 0 1 1 0 0), (0
1 0 0 1 1 0), (0 0 1 0 1 0 1), (1 1 0 1 0 1 0), (0 1 1 0 0 1 1), (1 0
1 1 0 0 1), (1 1 1 1 1 1 1)}. The code generated by G2 is {(0 0 0
0 0 0), (1 0 0 0 0 1), (0 1 0 0 1 0), (0 0 1 1 0 0), (1 1 0 0 1 1), (0
1 1 1 1 0), (1 0 1 1 0 1), (1 1 1 1 1 1)}. The code generated by

 176

G3 is {(0 0 0 0 0), (1 0 0 1 1), (0 1 0 0 1), (0 0 1 1 0), (1 1 0 1 0),
(0 1 1 1 1), (1 0 1 0 1), (1 1 1 0 0)}. We see this 3-code is a P-
linear code and is not a weak P linear code. Thus we see we can
have a n-code which is a P-linear code and not a weak P-linear
code.

Now we give an example of a n-code (n > 2) which is both
a P-linear code as well as a weak P-linear code.

Example 3.1.8: Let C = C1 ∪ C2 ∪ C3 ∪ C4 be a 4-linear code,
where C1 = C(7, 4) linear code, C2 = C(5, 2) be another linear
code, C3 = C(5, 3) code and C4 be a C(6, 3) linear code. It is
easily verified C is a P-linear code for it has only one subcode
C(7, 4) or C(5, 2). It is also a weak P-linear code for it has two
subcodes of length 5. Thus C = C1 ∪ C2 ∪ C3 ∪ C4 is a duo P-
linear code.

Now having seen examples of all the types of codes
defined. Now we proceed onto define P-linear repetition code.

DEFINITION 3.1.4: Let C = C1 ∪ C2 ∪ … ∪ Cn be a n-code
where each Ci is a repetition code of length ni with ni-1 check
symbols where the ni-1 check symbols x2

i = x3
i = … = xn

i are
equal to a1 (a1 ‘repeated’ ni – 1 times) then we may obtain a
binary (ni, 1) code with parity-check matrix

Hi =

1 1 0 0
1 0 1 0

1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

#
"

.

Clearly there are only two code words in the code C(ni, 1),
namely (0 0 … 0) and (1 1 … 1) this is true for i = 1, 2, …, n.
Thus we have n distinct repetition codes, since C is a n-code Ci
≠ Cj if i ≠ j. We see every subcode is distinct so we call C a
Periyar linear repetition code (P-linear repetition code).

Example 3.1.9: Let C = C1 ∪ C2 ∪ C3 ∪ C4 be a 4-code, where
C1 = {(0 0 0 0), (1 1 1 1)}, C2 = {(0 0 0 0 0 0), (1 1 1 1 1 1)}, C3
= {(0 0 0 0 0 0 0), (1 1 1 1 1 1 1)} and C4 = {(0 0 0 0 0 0 0 0 0),

 177

(1 1 1 1 1 1 1 1 1)}. Each code Ci is a repetition code which are
distinct, this code is associated with the parity check 4-matrix H
= H1 ∪ H2 ∪ H3 ∪ H4.

H =
1 1 0 0
1 0 1 0
1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0
1 0 0 0 0 1 0
1 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

 178

Clearly C is a P-linear repetition code, where C = 〈{(0 0 0 0), (1
1 1 1)} ∪ {(0 0 0 0 0 0), (1 1 1 1 1 1)} ∪ {(0 0 0 0 0 0 0), (1 1 1
1 1 1 1)} ∪ {(1 1 1 1 1 1 1 1 1), (0 0 0 0 0 0 0 0 0)}〉.

Now we proceed on to define the Periyar linear parity check
code.

DEFINITION 3.1.5: Let C = C1 ∪ C2 ∪ … ∪ Cm be a m-code.
We define C to be a Periyar Parity check code if each Ci is a
(mi, mi – 1) parity check binary code, i = 1, 2, …, m. Clearly if
C is to be a m-code we need each Ci must be distinct i.e. if Ci =
C(mi, mi – 1) then mi ≠ mj if i ≠ j. C is associated with a parity
check m-matrix H = H ∪ H2 ∪ … ∪ Hn where each Hi is a 1×
mi unit vector i.e. Hi = (1 1 1 1 … 1).

We give an example of a P-linear parity check code.

Example 3.1.10: Consider the 5 code C = C1 ∪ C2 ∪ C3 ∪ C4 ∪
C5 where each Ci is a parity check (mi, mi – 1) binary linear code
H1 = (1 1 1 1 1 1), H2 = (1 1 1 1 1), H3 = (1 1 1 1 1 1 1), H4 = (1
1 1 1 1 1 1 1 1) and H5 = (1 1 1 1), where H = H1 ∪ H2 ∪ H3 ∪
H4 ∪ H5 is a parity check 5-matrix. Since each code Ci is
distinct for i = 1, 2, …, 5 we see C is a P-linear parity check
code and not a weak P-linear parity check code.

THEOREM 3.1.3: A linear binary repetition n-code (n ≥ 2) is
always a P-linear binary repetition code and never a weak P-
linear binary repetition code and hence never a duo P-linear
binary code.

Proof: Given C = C1 ∪ C2 ∪ … ∪ Cn is a linear binary
repetition n-code (n ≥ 2). Since C is a repetition n-code each
code Ci is distinct and is a repetition code for i = 1, 2, …, n. So
C cannot have two subcodes of same length.

So C is not a weak P-linear code. Further C has n-distinct
subcodes i.e. C has a subcode which has a length different from
other subcodes, so C is a P-linear code. Since C is only a P-

 179

linear code and not a weak P-linear code so C cannot be a duo
P-linear code. Hence the claim.

Next we prove the following interesting theorem about Parity
Check n-code.

THEOREM 3.1.4: Let C = C1 ∪ C2 ∪ … ∪ Cm be linear binary
m-parity check code. Then C is only a P-linear code and not a
weak P-linear code; thus C is not a duo P-linear code.

Proof: Given C = C1 ∪ C2 ∪ … ∪ Cm is a linear binary m-
parity check code; i.e. each Ci is a parity check code of length
mi and mi ≠ mj if i ≠ j, 1 ≤ i, j ≤ m. Thus each Ci is distinct.
Hence C has subcode which is unique i.e. C has subcode of
length mj then C has no other subcode of length mj. So C is a P-
linear code. Now C has no two subcodes which are of same
length, hence C is not a weak P-linear code.

Thus we have proved in case of every n-code if it is
repetition n-code or a parity check n-code then it is only a P-
linear code and never a weak P-linear code thus not a duo P-
linear code.
 Hence we have seen that all n-codes are not duo n-codes.
We have a special class of n-codes which are also P-linear codes
and not weak P-linear n-codes. We have already given examples
of P-linear repetition code and P-linear parity check code.

We now proceed on to define the notion of binary Hamming P
code.

DEFINITION 3.1.6: Let C = C1 ∪ C2 ∪ … Cn be a n-code (n ≥
2). If each Ci is a binary Hamming code of length ni = 2 im –1
(mi ≥ 2); i = 1, 2, …, n. Thus any subcode of C is of length ni
and clearly C has no subcode of length ni; so C is a defined to
be a Periyar linear Hamming code (P-linear Hamming code).

Example 3.1.11: Consider the bicode C = C1 ∪ C2 where C1 is a
n1 = 23-1 binary Hamming code and C2 is a n2 = 24-1 binary
Hamming code. Then C is a P-linear Hamming code.

 180

We expect the reader to prove the following theorem.

THEOREM 3.1.5: Let C = C1 ∪ C2 ∪ … ∪ Cn be a n-code (n ≥
2) such that each Ci is a Hamming binary code of length ni = 2i
– 1, i = 1, 2, … , n. Then C is a P-linear Hamming code and C
is never a weak P-linear code and hence is not a duo
P-linear code.

DEFINITION 3.1.7: Let C = C1 ∪ C1

⊥ be a bicode where C1 is a
(n, k) code and C⊥ the dual code of C. We call C whole bicode.
We see in case of whole bicode both of them are of same length
but the number of message symbols in them is assumed to be
different.

We illustrate this by the following example.

Example 3.1.12: Let C = C1 ∪ C1

⊥ be a bicode where C1 is
generated by the generator matrix

G1 =
1 0 0 0 1 1 0
0 1 0 1 0 1 0
0 0 1 1 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

The generator matrix of C1

⊥ is given by

G2 =

0 1 1 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
0 0 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

The code generated by G1 is C1 = {(0 0 0 0 0 0 0), (1 0 0 0 1 1
0), (0 1 0 1 0 1 0), (0 0 1 1 1 0 1), (1 1 0 1 1 0 0), (0 1 1 0 1 1 1),
(1 0 1 1 0 1 1), (1 1 1 0 0 0 1)}. The code generated by C2 i.e.,
C1

⊥ = {(0 0 0 0 0 0 0), (0 1 1 1 0 0 0), (1 0 1 0 1 0 0), (1 1 0 0 0
1 0), (0 0 1 0 0 0 1), (1 1 0 1 1 0 0), (0 1 1 0 1 1 0), (1 1 1 0 0 1

 181

1), (1 0 1 1 0 1 0), (1 0 0 0 1 0 1), (0 1 0 1 0 0 1), (0 0 0 1 1 1 0),
(0 1 0 0 1 1 1), (1 0 0 1 0 1 1), (1 1 1 1 1 0 1), (0 0 1 1 1 1 1)}.

The whole bicode C = C1 ∪ C1

⊥ where all the elements of C1
and C1

⊥ are given.
Now it is a natural question to ask can we define whole

tricode the answer is no. But we can have a 4-whole code and in
general a whole n-code if and only if n is an even number.

DEFINITION 3.1.8: Let C = C1 ∪ C1

⊥ ∪ C2 ∪ C2
⊥ … ∪ Cn ∪

Cn
⊥ be a 2n-code where Ci and its dual Ci

⊥ find their place in C
then we call C a whole 2n-code (n ≥ 1), i = 1, 2, …, n.

THEOREM 3.1.6: Let C = C1 ∪ C1

⊥ ∪ C2 ∪ C2
⊥ ∪ … ∪ Cn ∪

Cn
⊥ be a whole 2n-code. C is not a P-linear code but C is

always a weak P-linear code. Further C is not a duo P-linear
code.

Proof: We are given C = C1 ∪ C1

⊥ ∪ C2 ∪ C2
⊥ ∪ … ∪ Cn ∪

Cn
⊥ to be a whole 2n-code. Thus C has atleast 2 subcodes of

same length since if C has the subcode Ci then Ci
⊥ is also a

subcode as C is a whole 2n-code. Hence C is a weak P-linear
code and never a P-linear code, thus the whole 2n code can
never be a duo P-linear code. Hence the claim.

We have seen a class of n-codes which are P-linear codes and
never weak P-linear codes. Now we have established that whole
2n-codes are weak P-linear codes and never a P-linear code.

Now we proceed onto give yet another class of duo P-linear
codes to this end we define the notion of pseudo whole n-code
(n ≥ 3).

DEFINITION 3.1.9: Let C = C1 ∪ C2 ∪ … ∪ Cn (n an odd
number) we call C to be a pseudo whole n-code if C = C1 ∪ C1

⊥
∪ C2 ∪ C2

⊥ ∪ … ∪ 1
2
−nC ∪ 1

2

⊥
−nC ∪ Cn as n is given to be an

 182

odd number where C = a union of the whole code plus another
arbitrary code of length different from all other codes in C.

We illustrate this by the following example.

Example 3.1.13: Let C = C1 ∪ C1

⊥ ∪ C2 be a tricode where C is
the union of code and its dual and another code C2 where C is a
pseudo whole code.
C1 is generated by

G1 =
1 0 0 1 1 1 1
0 1 0 0 0 1 0
0 0 1 0 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

and C1

⊥ is generated by

G2 =

1 0 0 1 0 0 0
1 0 1 0 1 0 0
1 1 1 0 0 1 0
1 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

C2 is a code generated by

G3 =
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C is a pseudo whole code.

THEOREM 3.1.7: Let C = C1 ∪ C1

⊥ ∪ C2 ∪ C2
⊥ ∪ … ∪ 1

2
nC − ∪

1
2

nC⊥
− ∪ Cn (n-odd) be the pseudo whole n-code; then C is a duo

P-linear whole code.

 183

Proof: Given C = C1 ∪ C1
⊥ ∪ C2 ∪ C2

⊥ ∪ … ∪ 1
2
−nC ∪ 1

2
nC⊥
− ∪

Cn be the pseudo whole n-code (n-odd). C has a subcode Cn
which has no other subcode the same length. Hence C is a P-
linear code, C has subcodes Ci, then C has same length subcode

given by Ci
⊥ 1 ≤ i ≤ 1

2
−n . Thus C is a weak P-linear code. C is

both a P-linear code as well as C is a weak- P-linear code, so C
is a duo P-linear code which will be known as the duo P-linear
pseudo whole code. Thus we have the class of pseudo whole
codes which happen to be a duo P-linear code.

Now having seen the 3 distinct classes of codes we now proceed
on to define the notion of Periyar cyclic code.

DEFINITION 3.1.10: Let C = C1 ∪ C2 ∪ … ∪ Cn be a n-code (n
≥ 2) if each Ci is a cyclic code then we define C to be a n-cyclic
code. If each Ci is of length ni and ni ≠ nj if i ≠ j for 1 ≤ i, j ≤ n
then we define C to be a Periyar cyclic code. If C has more than
one subcyclic code of length ni, then we define C to be a weak
Periyar cyclic code.

First we will provide some examples of them so that it would
make the reader understand the definition better.

Example 3.1.14: Consider the cyclic 5-code C = C1 ∪ C2 ∪ C3
∪ C4 ∪ C5 where C1 is a (6, 3) code C2 a (7, 4) code, C3 a (7, 3)
code, C4 a (8, 4) code and C5 are (5, 4) cyclic codes. Let G be
the associated generator 5-matrix of C.

G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5

=
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

 184

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 ∪

1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 ∪

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

All the 5 codes C1, C2, C3, C4 and C5 are cyclic. Thus C is a
cyclic 5-code.

We see C is both a P-cyclic code as well as weak P-cyclic code.
C is given by the following 5-codes

C = {(0 0 0 0 0 0), (1 0 0 1 0 0) (0 1 0 0 1 0), (0 0 1 0 0 1),

(1 1 0 1 1 0), (0 1 1 0 1 1), (1 0 1 1 0 1), (1 1 1 1 1 1)}
∪ {(0 0 0 0 0 0 0), (1 1 0 1 0 0 0), (0 1 1 0 1 0 0),
(0 0 1 1 0 1 0), (0 0 0 1 1 0 1), (1 0 1 1 1 0 0),
(0 1 0 1 1 1 0), (0 0 1 0 1 1 1), (1 1 1 0 0 1 0),
(0 1 1 1 0 0 1), (1 1 0 0 1 0 1), (1 0 0 0 1 1 0),
(0 1 0 0 0 1 1), (1 0 1 0 0 0 1), (1 1 1 1 1 1 1),
(1 0 0 1 0 1 1)} ∪ {(0 0 0 0 0 0 0), (1 1 1 0 1 0 0),
(0 1 1 1 0 11 0), (0 0 1 1 1 0 1), (1 0 0 1 1 1 0),

 185

(0 1 0 0 1 1 1), (1 1 0 1 0 0 1), (1 0 1 0 0 1 1)} ∪
{(0 0 0 0 0 0 0 0), (1 0 0 0 1 0 0 0), (0 1 0 0 0 1 0 0),
(0 0 1 0 0 0 1 0), (0 0 0 1 0 0 0 1), (1 1 0 0 1 1 0 0),
(0 1 1 0 0 1 1 0), (0 0 1 1 0 0 1 1), (1 0 1 0 1 0 1 0),
(0 1 0 1 0 1 0 1), (1 0 0 1 1 0 0 1), (1 1 1 0 1 1 1 0),
(0 1 1 1 0 1 1 1), (1 1 0 1 1 1 0 1), (1 0 1 1 1 0 1 1),
(1 1 1 1 1 1 1 1)} ∪ {(0 0 0 0 0), (1 1 0 0 0), (0 1 1 0 0),
(0 0 1 1 0), (0 0 0 1 1), (1 0 1 0 0), (0 1 0 1 0),
(0 0 1 0 1), (1 1 1 1 0), (0 1 1 1 1), (1 1 0 1 1),
(1 0 0 1 0), (0 1 0 0 1), (1 0 1 1 1), (1 1 1 0 1),
(1 0 0 0 1)}

is a cyclic 5-code. For this has C5 alone to be subcode likewise.
C4 is a subcode and has no other subcode of length 8; whereas C
has C2 and C3 to be subcodes of length 7. Thus C is both a P-
linear cyclic code as well as weak P-linear cyclic code.

Example 3.1.15: Let C = C1 ∪ C2 ∪ C2 ∪ C4 ∪ C5 where C1 is a
C(6, 3) code, C2 is a C(6, 1) code, C3 a (7, 3) code, C4 a (7, 4)
code and C5 a (7, 3) code. Clearly C is not a P-linear cyclic code
but only a weak P-linear cyclic code where C is generated by
the generator 5-matrix given by

G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 =

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

 186

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 ∪

1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

Clearly G generates a 5-cyclic code and G is not a P-linear
cyclic code but only a weak P-cyclic code. For it has subcodes
of length 6 and 7 respectively.

Now we have seen an example of a weak P-linear cyclic code
which is not a P-cyclic code.

We proceed on to give an example of a P-cyclic code which is
not a weak P-linear cyclic code.

Example 3.1.16: Consider the cyclic 4-code C = C1 ∪ C2 ∪ C3
∪ C4 generated by the generator 4-matrix

G = G1 ∪ G2 ∪ G3 ∪ G4 =

1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

 187

1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 ∪

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

We see this cyclic 4-code has 4 subcodes each is of length
different from the other i.e. C has a subcode of length 7, length
6, length 5 and length 8. So C is a P-linear code and not a weak
P-linear code. Hence the claim.

Now we proceed on to give an example of a cyclic n-code
which is a weak P-cyclic code and not a P-cyclic code.

Example 3.1.17: Consider a cyclic 4 code C given by C = C1 ∪
C2 ∪ C3 ∪ C4 generated by

G = G1 ∪ G2 ∪ G3 ∪ G4

where

G1 =
1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,

 188

G2 =

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

,

G3 =
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

and

G4 =

1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

We see the codes C1 and C2 are of same length 7 but have
different number of message symbols viz. 3 and 4 respectively.
C is a C(7, 3) linear code and C2 is a (7, 4) linear code. Now C3
and C4 are linear codes of length 6, C3 is a (6, 3) linear code and
C4 is a (6, 5) linear code. Thus C is a cyclic 4-code but not a P-
linear cyclic code only a weak P-linear cyclic code as C has two
subcodes of length 7 and two subcodes of length 6. It has no
unique subcode.

Now we proceed onto define the notion of pseudo Periyar
cyclic n-code.

DEFINITION 3.1.11: Let C = C1 ∪ C2 ∪ … ∪ Cn be a n-code.
We call C to be a pseudo Periyar cyclic code if C has atleast
one cyclic code i.e. atleast one of the Ci’s is a cyclic code (n ≥
2).

We give example of a pseudo P-cyclic code.

Example 3.1.18: Consider the 4-code C = C1 ∪ C2 ∪ C3 ∪ C4
where C is generated by the generator matrix

 189

G = G1 ∪ G2 ∪ G3 ∪ G4

=
1 0 0 1 0 0
0 1 0 0 1 1
0 0 1 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 0 0 1 0 0 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

The 4-code generated by G is given by C = {(0 0 0 0 0 0), (1 0 0
1 0 0), (0 1 0 0 1 1), (0 0 1 0 1 1), (1 1 0 1 1 1), (0 1 1 0 0 0), (1
0 1 1 1 1), (1 1 1 1 0 0)} ∪ {(0 0 0 0 0 0), (1 0 0 1 0 0), (0 1 0 0
1 0), (0 0 1 0 0 1), (1 1 0 1 1 0), (0 1 1 0 1 1), (1 0 1 1 0 1), (1 1
1 1 1 1)} ∪ {(0 0 0 0 0 0 0), (1 0 0 1 0 0 1), (0 1 0 0 1 1 0), (0 0
1 0 0 1 1), (1 1 0 1 1 1 1), (0 1 1 0 1 0 1), (1 0 1 1 0 1 0), (1 1 1
1 1 0 0)} ∪ {(0 0 0 0 0 0 0), (1 0 0 0 1 1 0), (0 1 0 0 1 0 1), (0 0
1 0 0 1 1), (0 0 0 1 1 1 1), (1 1 0 0 0 1 1), (0 1 1 0 1 1 0), (0 0 1
1 1 0 0), (1 0 1 0 1 0 1), (0 1 0 1 0 1 0), (1 0 0 1 0 0 1), (1 1 1 0
0 0 0), (0 1 1 1 0 0 1), (1 1 0 1 1 0 0), (1 0 1 1 0 1 0), (1 1 1 1 1
1 1)}. We see among the four codes only C2 is a cyclic code so
C is a pseudo P-cyclic code.

Now we proceed on to define the notion of pseudo strong
Periyar cyclic code.

 190

DEFINITION 3.1.12: Let C = C1 ∪ C2 ∪ … ∪ Cn be n-code if in
C we have only n-1 of the codes among C1, C2, …, Cn to be
cyclic then we define C to be a pseudo strong Periyar cyclic
code.

 Now we proceed on to illustrate this by the following
example.

Example 3.1.19: Let C = C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 be a 6-
code where C is generated by the 6-matrix

G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 ∪ G6 =

=

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 ∪

1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

 191

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 ∪

1 0 0 0 1 1 1 0
0 1 0 0 0 0 0 1
0 0 1 0 1 1 0 0
0 0 0 1 0 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

Clearly the codes C1, C2, …, C5 are cyclic only C6 is a non
cyclic code so C is a pseudo strong P-cyclic code. We see in this
example C1 is a (7, 4) cyclic code generated by the polynomial
x3 + x + 1 and x3 + x + 1 / x7 + 1. C2 is a
(7, 3) cyclic code generated by the polynomial x4 + x2 + x + 1
and x4 + x2 + x + 1 / x7 + 1. C3 is a (6, 3) cyclic code generated
by the polynomial x3 + 1 and x3 + 1 / x6 + 1. C4 is a (6, 5) cyclic
code generated by the polynomial x+1, C5 is a (8, 4) cyclic code
generated by a generator polynomial x4+1 and x4+1 / x8+1 and
C6 is not a cyclic code. So C is a pseudo strong P-cyclic 6-code.

We see all pseudo strong P-cyclic codes are trivially pseudo P-
cyclic codes. But in general a pseudo P-cyclic code need not be
a strong pseudo P-cyclic code.

Now we would define the notion of weak Periyar false codes.

DEFINITION 3.1.13: C = C1 ∪ C2 ∪ … ∪ Cn is a false n-code if
atleast one of the subcodes is different from the other codes then
we define C to be a weak Periyar false code.

 Clearly a false code is never a weak P-false code.

THEOREM 3.1.8: The class of m-pseudo false n-codes (n ≥ 2m,
2 ≤ m < n) are weak P-false codes.

 192

Proof: From the very definition of m-pseudo false n-codes C =
C1 ∪ C2 ∪ … ∪ Cn we see C1 = C2 = … = Cm = A and Cm+1 =
Cm+2 = … = Cn= B; A ≠ B. Thus C has atleast one subcode is
different from other codes.

 Hence C is a weak P-false code.

DEFINITION 3.1.14: A false n-code C = C1 ∪ C2 ∪ … ∪ Cn (n ≥
2) is said to be Periyar false code if and only if C is a 1-pseudo
false code i.e. C has one and only one subcode Ci different from
other subcodes of C.

THEOREM 3.1.9: Every 1-pseudo false n-code is a P-false code.

Proof: Follows from the very definition of P-false codes.

We illustrate by an example.

Example 3.1.20: Consider the 1-pseudo false n-code C = C1 ∪
C2 ∪ C3 ∪ C4 ∪ C5 given by C1 = C(5, 3), C2 = C(7, 4), C3 =
C(7, 4) = C4 = C5. Clearly C has one and only subcode C1 =
C(5, 3) and other subcodes of C are identical with C(7, 4) thus
C is a pseudo P-false code.

We proceed onto define yet another new type of P-linear codes
built using the set of different types of codes like repetition
code, parity check code, cyclic code and any other general code.
This type of new codes will be known as P-linear mixed codes.

DEFINITION 3.1.15: Let C = C1 ∪ C2 ∪ … ∪ Cn be a n-code if
some of the codes Ci are parity check codes, some of the codes
Cj are repetition codes and some others Ck are cyclic codes then
we call C to be a Periyar linear mixed code where 1 ≤ i, j, k ≤ n.

We illustrate this by the following example.

Example 3.1.21: Let C = C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 be a P-linear
mixed code where C1 is a repetition code, C2 a parity check

 193

code, C3 a cyclic code and C4 and C5 a general code. Suppose H
= H1 ∪ H2 ∪ H3 ∪ H4 ∪ H5.

=

1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪ [1 1 1 1 1 1 1] ∪

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪
1 1 0 0 0 1
0 1 0 0 1 0
0 1 1 1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ∪

1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 0
0 0 0 1 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

H is a mixed parity check matrix of the P-linear mixed codes.

3.2 Application of these New Classes of Codes

In this section we give a few applications of these new classes
of codes.

1. The m-pseudo false n-codes (t, t) pseudo false n-codes
and (t, m) pseudo false n-codes can be used in
cryptography. The true message can be sent in the m
codes and just the remaining (n – m) codes will serve to
mislead the intruder. Infact this code can also be used
for m persons simultaneously and each one will read his
message from the n-code i.e., if C = C1 ∪ C2 ∪ … ∪ Cn
here

1i
C =

2i
C = … =

mi
C = A, 1 ≤ i1, i2, …, im ≤ n, ij ≠ it

if j ≠ t. Then i1 can be assigned the first customer, i2 to

 194

the second and im to the mth customer so they know the
place in which their message is present. For instance i1
= 5 the first customer will only decode the code word x5
from x = x1 ∪ … ∪ xn and he will not bother to pay any
attention to other codes. Thus it is very difficult for the
intruder to hack this way of message transmission. In
case they have two sets of customers say t and m in
number then (t, m) pseudo n code can be used.

2. These codes can be used in networking of computers

when in the work place some m of them work on the
same data and t on another set of data. Infact the (t, m)
pseudo n-code can be extended to any (t1, …, tr) pseudo
n code without any difficultly. Further the transmission
or working with them is not difficult as we have super
computer to cater to our needs.

3. These n-codes or n-false codes or m pseudo false n

codes or (m, t) pseudo false n codes can be easily used
when we cannot use ARQ protocols, so n- false codes
and m-pseudo false n codes will serve best in those
cases.

4. These new classes of codes can also be used in data

storage. The authors strongly feel these codes are best
suited in any networking. Finally they can be used with
highest degree of security in defence department of any
nation.

5. Periyar code finds its applications in channels where all

the n information which are passed simultaneously are
distinct. In such channels Periyar codes are best suited.

 195

FURTHER READING

1. ABRAHAM, R., Linear and Multilinear Algebra, W. A.

Benjamin Inc., 1966.

2. ALBERT, A., Structure of Algebras, Colloq. Pub., 24, Amer.
Math. Soc., 1939.

3. BERLEKAMP, E.R., Algebraic Coding Theory, Mc Graw Hill
Inc, 1968.

4. BIRKHOFF, G., and MACLANE, S., A Survey of Modern
Algebra, Macmillan Publ. Company, 1977.

5. BIRKHOFF, G., On the structure of abstract algebras, Proc.
Cambridge Philos. Soc., 31 433-435, 1995.

6. BRUCE, SCHNEIER., Applied Cryptography, Second Edition,
John Wiley, 1996.

7. BURROW, M., Representation Theory of Finite Groups,
Dover Publications, 1993.

8. CHARLES W. CURTIS, Linear Algebra – An introductory
Approach, Springer, 1984.

9. DUBREIL, P., and DUBREIL-JACOTIN, M.L., Lectures on
Modern Algebra, Oliver and Boyd., Edinburgh, 1967.

 196

10. GEL'FAND, I.M., Lectures on linear algebra, Interscience,
New York, 1961.

11. GREUB, W.H., Linear Algebra, Fourth Edition, Springer-
Verlag, 1974.

12. HALMOS, P.R., Finite dimensional vector spaces, D Van
Nostrand Co, Princeton, 1958.

13. HAMMING, R.W., Error Detecting and error correcting
codes, Bell Systems Techical Journal, 29, 147-160, 1950.

14. HARVEY E. ROSE, Linear Algebra, Bir Khauser Verlag,
2002.

15. HERSTEIN I.N., Abstract Algebra, John Wiley,1990.

16. HERSTEIN, I.N., and DAVID J. WINTER, Matrix Theory and
Lienar Algebra, Maxwell Pub., 1989.

17. HERSTEIN, I.N., Topics in Algebra, John Wiley, 1975.

18. HOFFMAN, K. and KUNZE, R., Linear algebra, Prentice Hall
of India, 1991.

19. HUMMEL, J.A., Introduction to vector functions, Addison-
Wesley, 1967.

20. JACOB BILL, Linear Functions and Matrix Theory ,
Springer-Verlag, 1995.

21. JACOBSON, N., Lectures in Abstract Algebra, D Van
Nostrand Co, Princeton, 1953.

22. JACOBSON, N., Structure of Rings, Colloquium
Publications, 37, American Mathematical Society, 1956.

23. JOHNSON, T., New spectral theorem for vector spaces over
finite fields Zp , M.Sc. Dissertation, March 2003 (Guided by
Dr. W.B. Vasantha Kandasamy).

 197

24. KATSUMI, N., Fundamentals of Linear Algebra, McGraw
Hill, New York, 1966.

25. KOSTRIKIN, A.I, and MANIN, Y. I., Linear Algebra and
Geometry, Gordon and Breach Science Publishers, 1989.

26. LANG, S., Algebra, Addison Wesley, 1967.

27. LAY, D. C., Linear Algebra and its Applications, Addison
Wesley, 2003.

28. MAC WILLIAM, F.J., and SLOANE N.J.A., The Theory of
Error Correcting Codes, North Holland Pub., 1977.

29. PETTOFREZZO, A. J., Elements of Linear Algebra, Prentice-
Hall, Englewood Cliffs, NJ, 1970.

30. PLESS, V.S., and HUFFMAN, W. C., Handbook of Coding
Theory, Elsevier Science B.V, 1998.

31. ROMAN, S., Advanced Linear Algebra, Springer-Verlag,
New York, 1992.

32. RORRES, C., and ANTON H., Applications of Linear
Algebra, John Wiley & Sons, 1977.

33. SEMMES, Stephen, Some topics pertaining to algebras of
linear operators, November 2002.
http://arxiv.org/pdf/math.CA/0211171

34. SHANNOL, C.E., A Mathematical Theory of Communication,
Bell Systems Technical Journal, 27, 379-423 and 623-656,
1948.

35. SHILOV, G.E., An Introduction to the Theory of Linear
Spaces, Prentice-Hall, Englewood Cliffs, NJ, 1961.

36. THRALL, R.M., and TORNKHEIM, L., Vector spaces and
matrices, Wiley, New York, 1957.

37. VAN LINT, J.H., Introduction to Coding Theory, Springer,
1999.

 198

38. VASANTHA KANDASAMY and RAJKUMAR, R. Use of best
approximations in algebraic bicoding theory, Varahmihir
Journal of Mathematical Sciences, 6, 509-516, 2006.

39. VASANTHA KANDASAMY and THIRUVEGADAM, N.,
Application of pseudo best approximation to coding theory,
Ultra Sci., 17 , 139-144, 2005.

40. VASANTHA KANDASAMY, W.B., Bialgebraic structures and
Smarandache bialgebraic structures, American Research
Press, Rehoboth, 2003.

41. VASANTHA KANDASAMY, W.B., Bivector spaces, U. Sci.
Phy. Sci., 11 , 186-190 1999.

42. VASANTHA KANDASAMY, W.B., Linear Algebra and
Smarandache Linear Algebra, Bookman Publishing, 2003.

43. VASANTHA KANDASAMY, W.B., SMARANDACHE, Florentin
and K. ILANTHENRAL, Introduction to bimatrices, Hexis,
Phoenix, 2005.

44. VASANTHA KANDASAMY, W.B., SMARANDACHE, Florentin
and K. ILANTHENRAL, Introduction to Linear Bialgebra,
Hexis, Phoenix, 2005.

45. VOYEVODIN, V.V., Linear Algebra, Mir Publishers, 1983.

46. ZELINKSY, D., A first course in Linear Algebra, Academic
Press, 1973.

 199

INDEX

(1, 1) pseudo false n-code, 165
(t, m) pseudo false n-code, 167
(t, t) pseudo false n-code, 167
1-pseudo false mixed square n-matrix, 138
1-pseudo false n-code, 165
1-pseudo false parity check n-matrix, 137-8
1-pseudo false t × s rectangular matrix, 138
1-pseudo false tricode, 162
2 pseudo false m × m square n-matrix, 143
2 pseudo false mixed square matrix, 144
2-pseudo false mixed rectangular n-matrix, 145-6
2-pseudo false n-matrix, 142
2-pseudo false rectangular n-matrix, 145
3-pseudo false mixed n-matrix, 148
3-pseudo false mixed rectangular n-matrix, 148
3-pseudo false mixed square n-matrix, 148
3-pseudo false n-matrix, 148
3-pseudo false square n-matrix, 148

A

Algebraic codes, 8
ARQ protocols, 156-7

 200

B

Best approximation, 28-9
Bialgebra, 77-8
Bicodes, 45-8
Bicoset bileader, 112-3
Bidegree, 77-8
Bierror bivector, 117
Bigenerator matrix, 48
Biisomorphism, 77
Bimatrices, 33-4
Binary code, 10
Binary Hamming bicode, 71
Binary Hamming n-code, 75
Binary Hamming tricode, 73
Bisyndrome, 47-8, 117, 125
Block code, 10
Block length, 10

C

Canonical generator matrix, 11
Check bipolynomial, 53
Check equation, 14-5
Check symbols, 9-10
Code polynomials, 24-5
Code vectors, 24-5
Column bimatrix, 34
Component matrices n-matrix, 42
Components of a bimatrix, 39
Control digit, 69
Control symbol, 8, 69
Control symbols, 8
Coset leader, 21
Coset n-leader, 112-3
Coset of a code, 20
Cyclic bicode, 51-2, 78-9
Cyclic bishift, 76
Cyclic code, 23-4

 201

Cyclic n-code, 89
Cyclic tricode, 83

D

Dual bicode, 97
Dual n-code, 97
Dual tricode, 94-5
Duo P-linear binary code, 178
Duo P-linear whole code, 182-3

E

Encoding matrix, 11

F

Factor bigroup, 77-8
False bicode, 157
False bimatrix, 137-8
False n-code, 137, 156, 160
False n-rectangular matrix, 137-8
False n-square matrix, 137-8
False parity check matrix, 137
False tricode, 158
False trimatrix, 137

G

Generator bipolynomial, 51-2
Generator n-matrix, 90
Generator polynomial, 24-5
Generator tripolynomial, 84-5
Group code, 10

H

Hamming 2-weight, 104-5
Hamming bidistance, 60

 202

Hamming code, 22-3
Hamming distance, 13-4
Hamming n-bound, 103-5
Hamming n-distance, 103
Hamming tridistance, 104-5
Hamming triweight, 104-5
Hamming weight, 13-4

I

Inner product, 26-7

L

Linear bialgebra, 46
Linear biequations, 46
Linear codes, 7, 10
Linear cyclic bicode, 76

M

Message symbols, 8-10
Minimum distance, 14-5
Minimum weight, 21
Mixed bimatrix, 35-6
m-pseudo false mixed rectangular n-matrix, 151-3
m-pseudo false mixed square n-matrix, 151-2
m-pseudo false n-matrix, 137, 151-2
m-pseudo false parity check n-matrix, 137
m-pseudo false rectangular n-matrix, 151-3
m-pseudo false square n-matrix, 151-2

N

n-codes, 45, 62
n-coset leader, 112-3
Nearest neighbour decoding, 15
n-error vector, 127
n-field, 110-1

 203

n-group, 110-1
n-map, 129
n-matrix, 62
n-parity check matrix, 67
n-polynomial, 89
n-pseudo field, 110-1
n-sphere of radius (r1, …, rn), 104-5
n-subgroup, 11-1
n-subspaces, 110-2
n-syndrome, 127-8
Null space of H, 10
n-vector spaces, 110-2

O

Orthogonal code, 16-7
Orthogonal complement of a tricode, 94-5
Orthogonal complement, 16
Orthogonal n-code, 97
Orthogonal vector space, 93

P

Parity check bicode, 50-1
Parity check bimatrix, 48
Parity check code, 11, 14
Parity check matrix, 10
Parity check n-code, 71
Parity check n-matrix, 67
Parity check n-polynomial, 90
Parity check polynomial, 24-5
Parity check trimatrix, 65-6
Parity check tripolynomial, 84-5
Periyar cyclic code, 183
Periyar false code, 192
Periyar linear code, 137, 169
Periyar linear Hamming code, 179
Periyar linear mixed code, 192
Periyar linear Parity check code, 178

 204

Periyar linear repetition code, 176
P-linear code, 169
P-linear Hamming code, 179-80
P-linear parity check code, 178
P-linear repetition code, 176
Pseudo best approximation, 30-1, 55
Pseudo best n-approximation, 130-2
Pseudo inner byproduct, 56
Pseudo inner product, 30
Pseudo n-field, 11-1
Pseudo n-inner product, 129-30
Pseudo n-vector spaces, 110-2
Pseudo Periyar cyclic code, 188
Pseudo strong Periyar cyclic code, 190
Pseudo whole n-code, 181-2

R

Rectangular bimatrix, 34-5
Repetition bicode, 50
Repetition code, 10, 14
Repetition n-code, 67
Repetition tricode, 65-6
Reversible bicode, 99-100
Reversible tricode, 99-100
Row bimatrix, 34
Row trivector, 70

S

Self orthogonal bicode, 100
Self orthogonal n-code, 100-1
Self orthogonal tricode, 100-1
Semi self orthogonal bicode, 100
Semi self orthogonal n-code, 100-1
Semi self orthogonal tricode, 100-1
Source decoding, 7-9
Source encoding, 7-9
Sphere of radius r, 15-6

 205

Square bimatrix, 35
Sub bispaces of a bivector space, 46
Syndrome, 21
Systematic linear code, 10

T

Transmission rate, 10
Transmitted code word, 55
Tricode, 60
Tricoset leader, 117
Tripolynomial, 82
Trisyndrome, 125-6

W

Weak Periyar false code, 191
Weak Periyar linear code, 172
Weak P-linear code, 172
Whole bicode, 180

 206

ABOUT THE AUTHORS

Dr.W.B.Vasantha Kandasamy is an Associate Professor in the
Department of Mathematics, Indian Institute of Technology
Madras, Chennai. In the past decade she has guided 11 Ph.D.
scholars in the different fields of non-associative algebras,
algebraic coding theory, transportation theory, fuzzy groups, and
applications of fuzzy theory of the problems faced in chemical
industries and cement industries.

She has to her credit 640 research papers. She has guided
over 57 M.Sc. and M.Tech. projects. She has worked in
collaboration projects with the Indian Space Research
Organization and with the Tamil Nadu State AIDS Control Society.
This is her 33rd book.

On India's 60th Independence Day, Dr.Vasantha was
conferred the Kalpana Chawla Award for Courage and Daring
Enterprise by the State Government of Tamil Nadu in recognition
of her sustained fight for social justice in the Indian Institute of
Technology (IIT) Madras and for her contribution to mathematics.
(The award, instituted in the memory of Indian-American
astronaut Kalpana Chawla who died aboard Space Shuttle
Columbia). The award carried a cash prize of five lakh rupees (the
highest prize-money for any Indian award) and a gold medal.
She can be contacted at vasanthakandasamy@gmail.com
You can visit her on the web at: http://mat.iitm.ac.in/~wbv or:
http://www.vasantha.net

Dr. Florentin Smarandache is an Associate Professor of
Mathematics at the University of New Mexico in USA. He
published over 75 books and 100 articles and notes in
mathematics, physics, philosophy, psychology, literature, rebus.
 In mathematics his research is in number theory, non-Euclidean
geometry, synthetic geometry, algebraic structures, statistics,
neutrosophic logic and set (generalizations of fuzzy logic and set
respectively), neutrosophic probability (generalization of classical
and imprecise probability). Also, small contributions to nuclear
and particle physics, information fusion, neutrosophy (a
generalization of dialectics), law of sensations and stimuli, etc.
He can be contacted at smarand@unm.edu

