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Abstract

It is a part of my Algebraic General Topology research.

In this article I introduce the concepts of funcoids which generalize proximity spaces

and reloids which generalize uniform spaces. The concept of funcoid is generalized concept

of proximity, the concept of reloid is cleared from superfluous details (generalized) concept

of uniformity. Also funcoids and reloids are generalizations of binary relations whose

domains and ranges are filters (instead of sets).

Also funcoids and reloids can be considered as a generalization of (oriented) graphs,

this provides us with a common generalization of analysis and discrete mathematics.

The concept of continuity is defined by an algebraic formula (instead of old messy

epsilon-delta notation) for arbitrary morphisms (including funcoids and reloids) of a par-

tially ordered category. In one formula are generalized continuity, proximity continuity,

and uniform continuity.
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1 Common

1.1 Draft status

This article is a draft.
This text refers to a preprint edition of [6]. Theorem number clashes may appear due editing

both of these manuscripts.

1.2 Used concepts, notation and statements

The set of functions from a set A to a set B is denoted as BA.
I will often skip parentheses and write fx instead of f(x) to denote the result of a function

f acting on the argument x.
I will denote 〈f 〉X = {fα | α∈X} for a set X .
For simplicity I will assume that all sets in consideration are subsets of universal set ℧.

1.2.1 Filters

In this work the word filter will refer to a filter on a set ℧ (in contrast to [6] where are consid-
ered filters on arbitrary posets). Note that I do not require filters to be proper.
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I will call the set of filters ordered reverse to set-theoretic inclusion of filters the set of filter
objects F and its element filter objects (f.o. for short). I will denote upF the filter corresponding
to a filter object F . So we have A ⊆ B ⇔ upA ⊇ upB for every filter objects A and B. We also
will equate filter objects corresponding to principal filters with corresponding sets. (Thus we
have P℧⊆ F.) See [6] for formal definition of filter objects in the framework of ZF. Filters (and
filter objects) are studied in the work [6].

Prior reading of [6] is needed to understand this work.

Filter objects corresponding to ultrafilters are atoms of the lattice F and will be called
atomic filter objects .

Also we will need to introduce the concept of generalized filter base.

Definition 1. Generalized filter base is a set S ∈PF \ {∅} such that

∀A,B ∈S∃C ∈S: C ⊆A∩B.

Proposition 2. Let S is a generalized filter base. If A1,	 , An∈S (n∈N), then

∃C ∈S: C ⊆A1∩	 ∩An.

Proof. Can be easily proved by induction. �

Theorem 3. If S is a generalized filter base, then up
⋂

FS=
⋃

〈up〉S.

Proof. Obviously up
⋂

FS ⊇
⋃

〈up〉S. Reversely, let K ∈ up
⋂

FS; then K =A1 ∩	 ∩An where
Ai∈ upAi where Ai∈ S, i=1,	 , n, n∈N; so exists C ∈S such that C ⊆A1∩	 ∩An ⊆A1∩	 ∩
An=K, K ∈ up C, K ∈

⋃

〈up〉S. �

Corollary 4. If S is a generalized filter base, then
⋂

FS= ∅⇔∅∈S.

Proof.
⋂

FS= ∅⇔∅∈ up
⋂

FS⇔∅∈
⋃

〈up〉S⇔∃X ∈S: ∅∈upX ⇔∅∈S. �

1.3 Earlier works

Some mathematicians were researching generalizations of proximities and uniformities before me
but they have failed to reach the right degree of generalization which is presented in this work
allowing to represent properties of spaces with algebraic (or categorical) formulas.

Some references to predecessors:

• In [1] and [2] are studied semi-uniformities and proximities.

• In [5] are studied proximities and generalized uniformities. [TODO: Articles to which this
refers.]

• [3] and [4] contains recent progress in quasi-uniform spaces.

2 Partially ordered dagger categories

2.1 Partially ordered categories

Definition 5. I will call a partially ordered (pre)category a (pre)category together with partial
order ⊆ on each of its Hom-sets with the additional requirement that

f1⊆ f2∧ g1⊆ g2⇒ g1 ◦ f1⊆ g2 ◦ f2

for every morphisms f1, g1, f2, g2 such that Src f1 = Src f2 ∧ Dst f1 = Dst f2 = Src g1 = Src g2 ∧
Dst g1=Dst g2.
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2.2 Dagger categories

Definition 6. I will call a dagger precategory a precategory together with an involutive con-
travariant identity-on-objects prefunctor x� x†.

In other words, a dagger precategory is a precategory equipped with a function x� x† on its
set of morphisms which reverses the source and the destination and is subject to the following
identities for every morphisms f and g:

1. f ††= f ;

2. (g ◦ f)†= f † ◦ g†.

Definition 7. I will call a dagger category a category together with an involutive contravariant

identity-on-objects functor x� x†.
In other words, a dagger category is a category equipped with a function x� x† on its set of

morphisms which reverses the source and the destination and is subject to the following identi-
ties for every morphisms f and g and object A:

1. f ††= f ;

2. (g ◦ f)†= f † ◦ g†;

3. (1A)
†=1A.

Theorem 8. If a category is a dagger precategory then it is a dagger category.

Proof. We need to prove only that (1A)
†=1A. Really

(1A)
†=(1A)

† ◦ 1A=(1A)
† ◦ (1A)††=((1A)

† ◦ 1A)†=(1A)
††=1A. �

For a partially ordered dagger (pre)category I will additionally require (for every morphisms f

and g)

f †⊆ g†⇔ f ⊆ g.

An example of dagger category is the category Rel whose objects are sets and whose morphisms
are binary relations between these sets with usual composition of binary relations and with f †=
f−1.

Definition 9. A morphism f of a dagger category is called unitary when it is an isomorphism
and f †= f−1.

Definition 10. Symmetric (endo)morphism of a dagger precategory is such a morphism f that
f = f †.

Definition 11. Transitive (endo)morphism of a precategory is such a morphism f that f = f ◦
f .

Theorem 12. The following conditions are equivalent for a morphism f of a dagger precate-
gory:

1. f is symmetric and transitive.

2. f = f † ◦ f .

Proof.

(1)⇒ (2). If f is symmetric and transitive then f † ◦ f = f ◦ f = f .

(2)⇒ (1). f †= (f † ◦ f)†= f † ◦ f ††= f † ◦ f = f , so f is symmetric. f = f † ◦ f = f ◦ f , so f

is transitive. �

2.2.1 Monovalued and entirely defined morphisms

Definition 13. For a partially ordered dagger category I will call monovalued morphism such a
morphism f that f ◦ f †⊆ 1Dst f.
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Definition 14. For a partially ordered dagger category I will call entirely defined morphism
such a morphism f that f † ◦ f ⊇ 1Src f.

Remark 15. Easy to show that this is a generalization of monovalued and entirely defined
binary relations as morphisms of the category Rel.

Definition 16. For a given partially ordered dagger category C the category of monovalued
(entirely defined) morphisms of C is the category with the same set of objects as of C and the
set of morphisms being the set of monovalued (entirely defined) morphisms of C with the com-
position of morphisms the same as in C.

We need to prove that these are really categories, that is that composition of monovalued
(entirely defined) morphisms is monovalued (entirely defined) and that identity morphisms are
monovalued and entirely defined.

Proof.

Monovalued. Let f and g are monovalued morphisms, Dst f = Src g. (g ◦ f) ◦ (g ◦ f)†= g ◦
f ◦ f † ◦ g† ⊆ g ◦ 1Dst f ◦ g† = g ◦ 1Src g ◦ g† = g ◦ g† ⊆ 1Dst g = 1Dst(g◦f). So g ◦ f is mono-
valued.

That identity morphisms are monovalued follows from the following: 1A ◦ (1A)† = 1A ◦
1A=1A=1Dst 1A

⊆ 1Dst 1A.

Entirely defined. Let f and g are entirely defined morphisms, Dst f = Src g. (g ◦ f)† ◦ (g ◦
f) = f † ◦ g† ◦ g ◦ f ⊇ f † ◦ 1Src g ◦ f = f † ◦ 1Dst f ◦ f = f † ◦ f ⊇ 1Src f = 1Src(g◦f). So g ◦ f is
entirely defined.

That identity morphisms are entirely defined follows from the following: (1A)
† ◦ 1A =

1A ◦ 1A=1A=1Src 1A ⊆ 1Src 1A
. �

3 Funcoids

3.1 Informal introduction into funcoids

Funcoids are a generalization of proximity spaces and a generalization of pretopological spaces.
Also funcoids are a generalization of binary relations.

That funcoids are a common generalization of “spaces” (proximity spaces, (pre)topological
spaces) and binary relations (including monovalued functions) makes them smart for describing
properties of functions in regard of spaces. For example the statement “f is a continuous func-
tion from a space µ to a space ν” can be described in terms of funcoids as the formula f ◦ µ ⊆
ν ◦ f (see below for details).

Most naturally funcoids appear as a generalization of proximity spaces.
Let δ be a proximity that is certain binary relation so that Aδ B is defined for every sets A

and B. We will extend it from sets to filter objects by the formula:

A δ ′B⇔∀A∈upA, B ∈ upB:Aδ B.

Then (as will be proved below) exist two functions α, β ∈FF such that

A δ ′B⇔B∩FαA� ∅⇔A∩F βB � ∅.

The pair (α; β) is called funcoid when B ∩F αA � ∅⇔A∩F βB � ∅. So funcoids are a generaliza-
tion of proximity spaces.

Funcoids consist of two components the first α and the second β. The first component of a
funcoid f is denoted as 〈f 〉 and the second component is denoted as

〈

f−1
〉

. (The similarity of

this notation with the notation for the image of a set under a function is not a coincidence, we
will see that in the case of discrete funcoids (see below) these coincide.)

One of the most important properties of a funcoid is that it is uniquely determined by just
one of its components. That is a funcoid f is uniquely determined by the function 〈f 〉. More-
over a funcoid f is uniquely determined by 〈f 〉|P℧ that is by values of function 〈f 〉 on sets.
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Next we will consider some examples of funcoids determined by specified values of the first
component on sets.

Funcoids as a generalization of pretopological spaces: Let α be a pretopological space that is

a map α ∈ F℧. Then we define α′X=
def ⋃F

{αX | x ∈ X} for every set X . We will prove that
there exists a unique funcoid f such that α′ = 〈f 〉|P℧. So funcoids are a generalization of pre-
topological spaces. Funcoids are also a generalization of preclosure operators: For every preclo-

sure operator p exists unique funcoid such that 〈f 〉|P℧= p; in this case 〈f 〉|P℧∈P℧P℧.
For every binary relation p exists unique funcoid f such that ∀X ∈P℧: 〈f 〉X = 〈p〉X (where

〈p〉 is defined in the introduction), recall that a funcoid is uniquely determined by the values of
its first component on sets. I will call such funcoids discrete. So funcoids are a generalization of
binary relations.

Composition of binary relations (i.e. of discrete funcoids) complies with the formulas:

〈g ◦ f 〉= 〈g〉 ◦ 〈f 〉 and
〈

(g ◦ f)−1
〉

=
〈

f−1
〉

◦
〈

g−1
〉

.

By the same formulas we can define composition of every two funcoids.
Also funcoids can be reversed (like reversal of X and Y in a binary relation) by the formula

(α; β)−1= (β; α). In particular case if µ is a proximity we have µ−1= µ because proximities are
symmetric.

Funcoids behave similarly to (multivalued) functions but acting on filter objects instead of
acting on sets. Below will be defined domain and image of a funcoid (the domain and the image
of a funcoid are filter objects).

3.2 Basic definitions

Definition 17. Let’s call a funcoid a pair (α; β) where α, β ∈FF such that

∀X , Y ∈F: (Y ∩FαX � ∅⇔X ∩F βY � ∅).

Definition 18. 〈(α; β)〉=
def

α for a funcoid (α; β).

Definition 19. (α; β)−1=(β;α) for a funcoid (α; β).

Proposition 20. If f is a funcoid then f−1 is also a funcoid.

Proof. Follows from symmetry in the definition of funcoid. �

Obvious 21. (f−1)−1= f for a funcoid f .

Definition 22. The relation [f ] ∈ PF2 is defined by the formula (for every filter objects X , Y
and funcoid f)

X [f ]Y=
def

Y ∩F 〈f 〉X � ∅.

Obvious 23. X [f ]Y⇔Y ∩F 〈f 〉X � ∅⇔X ∩F
〈

f−1
〉

Y for every filter objects X , Y and funcoid
f .

Obvious 24.
[

f−1
]

= [f ]−1 for a funcoid f .

Theorem 25.

1. For given value of 〈f 〉 exists no more than one funcoid f .

2. For given value of [f ] exists no more than one funcoid f .

Proof. Let f and g are funcoids.
Obviously 〈f 〉= 〈g〉⇒ [f ] = [g] and

〈

f−1
〉

=
〈

g−1
〉

⇒ [f ] = [g]. So enough to prove that [f ] =
[g]⇒〈f 〉= 〈g〉.
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Provided that [f ] = [g] we have Y ∩F 〈f 〉X � ∅⇔X [f ]Y⇔X [g]Y⇔Y ∩F 〈g〉X � ∅ and conse-
quently 〈f 〉X = 〈g〉X for every f.o. X and Y because the set of filter objects is separable [6],
thus 〈f 〉= 〈g〉. �

Proposition 26. 〈f 〉(I ∪FJ )= 〈f 〉I ∪F 〈f 〉J for every funcoid f and I ,J ∈F.

Proof.

⋆ 〈f 〉(I ∪FJ ) =
{

Y ∈F | Y ∩F 〈f 〉(I ∪FJ )� ∅
}

=
{

Y ∈F | (I ∪FJ )∩F
〈

f−1
〉

Y � ∅
}

= (by corollary 10 in [6])
{

Y ∈F | (I ∩F
〈

f−1
〉

Y)∪F (J ∩F
〈

f−1
〉

Y)� ∅
}

=
{

Y ∈F | I ∩F
〈

f−1
〉

Y � ∅∨ J ∩F
〈

f−1
〉

Y � ∅
}

=
{

Y ∈F | Y ∩F 〈f 〉I � ∅∨ Y ∩F 〈f 〉J � ∅
}

=
{

Y ∈F | (Y ∩F 〈f 〉I)∪F (Y ∩F 〈f 〉J )� ∅
}

= (by corollary 10 in [6])
{

Y ∈F | Y ∩F (〈f 〉I ∪F 〈f 〉J )� ∅
}

=

⋆ (〈f 〉I ∪F 〈f 〉J ).

Thus 〈f 〉(I ∪FJ )= 〈f 〉I ∪F 〈f 〉J because F is separable. �

3.2.1 Composition of funcoids

Definition 27. Composition of funcoids is defined by the formula

(α2; β2) ◦ (α1; β1)= (α2 ◦α1; β1 ◦ β2).

Proposition 28. If f , g are funcoids then g ◦ f is funcoid.

Proof. Let f =(α1; β1), g=(α2; β2). For every X ,Y ∈F we have

Y ∩F (α2 ◦α1)X � ∅⇔ Y ∩F α2α1X � ∅⇔ α1X ∩F β2Y � ∅⇔X ∩F β1β2Y � ∅⇔X ∩F (β1 ◦ β2)Y �
∅.

So (α2 ◦α1; β1 ◦ β2) is a funcoid. �

Obvious 29. 〈g ◦ f 〉= 〈g〉 ◦ 〈f 〉 for every funcoids f and g.

Proposition 30. (h◦ g) ◦ f = h ◦ (g ◦ f) for every funcoids f , g, h.

Proof.
〈(h ◦ g) ◦ f 〉= 〈h ◦ g〉 ◦ 〈f 〉=(〈h〉 ◦ 〈g〉) ◦ 〈f 〉= 〈h〉 ◦ (〈g〉 ◦ 〈f 〉)= 〈h〉 ◦ 〈g ◦ f 〉= 〈h ◦ (g ◦ f)〉. �

Theorem 31. (g ◦ f)−1= f−1 ◦ g−1 for every funcoids f and g.

Proof.
〈

(g ◦ f)−1
〉

=
〈

f−1
〉

◦
〈

g−1
〉

=
〈

f−1 ◦ g−1
〉

. �

3.3 Funcoid as continuation

Theorem 32. For every funcoid f and filter objects X and Y

1. 〈f 〉X =
⋂

F〈〈f 〉〉upX ;

2. X [f ]Y⇔∀X ∈ upX , Y ∈ upY :X [f ]Y .

Proof. 2. X [f ]Y⇔Y ∩F 〈f 〉X � ∅⇔∀Y ∈upY:Y ∩F 〈f 〉X � ∅⇔∀Y ∈ upY :X [f ]Y .
Analogously X [f ]Y⇔∀X ∈upX :X[f ]Y . Combining these two equivalences we get

X [f ]Y⇔∀X ∈upX , Y ∈upY:X [f ]Y .

1. Y ∩F 〈f 〉X � ∅⇔∀X ∈ upX :Y ∩F 〈f 〉X � ∅.
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Let’s denote W =
{

Y ∩F 〈f 〉X | X ∈upX
}

. We will prove that W is a generalized filter base.

To prove this enough to show that V = {〈f 〉X | X ∈ upX } is a generalized filter base.
Let P ,Q∈ V . Then P = 〈f 〉A, Q= 〈f 〉B where A, B ∈ upX ; A ∩B ∈ upX and R⊆P ∩F Q

for R= 〈f 〉(A∩B)∈V . So V is a generalized filter base and thus W is a generalized filter base.

∅ � W ⇔
⋂

FW 	 ∅ by the corollary 4 of the theorem 3. That is

∀X ∈ upX :Y ∩F 〈f 〉X � ∅⇔Y ∩F
⋂

F〈〈f 〉〉upX � ∅.

Comparing with the above, Y ∩F 〈f 〉X � ∅ ⇔ Y ∩F
⋂

F〈〈f 〉〉up X � ∅. So 〈f 〉X =
⋂

F〈〈f 〉〉up X
because the lattice of filter objects is separable. �

Theorem 33.

1. A function α∈FP℧ conforming to the formulas (for every I , J ∈P℧)

α∅= ∅, α(I ∪ J)=αI ∪FαJ

can be continued to the function 〈f 〉 for a unique funcoid f ;

〈f 〉X =
⋂

F〈α〉upX (1)

for every filter object X .

2. A relation δ ∈P(P℧)2 conforming to the formulas (for every I , J ,K ∈P℧)

¬(∅ δ I), I ∪J δ K⇔ I δ K ∨ J δ K,

¬(I δ ∅), K δ I ∪J⇔K δ I ∨K δ J
(2)

can be continued to the relation [f ] for a unique funcoid f ;

X [f ]Y⇔∀X ∈upX , Y ∈upY:X δ Y (3)

for every filter objects X , Y.

Proof. Existence of no more than one such funcoids and formulas (1) and (3) follow from the
previous theorem.

2. Let define α ∈ FP℧ by the formula ∂(αX) = {Y ∈ P℧ | X δ Y } for every X ∈ P℧. (It is

obvious that {Y ∈ P℧ | X δ Y } is a free star.) Analogously can be defined β ∈ FP℧ by the for-
mula ∂(βX) = {X ∈ P℧ | X δ Y }. Let’s continue α and β to α′ ∈ FF and β ′ ∈ FF by the for-
mulas

α′X =
⋂

F〈α〉upX and β ′X =
⋂

F〈β〉upX

and δ to δ ′∈PF2 by the formula

X δ ′ Y⇔∀X ∈upX , Y ∈ upY :X δ Y .

Y ∩Fα′X � ∅⇔Y ∩F
⋂

F〈α〉upX � ∅⇔
⋂

F
〈

Y ∩F
〉

〈α〉upX � ∅. Let’s prove that

W =
〈

Y ∩F
〉

〈α〉upX

is a generalized filter base: To prove it is enough to show that 〈α〉up X is a generalized filter
base. If A,B ∈ 〈α〉upX then exist X1, X2∈upX such that A=αX1 and A=αX2.

Then α(X1 ∩X2)∈ 〈α〉upX . So 〈α〉upX is a generalized filter base and thus W is a general-
ized filter base.

Accordingly the corollary 4 of the theorem 3,
⋂

F
〈

Y ∩F
〉

〈α〉upX � ∅ is equivalent to

∀X ∈upX :Y ∩FαX � ∅,

what is equivalent to ∀X ∈ up X , Y ∈ up Y : Y ∩F αX � ∅⇔ ∀X ∈ up X , Y ∈ up Y: Y ∈ ∂(αX)⇔
∀X ∈ upX , Y ∈ up Y :X δ Y . Combining the equivalencies we get Y ∩F α′X � ∅⇔X δ ′Y . Analo-
gously X ∩F β ′Y � ∅ ⇔ X δ ′Y . So Y ∩F α′X � ∅ ⇔ X ∩F β ′Y � ∅, that is (α′; β ′) is a funcoid.

From the formula Y ∩Fα′X � ∅⇔X δ ′Y follows that [(α′; β ′)] is a continuation of δ.
1. Let define the relation δ ∈P(P℧)2 by the formula X δ Y ⇔Y ∩FαX � ∅.
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That ¬(∅ δ I) and ¬(I δ ∅) is obvious. We have I ∪ J δ K ⇔ (I ∪ J) ∩F αK � ∅ ⇔

(I ∪F J)∩F αK � ∅⇔ (I ∩F αK) ∪F (J ∪F αK)� ∅⇔ I ∩F αK � ∅ ∨ J ∪F αK � ∅⇔ I δ K ∨ J δ K

and K δ I ∪ J ⇔ K ∩F α(I ∪ J) � ∅ ⇔ K ∩F α(I ∪ J) � ∅ ⇔ K ∩F (αI ∪F αJ) � ∅ ⇔

(K ∩FαI)∪F (K ∩FαJ)� ∅⇔K ∩FαI � ∅∨K ∩FαJ � ∅⇔K δ I ∨K δ J .
That is the formulas (2) are true.
Accordingly the above δ can be continued to the relation [f ] for some funcoid f .
∀X, Y ∈P℧: (Y ∩F 〈f 〉X � ∅⇔X [f ]Y ⇔ Y ∩FαX � ∅), consequently ∀X ∈P℧:αX = 〈f 〉X.

So 〈f 〉 is a continuation of α. �

Note that by the last theorem to every proximity δ corresponds a unique funcoid. So fun-
coids are a generalization of proximity structures.

Definition 34. Any (multivalued) function f will be considered as a funcoid, where by defini-
tion 〈f 〉X =

⋂

F〈〈f 〉〉upX for every X ∈F.

Using the last theorem it is easy to show that this definition is monovalued and does not
contradict to former stuff.

Definition 35. Funcoids corresponding to a binary relation are called discrete funcoids .

We may equate discrete funcoids with corresponding binary relations by the method of
appendix B in [6]. This is useful for describing relationships of funcoids and binary relations,
such as for the formulas of continuous functions and continuous funcoids (see below). For sim-
plicity I will not dive here into formal definition of equating discrete funcoids with binary rela-
tions (by the method shown in appendix B in [6]) but we simply will (informally) assume that
discrete funcoids can be equated with binary relations.

I will denote FCD the set of funcoids or the category of funcoids (see below) dependently on
context.

3.4 Lattice of funcoids

Definition 36. f ⊆ g=
def

[f ]⊆ [g] for f , g ∈FCD.

Thus FCD is a poset.

Definition 37. I will call the filtrator of funcoids (see [6] for the definition of filtrators) the fil-
trator (FCD;P℧2).

Conjecture 38. The filtrator of funcoids is:

1. with separable core;

2. with co-separable core.

Theorem 39. The set of funcoids is a complete lattice. For every R∈PFCD and X,Y ∈P℧

1. X
[
⋃

FCDR
]

Y ⇔∃f ∈R:X [f ]Y ;

2.
〈
⋃

FCDR
〉

X =
⋃

F{〈f 〉X | f ∈R}.

Proof.

2. αX=
def⋃

F{〈f 〉X | f ∈R}. We have α∅= ∅;

α(I ∪J) =
⋃

F{〈f 〉(I ∪J) | f ∈R}

=
⋃

F
{

〈f 〉(I ∪F J) | f ∈R
}

=
⋃

F
{

〈f 〉I ∪F 〈f 〉 J | f ∈R
}

=
⋃

F{〈f 〉I | f ∈R}∪F
⋃

F{〈f 〉J | f ∈R}

= αI ∪FαJ.
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So α can be continued to 〈h〉 for a funcoid h. Obviously

∀f ∈R:h⊇ f. (4)

And h is the least funcoid for which holds the condition (4). So h=
⋃

FCDR.

1. X
[
⋃

FCDR
]

Y ⇔ Y ∩F
〈
⋃

FCDR
〉

X � ∅ ⇔ Y ∩F
⋃

F{〈f 〉X | f ∈ R} � ∅ ⇔ ∃f ∈ R:

Y ∩F 〈f 〉X � ∅⇔∃f ∈R:X [f ]Y (used the theorem 52 in [6]). �

In the next theorem, compared to the previous one, the class of infinite unions is replaced with
lesser class of finite unions and simultaneously class of sets is changed to more wide class of filter
objects.

Theorem 40. For every funcoids f and g and a filter object X

1.
〈

f ∪FCD g
〉

X = 〈f 〉X ∪F 〈g〉X ;

2.
[

f ∪F g
]

= [f ]∪ [g].

Proof.

1. Let αX =
def

〈f 〉X ∪F 〈g〉X ; βY=
def〈

f−1
〉

Y ∪F
〈

g−1
〉

Y for every X ,Y ∈F. Then

Y ∩FαX � ∅ ⇔ Y ∩F 〈f 〉X � ∅∨ Y ∩F 〈g〉X � ∅

⇔ X ∩F
〈

f−1
〉

Y � ∅∨X ∩F
〈

g−1
〉

Y � ∅

⇔ X ∩F βY � ∅.

So h = (α; β) is a funcoid. Obviously h ⊇ f and h ⊇ g. If p ⊇ f and p ⊇ g for some fun-

coid p then 〈p〉X ⊇ 〈f 〉X ∪F 〈g〉X = 〈h〉X that is p⊇h. So f ∪FCD g= h.

2. X
[

f ∪FCD g
]

Y ⇔ Y ∩F
〈

f ∪FCD g
〉

X � ∅ ⇔ Y ∩F (〈f 〉X ∪F 〈g〉X ) � ∅ ⇔ Y ∩F 〈f 〉X � ∅ ∨

Y ∩F 〈g〉X � ∅⇔X [f ]Y ∨X [g]Y for every X ,Y ∈F. �

3.5 More on composition of funcoids

Proposition 41. [g ◦ f ] = [g] ◦ 〈f 〉=
〈

g−1
〉

−1 ◦ [f ] for f , g ∈FCD.

Proof. X [g ◦ f ]Y ⇔ Y ∩F 〈g ◦ f 〉X � ∅ ⇔ Y ∩F 〈g〉〈f 〉X � ∅ ⇔ 〈f 〉X [g]Y ⇔ X ([g] ◦ 〈f 〉)Y for

every X , Y ∈ F. [g ◦ f ] =
[

(f−1 ◦ g−1)−1
]

=
[

f−1 ◦ g−1
]

−1 = (
[

f−1
]

◦
〈

g−1
〉

)−1 =
〈

g−1
〉

−1 ◦
[f ]. �

The following theorem is a variant for funcoids of the statement (which defines compositions
of relations) that x(g ◦ f)z⇔∃y(xfy ∧ ygz) for every x and z and every binary relations f and
g.

Theorem 42. For every X ,Z ∈F and f , g ∈FCD

X [g ◦ f ]Z⇔∃y ∈ atomsF℧: (X [f ]y ∧ y[g]Z).

Proof.

∃y ∈ atomsF℧: (X [f ]y ∧ y[g]Z) ⇔ ∃y ∈ atomsF℧: (Z ∩F 〈g〉y� ∅∧ y ∩F 〈f 〉X � ∅)

⇔ ∃y ∈ atomsF℧: (Z ∩F 〈g〉y� ∅∧ y ⊆〈f 〉X )

⇒ Z ∩F 〈g〉〈f 〉X � ∅

⇔ X [g ◦ f ]Z.

Reversely, if X [g ◦ f ]Z then 〈f 〉X [g]Z, consequently exists y ∈ atomsF〈f 〉X such that y[g]Z; we
have X [f ]y. �

Theorem 43. If f , g, h are funcoids then

1. f ◦ (g∪FCD h)= f ◦ g ∪FCD f ◦h;
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2. (g∪FCD h) ◦ f = g ◦ f ∪FCD h ◦ f .

Proof. I will prove only the first equality because the other is analogous.
For every X ,Z ∈F

X
[

f ◦ (g ∪FCD h)
]

Z ⇔ ∃y ∈ atomsF℧: (X
[

g∪FCD h
]

y∧ y[f ]Z)

⇔ ∃y ∈ atomsF℧: ((X [g]y∨ X [h]y)∧ y[f ]Z)

⇔ ∃y ∈ atomsF℧: (X [g]y ∧ y[f ]Z ∨ X [h]y ∧ y[f ]Z)

⇔ ∃y ∈ atomsF℧: (X [g]y ∧ y[f ]Z)∨ ∃y ∈ atomsF℧: (X [h]y∧ y[f ]Z)

⇔ X [f ◦ g]Z ∨ X [f ◦h]Z

⇔ X
[

f ◦ g ∪ FCDf ◦h
]

Z.

�

3.6 Domain and range of a funcoid

Definition 44. Let A∈F. The identity funcoid IA=(A∩F ;A∩F ).

Proposition 45. The identity funcoid is a funcoid.

Proof. We need to prove that (A∩FX )∩FY � ∅⇔ (A∩FY)∩FX � ∅ what is obvious. �

Obvious 46. (IA)−1= IA.

Obvious 47. X [IA]Y⇔A∩FX ∩FY � ∅ for anyX ,Y ∈F.

Definition 48. I will define restricting of a funcoid f to a filter object A by the formula

f |A=
def

f ◦ IA.

Obviously the last definition does not contradict to the previous.

Definition 49. Image of a funcoid f will be defined by the formula im f = 〈f 〉℧.
Domain of a funcoid f is defined by the formula dom f = imf−1.

Proposition 50. 〈f 〉X = 〈f 〉(X ∩Fdom f) for every f ∈FCD, X ∈F.

Proof. For every filter object Y we have Y ∩F 〈f 〉(X ∩F dom f) � ∅⇔X ∩F dom f ∩F
〈

f−1
〉

Y �
∅ ⇔ X ∩F imf−1 ∩F

〈

f−1
〉

Y � ∅ ⇔ X ∩F
〈

f−1
〉

Y � ∅ ⇔ Y ∩F 〈f 〉X � ∅. Thus 〈f 〉X =

〈f 〉(X ∩F dom f) because the lattice of filter objects is separable. �

Proposition 51. X ∩F dom f � ∅⇔〈f 〉X � ∅ for every f ∈ FCD, X ∈F.

Proof. X ∩F dom f � ∅⇔X ∩F
〈

f−1
〉

℧� ∅⇔℧∩F 〈f 〉X � ∅⇔〈f 〉X � ∅. �

Corollary 52. dom f =
⋃

F
{

a | a∈ atomsF℧, 〈f 〉a� ∅
}

.

Proof. This follows from that F is an atomistic lattice. �

3.7 Category of funcoids

I will define the category FCD of funcoids:

• The set of objects is F.

• The set of morphisms from a filter object A to a filter object B is the set of triples (f ;A;
B) where f is a funcoid such that dom f ⊆A, im f ⊆B.

• Composition of morphisms is defined in the natural way.

• Identity morphism of a filter object A is (IA;A;A).
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To prove that it is really a category is trivial.

3.8 Specifying funcoids by functions or relations on atomic filter
objects

Theorem 53. For every funcoid f and filter objects X and Y

1. 〈f 〉X =
⋃

F〈〈f 〉〉atomsFX ;

2. X [f ]Y⇔∃x∈ atomsFX , y ∈ atomsFY :x[f ]y.

Proof. 1.

Y ∩F 〈f 〉X � ∅ ⇔ X ∩F
〈

f−1
〉

Y � ∅

⇔ ∃x∈ atomsFX :x∩F
〈

f−1
〉

Y � ∅

⇔ ∃x∈ atomsFX :Y ∩F 〈f 〉x� ∅.

∂ 〈f 〉X =
⋃

〈∂ 〉 〈〈f 〉〉atomsFX = ∂
⋃

F〈〈f 〉〉atomsFX .
2. If X [f ]Y, then Y ∩F 〈f 〉X � ∅, consequently exists y ∈ atomsFY such that y ∩F 〈f 〉X � ∅,

X [f ]y. Repeating this second time we get that there exist x ∈ atomsFX such that x[f ]y. From
this follows

∃x∈ atomsFX , y ∈ atomsFY :x[f ]y.

The reverse is obvious. �

Theorem 54.

1. A function α∈FatomsF℧ such that (for every a∈ atomsF℧)

αa⊆
⋂

F
〈

⋃

F ◦ 〈α〉 ◦ atomsF
〉

up a (5)

can be continued to the function 〈f 〉 for a unique funcoid f ;

〈f 〉X =
⋃

F〈α〉atomsFX (6)

for every filter object X .

2. A relation δ ∈P(atomsF℧)2 such that (for every a, b∈ atomsF℧)

∀X ∈up a, Y ∈ up b ∃x∈ atomsFX, y ∈ atomsFY :x δ y⇒ a δ b (7)

can be continued to the relation [f ] for a unique funcoid f ;

X [f ]Y⇔∃x∈ atomsFX , y ∈ atomsFY:x δ y (8)

for every filter objects X , Y.

Proof. Existence of no more than one such funcoids and formulas (6) and (8) follow from the
previous theorem.

1. Consider the function α′∈F℧ defined by the formula (for every X ∈P℧)

α′X =
⋃

F〈α〉atomsFX.

Obviously α′ ∅= ∅. For every I , J ∈P℧

α′(I ∪J) =
⋃

F〈α′〉atomsF(I ∪J)

=
⋃

F〈α′〉(atomsF I ∪ atomsF J)

=
⋃

F
(

〈α′〉atomsF I ∪ 〈α′〉atomsF J
)

=
⋃

F〈α′〉 atomsF I ∪F
⋃

F〈α′〉atomsF J.

= α′ I ∪Fα′ J.

Let continue α′ till a funcoid f (by the theorem 25): 〈f 〉X =
⋂

F〈α′〉upX .
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Let’s prove the reverse of (5):
⋂

F
〈

⋃

F ◦ 〈α〉 ◦ atomsF
〉

up a =
⋂

F
〈

⋃

F ◦ 〈α〉
〉

〈

atomsF
〉

up a

⊆
⋂

F
〈

⋃

F ◦ 〈α〉
〉

{{a}}

=
⋂

F
{(

⋃

F ◦ 〈α〉
)

{a}
}

=
⋂

F
{

⋃

F〈α〉{a}
}

=
⋂

F
{

⋃

F{αa}
}

=
⋂

F{αa}=αa.

Finally,

αa=
⋂

F
〈

⋃

F ◦ 〈α〉 ◦ atomsF
〉

up a=
⋂

F〈α′〉up a= 〈f 〉a,

so 〈f 〉 is a continuation of α.
2. Consider the relation δ ′∈P(P℧)2 defined by the formula (for every X,Y ∈P℧)

X δ ′Y ⇔∃x∈ atomsFX, y ∈ atomsFY :x δ y.

Obviously ¬(X δ ′ ∅) and ¬(∅ δ ′Y ).

(I ∪ J) δ ′Y ⇔ ∃x∈ atomsF(I ∪J), y ∈ atomsFY :x δ y

⇔ ∃x∈ atomsFI ∪ atomsFJ , y ∈ atomsFY :x δ y

⇔ ∃x∈ atomsFI , y ∈ atomsFY : x δ y ∨ ∃x∈ atomsFJ , y ∈ atomsFY :x δ y

⇔ I δ ′Y ∨ J δ ′ Y ;

analogously X δ ′ (I ∪ J)⇔X δ ′ I ∨X δ ′ J . Let’s continue δ ′ till a funcoid f (by the theorem 25):

X [f ]Y⇔∀X ∈ upX , Y ∈up Y:X δ ′Y

The reverse of (7) implication is trivial, so

∀X ∈up a, Y ∈ up b ∃x∈ atomsFX, y ∈ atomsFY :x δ y⇔ a δ b.

∀X ∈up a, Y ∈ up b ∃x∈ atomsFX, y ∈ atomsFY :x δ y⇔∀X ∈up a, Y ∈ up b:X δ ′Y ⇔ a[f ]b.
So a δ b⇔ a[f ]b, that is [f ] is a continuation of δ. �

One of uses of the previous theorem is proof of the following theorem:

Theorem 55. If R is a set of funcoids, x, y ∈ atomsF℧, then

1.
〈
⋂

FCDR
〉

x=
⋂

F{〈f 〉x | f ∈R};

2. x
[
⋂

FCDR
]

y⇔∀f ∈R:x[f ]y.

Proof. 2. Let denote x δ y⇔∀f ∈R:x[f ]y.

∀X ∈up a, Y ∈ up b ∃x∈ atomsFX, y ∈ atomsFY :x δ y⇔

∀f ∈R,X ∈up a, Y ∈ up b ∃x∈ atomsFX, y ∈ atomsFY :x[f ]y⇒

∀f ∈R,X ∈ up a, Y ∈up b:X[f ]Y ⇒

∀f ∈R: a[f ]b⇔

a δ b.

So, by the theorem 54, δ can be continued till [p] for some funcoid p.
For every funcoid q such that ∀f ∈R: q ⊆ f we have x[q]y⇒∀f ∈R: x[f ]y⇔ x δ y⇔ x[p]y, so

q ⊆ p. Consequently p=
⋂

FCDR.

From this x
[
⋂

FCDR
]

y⇔∀f ∈R:x[f ]y.

1. From the former y ∈ atomsF
〈
⋂

FCDR
〉

x⇔ y ∩F
〈
⋂

FCDR
〉

x � ∅⇔ ∀f ∈R: y ∩F 〈f 〉x � ∅⇔

y ∈
⋂

〈

atomsF
〉

{〈f 〉x | f ∈ R} ⇔ y ∈ atomsF
⋂

F{〈f 〉x | f ∈ R} for every y ∈ atomsF ℧. From

this follows
〈
⋂

FCDR
〉

x=
⋂

F{〈f 〉x | f ∈R}. �
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3.9 Direct product of filter objects

A generalization of direct (Cartesian) product of two sets is direct product of two filter objects
as defined in the theory of funcoids:

Definition 56. Direct product of filter objects A and B is such a funcoid A×FCD B that

X
[

A×FCD B
]

Y⇔X ∩FA� ∅∧ Y ∩FB � ∅.

Proposition 57. A×FCD B is really a funcoid and

〈

A×FCD B
〉

X =

{

B if X ∩FA� ∅;

∅ if X ∩FA= ∅.

Proof. Obvious. �

Obvious 58. A×B=A×FCD B for sets A and B.

Proposition 59. f ⊆A×FCD B⇔ dom f ⊆A∧ im f ⊆B for every f ∈ FCD and A,B ∈F.

Proof. If f ⊆ A ×FCD B then dom f ⊆ dom(A ×FCD B) ⊆ A, im f ⊆ im(A ×FCD B) ⊆ B. If
dom f ⊆A∧ im f ⊆B then

∀X ,Y ∈F: (X [f ]Y⇒X ∩FA� ∅∧ Y ∩ FB � ∅);

consequently f ⊆A×FCD B. �

The following theorem gives a formula for calculating an important particular case of inter-
section on the lattice of funcoids:

Theorem 60. f ∩FCD (A×FCD B)= IB ◦ f ◦ IA for every f ∈ FCD and A,B ∈F.

Proof. h=
def

IB ◦ f ◦ IA. For every X ∈F

〈h〉X = 〈IB〉〈f 〉〈IA〉X =B ∩ 〈f 〉(A∩X ).

From this, as easy to show, h ⊆ f and h ⊆A × B. If g ⊆ f ∧ g ⊆A ×FCD B for a funcoid g then
dom g ⊆A, im g ⊆B,

〈g〉X =B ∩F 〈g〉(A∩FX )⊆B∩F 〈f 〉(A∩FX ) = 〈IB〉〈f 〉〈IA〉 X = 〈h〉X ,

g ⊆h. So h= f ∩FCD (A×FCD B). �

Corollary 61. f |A= f ∩ (A×FCD ℧) for every f ∈FCD and A∈F.

Proof. f ∩FCD (A×FCD ℧)= I℧ ◦ f ◦ IA= f ◦ IA= f |A. �

Corollary 62. f ∩FCD (A×FCD B)� ∅⇔A[f ]B for every f ∈FCD, A,B ∈F.

Proof. f ∩FCD (A ×FCD B) � ∅ ⇔
〈

f ∩FCD (A ×FCD B)
〉

℧ � ∅ ⇔ 〈IB ◦ f ◦ IA〉℧ � ∅ ⇔

〈IB〉〈f 〉〈IA〉℧� ∅⇔B∩FCD 〈f 〉(A∩F℧)� ∅⇔B∩F 〈f 〉A� ∅⇔A[f ]B. �

Corollary 63. The filtrator of funcoids is star-separable.

Proof. The set of direct products of sets is a separation subset of the lattice of funcoids. �

Theorem 64. If S ∈PF2 then
⋂

FCD
{

A×FCD B | (A;B)∈S
}

=
⋂

FdomS ×FCD
⋂

FimS.
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Proof. If x∈ atomsF℧ then by the theorem 55
〈

⋂

FCD
{

A×FCD B | (A;B)∈S
}

〉

x=
⋂

F
{〈

A×FCD B
〉

x | (A;B)∈S
}

.

If x∩F
⋂

FdomS � ∅ then

∀(A;B)∈S: (x∩FA� ∅∧
〈

A×FCD B
〉

x=B);
{〈

A×FCD B
〉

x | (A;B)∈S
}

= imS;

if x∩F
⋂

FdomS= ∅ then

∃(A;B)∈S: (x∩FA= ∅∧
〈

A×FCD B
〉

x= ∅);
{〈

A×FCD B
〉

x | (A;B)∈S
}

∋ ∅.

So
〈

⋂

FCD
{

A×FCD B | (A;B)∈S
}

〉

x=

{

⋂

FimS if x∩F
⋂

FdomS � ∅;

∅ if x∩F
⋂

FdomS= ∅.

From this follows the statement of the theorem. �

Corollary 65. (A0 ×FCD B0) ∩FCD (A1 ×FCD B1) = (A0 ∩FCD A1)×FCD (B0 ∩FCD B1) for every A0,

A1,B0,B1∈F.

Proof. (A0×FCD B0) ∩FCD (A1×FCD B1) =
⋂

F
{

A0 ×FCD B0,A1×FCD B1

}

what is by the last the-

orem equal to (A0∩FCD A1)×FCD (B0∩FCD B1). �

Theorem 66. If A∈ F thenA×FCD is a complete homomorphism of the lattice F to a complete
sublattice of the lattice FCD, if also A� ∅ then it is an isomorphism.

Proof. Let S ∈PF, X ∈P℧, x∈ atomsF℧.
〈

⋃

FCD
〈

A×FCD
〉

S
〉

X =
⋃

F
{〈

A×FCD B
〉

X | B ∈S
}

=

{

⋃

FS if X ∩FA� ∅

∅ if X ∩FA= ∅

=
〈

A×FCD
⋃

FS
〉

X ;

〈

⋂

FCD
〈

A×FCD
〉

S
〉

x =
⋂

F
{〈

A×FCD B
〉

x | B ∈S
}

=

{

⋂

FS if x∩FA� ∅

∅ if x∩FA= ∅

=
〈

A×FCD
⋂

FS
〉

x.

If A� ∅ then obviously the function A×FCD is injective. �

The following proposition states that cutting a rectangle of atomic width from a funcoid
always produces a rectangular (representable as a direct product of filter objects) funcoid (of
atomic width).

Proposition 67. If a is an atomic filter object, f ∈ FCD then f |a= a×FCD 〈f 〉a.

Proof. Let X ∈F.

X ∩ Fa� ∅⇒〈f |a〉X = 〈f 〉a, X ∩F a= ∅⇒〈f |a〉X = ∅. �

3.10 Atomic funcoids

Theorem 68. A funcoid is an atom of the lattice of funcoids iff it is direct product of two
atomic filter objects.
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Proof.

⇒ . Let f is an atomic funcoid. Let’s get elements a ∈ atomsF dom f and b ∈ atomsF〈f 〉a.
Then for every X ∈F

X ∩F a= ∅⇒
〈

a×FCD b
〉

X = ∅⊆ 〈f 〉X , X ∩F a� ∅⇒
〈

a×FCD b
〉

X = b⊆〈f 〉X .

So a×FCD b⊆ f ; because f is an atomic funcoid f = a×FCD b.

⇐ . Let a, b ∈ atomsF℧, f ∈ FCD. If b ∩F 〈f 〉a= ∅ then ¬(a[f ]b), f ∩F (a ×FCD b) = ∅; if b ⊆

〈f 〉a then ∀X ∈ F: (X ∩F a � ∅ ⇒ 〈f 〉X ⊇ b), f ⊇ a ×FCD b. Consequently

f ∩FCD (a×FCD b)= ∅∨ f ⊇ a×FCD b; that is a×FCD b is an atomic filter object. �

Theorem 69. The lattice of funcoids is atomic.

Proof. Let f is a non-empty funcoid. Then dom f � ∅, thus by the theorem 46 in [6] exists a ∈

atomsF dom f . So 〈f 〉a � ∅ thus exists b ∈ atoms 〈f 〉a. Finally the atomic funcoid a ×FCD b ⊆
f . �

Theorem 70. The lattice of funcoids is separable.

Proof. Let f , g ∈ FCD, f ⊂ g. Then exists a ∈ atomsF℧ such that 〈f 〉a ⊂ 〈g〉a. So because the

lattice F is atomically separable then exists b ∈ atomsF℧ such that 〈f 〉a ∩F b = ∅ and b ⊆ 〈g〉a.
For every x∈ atomsF℧

〈f 〉a∩F
〈

a×FCD b
〉

a= 〈f 〉a∩F b= ∅,

x� a⇒〈f 〉x∩F
〈

a×FCD b
〉

x= 〈f 〉x∩F ∅= ∅

Thus 〈f 〉x∩F 〈a× b〉x= ∅ and consequently f ∩FCD (a×FCD b)= ∅.
〈

a×FCD b
〉

a= b⊆〈g〉a,

x� a⇒
〈

a×FCD b
〉

x= ∅⊆ 〈g〉a.

Thus
〈

a×FCD b
〉

x⊆〈g〉x and consequently a×FCD b⊆ g.

So the lattice of funcoids is separable by the theorem 19 in [6]. �

Corollary 71. The lattice of funcoids is:

1. separable;

2. atomically separable;

3. conforming to Wallman’s disjunction property.

Proof. By the theorem 22 in [6]. �

Remark 72. For more ways to characterize (atomic) separability of the lattice of funcoids see
[6], subsections “Separation subsets and full stars” and “Atomically separable lattices”.

Corollary 73. The lattice of funcoids is an atomistic lattice.

Proof. Let f is a funcoid. Suppose contrary to the statement to be proved that
⋃

FatomsFCDf ⊂ f . Then exists a ∈ atomsFCDf such that a ∩F
⋃

FatomsFCDf = ∅ what is impos-
sible. �

Proposition 74. atomsFCD(f ∪F g)= atomsFCDf ∪ atomsFCDg for every funcoids f and g.

Proof. (a×FCD b) ∩FCD (f ∪FCD g) � ∅⇔ a
[

f ∪FCD g
]

b⇔ a[f ]b ∨ a[g]b⇔ (a×FCD b) ∩FCD f � ∅ ∨

(a×FCD b)∩FCD g � ∅ for every atomic filter objects a and b. �

Corollary 75. For every f , g, h∈FCD, R∈PFCD

1. f ∩FCD (g∪FCD h)= (f ∩FCD g)∪FCD (f ∩FCD h);

2. f ∪FCD
⋂

FCDR=
⋂

FCD
〈

f ∪FCD
〉

R.
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Proof. We will take in account that the lattice of funcoids is an atomistic lattice. To be concise
I will write atoms instead of atomsFCD and ∩ and ∪ instead of ∩FCD and ∪FCD .

1. atoms(f ∩ (g ∪ h)) = atoms f ∩ atoms(g ∪ h) = atoms f ∩ (atoms g ∪ atoms h) = (atoms f ∩
atoms g)∪ (atoms f ∩ atomsh)= atoms(f ∩ g)∪ atoms(f ∩h) = atoms((f ∩ g)∪ (f ∩h)).

2. atoms
(

f ∪
⋂

FCDR
)

= atoms f ∪ atoms
⋂

FCDR = atoms f ∪
⋂

FCD〈atoms〉R =
⋂

FCD〈(atoms f) ∪ 〉〈atoms〉R =
⋂

FCD〈atoms〉〈f ∪ 〉R= atoms
⋂

FCD〈f ∪ 〉R. (Used the fol-
lowing equality.)

〈(atoms f)∪ 〉〈atoms〉R =

{(atoms f)∪A | A∈ 〈atoms〉R} =

{(atoms f)∪A | ∃C ∈R:A= atomsC} =

{(atoms f)∪ (atomsC) | C ∈R} =

{atoms(f ∪C) | C ∈R} =

{atomsB | ∃C ∈R:B= f ∪C} =

{atomsB | B ∈ 〈f ∪ 〉R} =

〈atoms〉〈f ∪ 〉.

�

Note that distributivity of the lattice of funcoids is proved through using atoms of this lattice. I
have never seen such method of proving distributivity.

Corollary 76. The lattice of funcoids is co-brouwerian.

The next proposition is one more (among the theorem 42) generalization for funcoids of com-
position of relations.

Proposition 77. For every f , g ∈ FCD

atomsFCD(g ◦ f) =
{

x×FCD z | x, z ∈ atomsF℧, ∃y ∈ atomsF℧: (x×FCD y ∈ atomsFCDf ∧ y×FCD z ∈

atomsFCDg)
}

.

Proof. (x ×FCD z) ∩FCD (g ◦ f) � ∅⇔ x[g ◦ f ]z⇔∃y ∈ atomsF℧: (x[f ]y ∧ y[g]z)⇔∃y ∈ atomsF℧:
((x×FCD y)∩FCD f � ∅∧ (y×FCD z)∩FCD g � ∅) (were used the theorem 42). �

Conjecture 78. The set of discrete funcoids is the center of the lattice of funcoids.

3.11 Complete funcoids

Definition 79. I will call co-complete such a funcoid f that ∀X ∈P℧: 〈f 〉X ∈P℧.

Remark 80. I will call generalized closure such a function α∈P℧P℧ that

1. α∅= ∅;

2. ∀I , J ∈P℧:α(I ∪ J)=αI ∪αJ .

Obvious 81. A funcoid f is co-complete iff 〈f 〉|P℧ is a generalized closure.

Remark 82. Thus funcoids can be considered as a generalization of generalized closures. A
topological space in Kuratowski sense is the same as reflexive and transitive generalized closure.
So topological spaces can be considered as a special case of funcoids.

Definition 83. I will call a complete funcoid a funcoid whose reverse is co-complete.

Theorem 84. The following conditions are equivalent for every funcoid f :

1. funcoid f is complete;
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2. ∀S ∈PF, J ∈P℧: (
⋃

FS[f ]J⇔∃I ∈S: I[f ]J);

3. ∀S ∈PP℧, J ∈P℧: (
⋃

S[f ]J⇔∃I ∈S: I[f ]J);

4. ∀S ∈PF: 〈f 〉
⋃

FS=
⋃

F〈〈f 〉〉S;

5. ∀S ∈PP℧: 〈f 〉
⋃

S=
⋃

F〈〈f 〉〉S;

6. ∀A∈P℧: 〈f 〉A=
⋃

F{〈f 〉a | a∈A}.

Proof.

(3)⇒ (1). For every S ∈PP℧, J ∈P℧
⋃

S ∩F
〈

f−1
〉

J � ∅⇔∃I ∈S: I ∩F
〈

f−1
〉

J � ∅, (9)

consequently by the theorem 52 in [6] we have
〈

f−1
〉

J ∈P℧.

(1)⇒ (2). For every S ∈PF, J ∈P℧ we have
〈

f−1
〉

J ∈P℧, consequently the formula (9)
is true. From this follows (2).

(6)⇒ (5). 〈f 〉
⋃

S =
⋃

F{〈f 〉a | a ∈
⋃

S} =
⋃

F
{
⋃

F{〈f 〉a | a ∈ A} | A ∈ S
}

=
⋃

F{〈f 〉A | A∈S}=
⋃

F〈〈f 〉〉S.

(2)⇒ (4). J ∩F 〈f 〉
⋃

FS � 0 ⇔
⋃

FS[f ]J ⇔ ∃I ∈ S: I[f ]J ⇔ ∃I ∈ S: J ∩F 〈f 〉I � ∅ ⇔

J ∩F
⋃

F〈〈f 〉〉S � ∅ (used the theorem 52 in [6]).

(2)⇒ (3), (4)⇒ (5), (5)⇒ (3), (5)⇒ (6). Obvious. �

The following proposition shows that complete funcoids are a direct generalization of pre-topo-
logical spaces.

Proposition 85. To specify a complete funcoid f it is enough to specify 〈f 〉 on one-element
sets, values of 〈f 〉 on one element sets can be specified arbitrarily.

Proof. From the above theorem is clear that knowing 〈f 〉 on one-element sets 〈f 〉 can be found
on every set and then its value can be inferred for every filter objects.

Choosing arbitrarily the values of 〈f 〉 on one-element sets we can define a complete funcoid

the following way: 〈f 〉X=
def⋃

F{〈f 〉{α} | α ∈X} for every X ∈P℧. Obviously it is really a com-
plete funcoid. �

Theorem 86. A funcoid is discrete iff it is both complete and co-complete.

Proof.

⇒ . Obvious.

⇐ . Let f is both a complete and co-complete funcoid. Consider the relation g defined by
that 〈g〉{α}= 〈f 〉{α} (g is correctly defined because f is a generalized closure). Because
f is a complete funcoid f = g. �

Theorem 87. If R is a set of (co-)complete funcoids then
⋃

FCDR is a (co-)complete funcoid.

Proof. It is enough to prove only for co-complete funcoids. Let R is a set of co-complete fun-
coids. Then for every X ∈P℧

〈

⋃

FCDR
〉

X =
⋃

{〈f 〉X | f ∈R}∈P℧

(used the theorem 39). �

Corollary 88. If R is a set of binary relations then
⋃

FCDR=
⋃

R.

Proof. From two last theorems. �

Theorem 89. The filtrator of funcoids is filtered.
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Proof. It’s enough to prove that every funcoid is representable as (infinite) meet (on the lattice
of funcoids) of some set of discrete funcoids.

Let f ∈FCD, A∈P℧, B ∈up〈f 〉A, g(A;B)=
def

A×FCD B ∪FCD A×FCD ℧. For every X ∈P℧

〈g(A;B)〉X =
〈

A×FCD B
〉

X ∪
〈

A×FCD ℧
〉

X =











∅ if X = ∅
B if ∅� X ⊆A

℧ if X *A



⊇〈f 〉X;

so g(A;B)⊇ f . For every A∈P℧
⋂

F{〈g(A;B)〉A | B ∈up〈f 〉A}=
⋂

F{B | B ∈up〈f 〉A}= 〈f 〉A;

consequently
⋂

FCD{g(A;B) | A∈P℧, B ∈ up〈f 〉A}= f. �

Conjecture 90. If f is a complete funcoid and R is a set of funcoids then f ◦
⋃

FCDR =
⋃

FCD〈f ◦ 〉R.

This conjecture can be weakened:

Conjecture 91. If f is a discrete funcoid and R is a set of funcoids then f ◦
⋃

FCDR =
⋃

FCD〈f ◦ 〉R.

I will denote ComplFCD and CoComplFCD the sets of complete and co-complete funcoids
correspondingly.

Obvious 92. ComplFCD and CoComplFCD are closed regarding composition of funcoids.

Proposition 93. ComplFCD and CoComplFCD (with induced order) are complete lattices.

Proof. Follows from the corollary 87. �

3.12 Completion of funcoids

Theorem 94. Cor f = Cor′ f for an element f of the filtrator of funcoids. (Core part is taken
for the filtrator of funcoids.)

Proof. From the theorem 26 in [6] and the corollary 88 and theorem 89. �

Definition 95. Completion of a funcoid f is the complete funcoid Compl f defined by the for-
mula 〈Compl f 〉{α}= 〈f 〉{α} for α∈℧.

Definition 96. Co-completion of a funcoid f is defined by the formula

CoCompl f =(Compl f−1)−1.

Obvious 97. Compl f ⊆ f and CoCompl f ⊆ f for every funcoid f .

Proposition 98. The filtrator (FCD;ComplFCD) is filtered.

Proof. Because the filtrator (FCD;P℧2) is filtered. �

Theorem 99. Compl f =Cor(FCD;ComplFCD)f =Cor′
(FCD;ComplFCD)

f .

Proof. Cor(FCD;ComplFCD)f = Cor′
(FCD;ComplFCD)

f since (the theorem 26 in [6]) the filtrator
(FCD;ComplFCD) is filtered and with join closed core (the theorem 87).

Let g ∈up(FCD;ComplFCD) f . Then g ∈ComplFCD and g ⊇ f . Thus g=Compl g ⊇Compl f .

Thus ∀g ∈up(FCD;ComplFCD) f : g ⊇Compl f .

Let ∀g ∈ up(FCD;ComplFCD) f :h⊆ g for some h∈ComplFCD.

Then h⊆
⋂

FCDup(FCD;ComplFCD) f = f and consequently h=Complh⊆Compl f .
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Thus Compl f =
⋂

ComplFCDup(FCD;ComplFCD) f =Cor(FCD;ComplFCD)f . �

Theorem 100. Atoms of the lattice ComplFCD are exactly direct products of the form
{α}×FCD b where α∈℧ and b is an atomic f.o.

Proof. First, easy to see that {α} ×FCD b are elements of ComplFCD. Also ∅ is an element of
ComplFCD.

{α}×FCD b are atoms of ComplFCD because these are atoms of FCD.
Remain to prove that if f is an atom of ComplFCD then f = {α} ×FCD b for some α ∈℧ and

an atomic f.o. b.
Suppose f is a non-empty complete funcoid. Then exists α ∈ ℧ such that 〈f 〉{α} � ∅. Thus

{α}×FCD b⊆ f for some atomic f.o. b. If f is an atom then f = {α}×FCD b. �

Theorem 101. 〈CoCompl f 〉X =Cor 〈f 〉X for every funcoid f and set X.

Proof. CoCompl f ⊆ f thus 〈CoCompl f 〉X ⊆ 〈f 〉X , but 〈CoCompl f 〉X ∈ P℧ thus
〈CoCompl f 〉X ⊆Cor 〈f 〉X.

Let αX =Cor 〈f 〉X . Then α∅= ∅ and

α(X ∪Y )=Cor 〈f 〉(X ∪Y )=Cor(〈f 〉X ∪ 〈f 〉Y ) =Cor 〈f 〉X ∪Cor 〈f 〉Y =αX ∪αY .

(used the theorem 64 from [6]). Thus α can be continued till 〈g〉 for some funcoid g. This fun-
coid is co-complete.

Evidently g is the greatest co-complete funcoid which is lower than f .
Thus g=CoCompl f and so Cor 〈f 〉X =αX = 〈g〉X = 〈CoCompl f 〉X. �

Theorem 102. ComplFCD is an atomistic lattice.

Proof. Let f ∈ ComplFCD. 〈f 〉X =
⋃

F{〈f 〉{x} | x ∈ X} =
⋃

F
{〈

f |{x}
〉

{x} | x ∈ X
}

=
⋃

F
{〈

f |{x}
〉

X | x ∈X
}

, thus f =
⋃

FCD
{

f |{x} | x ∈X
}

. It is trivial that every f |{x} is a union

of atoms of ComplFCD. �

Theorem 103. A funcoid is complete iff it is a join (on the lattice FCD) of atomic complete
funcoids.

Proof. Follows from the theorem 87 and the previous theorem. �

Corollary 104. ComplFCD is join-closed.

Theorem 105. Compl(
⋃

FCDR) =
⋃

FCD〈Compl〉R for every set R of funcoids.

Proof.
〈

Compl(
⋃

FCDR)
〉

X =
⋃

F
{〈

⋃

FCDR
〉

{α} | α ∈ X
}

=
⋃

F
{
⋃

F{〈f 〉{α} | f ∈ R} | α ∈

X
}

=
⋃

F
{
⋃

F{〈f 〉{α} | α ∈X} | f ∈ R
}

=
⋃

F{〈Compl f 〉X | f ∈ R} =
〈
⋃

FCD〈Compl〉R
〉

X for

every set X . �

Lemma 106. Co-completion of a complete funcoid is complete.

Proof. Let f is a complete funcoid.
〈CoCompl f 〉X = Cor 〈f 〉X = Cor

⋃

F{〈f 〉{x} | x ∈ X} =
⋃

{Cor 〈f 〉{x} | x ∈ X} =
⋃

{〈CoCompl f 〉 {x} | x∈X} for every set X . Thus CoCompl f is complete. �

Theorem 107. ComplCoCompl f =CoComplCompl f =Cor f for every funcoid f .

Proof. Compl CoCompl f is co-complete since (used the lemma) CoCompl f is co-complete.
Thus Compl CoCompl f is a discrete funcoid. CoCompl f is the the greatest co-complete funcoid
under f and Compl CoCompl f is the greatest complete funcoid under CoCompl f . So
Compl CoCompl f is greater than any discrete funcoid under CoCompl f which is greater than
any discrete funcoid under f . Thus Compl CoCompl f it is the greatest discrete funcoid under
f . Thus ComplCoCompl f =Cor f . Similarly CoComplCompl f =Cor f . �

Question 108. Is ComplFCD a co-brouwerian lattice?
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3.13 Monovalued funcoids

Following the idea of definition of monovalued morphism let’s call monovalued such a funcoid f

that f ◦ f−1⊆ Iim f.

Obvious 109. A morphism (f ;A;B) of the category of funcoids is monovalued iff the funcoid f

is monovalued.

Theorem 110. The following statements are equivalent for a funcoid f :

1. f is monovalued.

2. ∀a∈ atomsFA: 〈f 〉a∈ atomsF℧∪ {∅}.

3. ∀I ,J ∈F:
〈

f−1
〉

(I ∩FJ )=
〈

f−1
〉

I ∩F
〈

f−1
〉

J .

4. ∀I , J ∈P℧:
〈

f−1
〉

(I ∩J) =
〈

f−1
〉

I ∩F
〈

f−1
〉

J .

Proof.

(2)⇒ (3). Let a∈ atomsF℧, 〈f 〉a= b. Then because b∈ atomsF℧∪ {∅}

(I ∩FJ )∩F b� ∅⇔I ∩F b� ∅∧ J ∩F b� ∅;

a[f ](I ∩FJ )⇔ a[f ]I ∧ a[f ]J ;

(I ∩FJ )
[

f−1
]

a⇔I
[

f−1
]

a∧J
[

f−1
]

a;

a∩F
〈

f−1
〉

(I ∩FJ )� ∅⇔ a∩F
〈

f−1
〉

I � ∅∧ a∩F
〈

f−1
〉

J � ∅;
〈

f−1
〉

(I ∩FJ ) =
〈

f−1
〉

I ∩F
〈

f−1
〉

J .

(4)⇒ (1).
〈

f−1
〉

a ∩F
〈

f−1
〉

b = ∅ for every two distinct atomic filter objects a and b. This

is equivalent to ¬(
〈

f−1
〉

a[f ]b); b ∩F 〈f 〉
〈

f−1
〉

a= ∅; b ∩F
〈

f ◦ f−1
〉

a= ∅; ¬(a
[

f ◦ f−1
]

b).

So a
[

f ◦ f−1
]

b⇒ a= b for every atomic filter objects a and b. This is possible only when

f ◦ f−1⊆ IDst f.

(3)⇒ (4). Obvious.

¬(2)⇒¬(1). Suppose 〈f 〉a � atomsFB ∪ {∅} for some a ∈ atomsFA. Then there exist two
atomic filter objects p � q such that 〈f 〉a ⊇ p ∧ 〈f 〉a ⊇ q. Consequently p ∩F 〈f 〉a � ∅;

a ∩F
〈

f−1
〉

p� ∅; a ⊆
〈

f−1
〉

p;
〈

f ◦ f−1
〉

p= 〈f 〉
〈

f−1
〉

p⊇ 〈f 〉a⊇ q;
〈

f ◦ f−1
〉

p * p. So it

cannot be f ◦ f−1⊆ IDst f. �

Corollary 111. A binary relation is a monovalued funcoid iff it is a function.

Proof. Because ∀I , J ∈P℧:
〈

f−1
〉

(I ∩ J) =
〈

f−1
〉

I ∩F
〈

f−1
〉

J is true for a binary relation f if
and only if it is a function. �

Remark 112. This corollary can be reformulated as follows: For binary relations the classic
concept of monovaluedness and monovaluedness in the above defined sense of monovaluedness of
a funcoid are the same.

3.14 T0-, T1- and T2-separable funcoids

For funcoids can be generalized T0-, T1- and T2- separability. Worthwhile note that T0 and T2

separability is defined through T1 separability.

Definition 113. Let call T1-separable such funcoid f that for every α, β ∈℧ is true

α� β⇒¬({α}[f ]{β})

Definition 114. Let call T0-separable such funcoid f that f ∩FCD f−1 is T1-separable.

Definition 115. Let call T2-separable such funcoid f that the funcoid f−1 ◦ f is T1-separable.

For symmetric transitive funcoids T1- and T2-separability are the same (see theorem 12).
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Obvious 116. A funcoid f is T2-separable iff α� β⇒〈f 〉{α}∩F 〈f 〉{β}= ∅ for every α, β ∈℧.

3.15 Filter objects closed regarding a funcoid

Definition 117. Let’s call closed regarding a funcoid f such filter object A that 〈f 〉A ⊆A.

This is a generalization of closedness of a set regarding an unary operation.

Proposition 118. If I and J are closed (regarding some funcoid), S is a set of closed filter
objects, then

1. I ∪FJ is a closed filter object;

2.
⋂

FS is a closed filter object.

Proof. Let denote the given funcoid as f . 〈f 〉(I ∪F J ) = 〈f 〉I ∪F 〈f 〉J ⊆ I ∪F J , 〈f 〉
⋂

FS ⊆
⋂

F〈〈f 〉〉S ⊆
⋂

FS. Consequently the filter objects I ∪FJ and
⋂

FS are closed. �

Proposition 119. If S is a set of closed regarding a complete funcoid filter objects, then the
filter object

⋃

FS is also closed regarding our funcoid.

Proof. 〈f 〉
⋃

FS=
⋃

F〈〈f 〉〉S ⊆
⋃

FS where f is the given funcoid. �

4 Reloids

Definition 120. I will call a reloid a filter object on the set of binary relations.

Reloids are a generalization of uniform spaces. Also reloids are generalization of binary rela-
tions (the set of binary relations is a subset of the set of reloids, I will call discrete these reloids
which are binary relations).

Definition 121. The reverse reloid of a reloid f is defined by the formula

up f−1=
{

F−1 | F ∈up f−1
}

.

Reverse reloid is a generalization of conjugate quasi-uniformity.
I will denote RLD either the set of reloids or the category of reloids (defined below), depen-

dently on context.

4.1 Composition of reloids

Definition 122. Composition of reloids is defined by the formula

g ◦ f =
⋂

RLD{G ◦F | F ∈ up f ,G∈ up g}.

Composition of reloids is a reloid.

Theorem 123. (h ◦ g) ◦ f = h◦ (g ◦ f) for every reloids f , g, h.

Proof. For two nonempty collections A and B of sets I will denote

A∼B⇔ (∀K ∈A∃L∈B:L⊆K)∧ (∀K ∈B∃L∈A:L⊆K).

It is easy to see that ∼ is a transitive relation.
I will denote B ◦A= {L ◦K |K ∈A,L∈B}.
Let first prove that for every nonempty collections of relations A, B, C

A∼B⇒A ◦C∼B ◦C.
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Suppose A∼B and P ∈A ◦C that is K ∈A and M ∈C such that P =K ◦M . ∃K ′ ∈B:K ′⊆K

because A∼ B. We have P ′ =K ′ ◦M ∈ B ◦ C. Obviously P ′ ⊆ P . So for every P ∈ A ◦ C exist
P ′∈B ◦C such that P ′⊆P ; vice versa is analogous. So A ◦C∼B ◦C.

up((h ◦ g) ◦ f)∼ up(h ◦ g) ◦ up f , up(h ◦ g)∼ (uph) ◦ (up g). By proven above up((h ◦ g) ◦ f)∼
(uph) ◦ (up g) ◦ (up f).

Analogously up(h◦ (g ◦ f))∼ (uph) ◦ (up g) ◦ (up f).
So up((h ◦ g) ◦ f)∼ up(h ◦ (g ◦ f)) what is possible only if up((h ◦ g) ◦ f)= up(h◦ (g ◦ f)). �

Theorem 124.

1. f ◦ f =
⋂

RLD{F ◦F | F ∈ up f };

2. f−1 ◦ f =
⋂

RLD
{

F−1 ◦F | F ∈ up f
}

;

3. f ◦ f−1=
⋂

RLD
{

F ◦F−1 | F ∈up f
}

.

Proof. I will prove only (1) and (2) because (3) is analogous to (2).

1. Enough to show that ∀F ,G∈ up f∃H ∈up f :H ◦H ⊆G ◦F . To prove it take H =F ∩G.

2. Enough to show that ∀F , G ∈ up f∃H ∈ up f :H−1 ◦H ⊆ G−1 ◦ F . To prove it take H =
F ∩G. Then H−1 ◦H =(F ∩G)−1 ◦ (F ∩G)⊆G−1 ◦F . �

Conjecture 125. If f , g, h are reloids then

1. f ◦ (g∪RLD h) = f ◦ g∪RLD f ◦h;

2. (g∪RLD h) ◦ f = g ◦ f ∪RLD h ◦ f .

4.2 Direct product of filter objects

In theory of reloids direct product of filter objects A and B is defined by the formula

A×RLD B=
def⋂

F{A×B | A∈ upA, B ∈upB}.

Theorem 126. A×RLD B=
⋃

F
{

a×RLD b | a∈ atomsFA, b∈ atomsFB
}

for every A,B ∈F.

Proof. Obviously

A×RLD B ⊇
⋃

F
{

a×RLD b | a∈ atomsFA, b∈ atomsFB
}

Reversely, let K ∈ up
⋃

F
{

a ×RLD b | a ∈ atomsFA, b ∈ atomsFB
}

. Then K ∈ up(a ×RLD b) for

every a ∈ atomsFA, b ∈ atomsFB; K ⊇Xa ×RLD Yb for some Xa ∈ up a, Yb ∈ up b; K ⊇
⋃

{

Xa ×

Yb | a ∈ atomsFA, b ∈ atomsFB
}

=
⋃

{

Xa | a ∈ atomsFA
}

×
⋃

{

Yb | b ∈ atomsFA
}

⊇ A × B

where A∈ upA, B ∈upB; K ∈ up(A×RLD B). �

Theorem 127. (A0×RLD B0)∩RLD (A1×RLD B1) = (A0 ∩RLD A1)×RLD (B0 ∩RLD B1) for every A0,

A1,B0,B1∈F.

Proof.

(A0×RLD B0)∩RLD (A1×RLD B1) =
⋂

RLD
{

P ∩Q | P ∈ up(A0×RLD B0), Q∈up(A1×RLD B1)
}

=
⋂

RLD{(A0 × B0) ∩ (A1 × B1) | A0 ∈ upA0, B0 ∈ upB0, A1 ∈

upA1, B1∈ upB1}

=
⋂

RLD{(A0 ∩ A1) × (B0 ∩ B1) | A0 ∈ upA0, B0 ∈ upB0, A1 ∈

upA1, B1∈ upB1}

=
⋂

RLD{K ×L | K ∈ up(A0∩A1), L∈ up(B0∩B1)}

= (A0∩RLD A1)×RLD (B0∩RLD B1).

�
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Theorem 128. If S ∈PF2 then
⋂

RLD
{

A×RLD B | (A;B)∈S
}

=
⋂

FdomS ×RLD
⋂

FimS.

Proof. Let P =
⋂

FdomS, Q=
⋂

FimS; l=
⋂

RLD
{

A×RLD B | (A;B)∈S
}

.
P ×RLD Q⊆ l is obvious.
Let F ∈ up(P ×RLD Q). Then exist P ∈upP and Q∈upQ such that F ⊇P ×Q.
P =P1∩	 ∩Pn where Pi∈ 〈up〉domS and Q=Q1∩	 ∩Qm where Qi∈ 〈up〉imS.
P ×Q=

⋂

i,j
(Pi×Qi).

Pi×Qi⊇A×RLD B for some (A;B)∈S. P ×Q=
⋂

i,j
(Pi×Qi)⊇ l. F ∈ up l. �

Conjecture 129. If A∈F then A×RLD is a complete homomorphism of the lattice F to a com-
plete sublattice of the lattice RLD, if also A� ∅ then it is an isomorphism.

Definition 130. I will call a reloid convex iff it is a union of direct products.

Example 131. Non-convex reloids exist.

Proof. Let a is a non-trivial atomic f.o. Then (=)|a is non-convex. This follows from the fact
that only direct products which are below (=) are direct products of atomic f.o. and (=)|a is
not their join. �

I will call two filter objects isomorphic when the corresponding filters are isomorphic (in the
sense defined in [6]).

Theorem 132. The reloid {a}×RLD F is isomorphic to the filter object F for every a∈℧.

Proof. Consider B= {a}×℧ and f = {(x; (a; x)) | x∈℧}. Then f is a bijection from ℧ to B.

If X ∈ upF then 〈f 〉X ⊆B and 〈f 〉X = {a}×X ∈ up({a}×RLD F).

For every Y ∈ up({a} ×RLD F) ∩PB we have Y = {a} ×X for some X ∈ up F and thus Y =
〈f 〉X .

So 〈f 〉|up F∩P℧= 〈f 〉|up F is a bijection from upF ∩P℧ to up({a}×RLD F)∩PB.

We have upF ∩P℧ and up({a}×RLD F)∩PB directly isomorphic and thus upF is isomor-
phic to up({a}×RLD F). �

4.3 Restricting reloid to a filter object. Domain and image

Definition 133. I call restricting a reloid f to a filter object A as f |A= f ∩RLD (A×RLD ℧).

Definition 134. Domain and image of a reloid f are defined as follows:

dom f =
⋂

F〈dom〉up f ; im f =
⋂

F〈im〉up f.

Proposition 135. f ⊆A×RLD B⇔ dom f ⊆A∧ im f ⊆B.

Proof.

⇒ . Follows from dom(A×RLD B)⊆A∧ im(A×RLD B)⊆B.

⇐ . dom f ⊆A⇔∀A∈upA∃F ∈ up f : domF ⊆A. Analogously

im f ⊆B⇔∀B ∈ upB ∃G∈ up f : imG⊆B.

Let dom f ⊆ A ∧ im f ⊆ B, A ∈ upA, B ∈ upB. Then exist F ∈ up f , G ∈ up f such that
domF ⊆A∧ imG⊆B. Consequently F ∩G ∈ up f , dom(F ∩G)⊆A, im(F ∩G)⊆B that
is F ∩G ⊆ A ×B. So exists H ∈ up f such that H ⊆ A ×B for every A ∈ upA, B ∈ upB.
So f ⊆A×RLD B. �
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Definition 136. I call identity reloid for a filter object A the reloid IA=
def

(=)|A.

Theorem 137. IA=
⋂

F{IA | A∈ upA} where IA is the identity relation on a set A.

Proof. Let K ∈ up
⋂

F{IA | A ∈ up A}, then exists A ∈ upA such that K ⊇ IA. Then IA =
(=)|A=(=)∩RLD (A×℧)⊆ (=)∩ (A×℧)= IA⊆K; K ∈ up IA.

Reversely let K ∈ up IA = up((=) ∩RLD (A ×RLD ℧)), then exists A ∈ upA such that K ∈

up((=)∩ (A×℧))= up IA⊆up
⋂

F{IA | A∈ upA}. �

Proposition 138. IA
−1= IA.

Proof. Follows from the previous theorem. �

Theorem 139. f |A= f ◦ IA for every reloid f and filter object A.

Proof. We need to prove that f ∩RLD (A × ℧) = f ◦
⋂

RLD{IA | A ∈ upA}. f ◦
⋂

RLD{IA | A ∈

upA}=
⋂

RLD{F ◦ IA | F ∈ up f , A ∈ upA}=
⋂

RLD{F |A | F ∈ up f , A ∈ upA}=
⋂

RLD{F ∩ (A ×

℧) | F ∈ up f , A ∈ upA} =
⋂

RLD{F | F ∈ up f } ∩
⋂

RLD{A × ℧ | A ∈ upA} =

f ∩RLD (A×RLD ℧). �

Theorem 140. (g ◦ f)|A= g ◦ (f |A) for every reloids f and g and filter object A.

Proof. (g ◦ f)|A=(g ◦ f) ◦ IA=g ◦ (f ◦ IA)= g ◦ (f |A). �

Theorem 141. f ∩RLD (A×RLD B)= IB ◦ f ◦ IA for every reloid f and filter objects A and B.

Proof. f ∩RLD (A ×RLD B) = f ∩RLD (A ×RLD ℧) ∩RLD (℧ ×RLD B) = f |A ∩RLD (℧ × B) = f ◦

IA ∩RLD (℧ × B) = ((f ◦ IA)
−1 ∩RLD (℧ ×RLD B)−1)−1 = ((IA ◦ f−1) ∩RLD (B ×RLD ℧))−1 = (IA ◦

f−1 ◦ IB)−1= IB ◦ f ◦ IA. �

4.4 Category of reloids

I will define the category RLD of reloids:

• The set of objects is F.

• The set of morphisms from a filter object A to a filter object B is the set of triples (f ;A;
B) where f is a reloid such that dom f ⊆A, im f ⊆B.

• Composition of morphisms is defined in the natural way.

• Identity morphism of a filter object A is (IA;A;A).

To prove that it is really a category is trivial.

4.4.1 Monovalued reloids

Following the idea of definition of monovalued morphism let’s call monovalued such a reloid f

that f ◦ f−1⊆ Iim f.

Obvious 142. A morphism (f ;A; B) of the category of reloids is monovalued iff the reloid f is
monovalued.

Conjecture 143. If a reloid is monovalued then it is a monovalued function restricted to some
filter object.

Conjecture 144. A reloid f is monovalued iff ∀g ∈RLD: (g ⊆ f⇒∃A∈F: g= f |A).

Conjecture 145. A monovalued reloid restricted to an atomic filter object is atomic or empty.

A weaker conjecture:
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Conjecture 146. A (monovalued) function restricted to an atomic filter object is atomic or
empty.

4.5 Complete reloids and completion of reloids

Definition 147. A complete reloid is a reloid representable as join of direct products
{α}×RLD b where α∈℧ and b is an atomic f.o.

Definition 148. A co-complete reloid is a reloid representable as join of direct products
a×RLD {β} where β ∈℧ and a is an atomic f.o.

I will denote the sets of complete and co-complete reloids correspondingly as ComplRLD and
CoComplRLD.

Obvious 149. Complete and co-complete are dual.

Obvious 150. Complete and co-complete reloids are convex.

Obvious 151. Discrete reloids are complete and co-complete.

Conjecture 152. If a reloid is both complete and co-complete then it is discrete.

Conjecture 153. Composition of complete reloids is complete.

Obvious 154. Join (on the lattice of reloids) of complete reloids is complete.

Corollary 155. ComplRLD (with the induced order) is a complete lattice.

Definition 156. Completion and co-completion of a reloid f are defined by the formulas:

Compl f =Cor(RLD;ComplRLD)f and CoCompl f =Cor(RLD;CoComplRLD)f.

Theorem 157. Atoms of the lattice ComplRLD are exactly direct products of the form
{α}×RLD b where α∈℧ and b is an atomic f.o.

Proof. First, easy to see that {α} ×FCD b are elements of ComplRLD. Also ∅ is an element of
ComplRLD.

{α}×RLD b are atoms of ComplFCD because these are atoms of RLD.
Remain to prove that if f is an atom of ComplRLD then f = {α} ×RLD b for some α ∈℧ and

an atomic f.o. b.
Suppose f is a non-empty complete reloid. Then {α} ×RLD b ⊆ f for some α ∈ ℧ and atomic

f.o. b. If f is an atom then f = {α}×FCD b. �

Obvious 158. ComplRLD is an atomistic lattice.

Conjecture 159. Compl f ∩RLD Compl g=Compl(f ∩RLD g) for every reloids f and g.

Conjecture 160. Compl(
⋃

RLDR)=
⋃

RLD〈Compl〉R for every set R of reloids.

Conjecture 161. ComplCoCompl f =CoComplCompl f =Cor f for every reloid f .

Question 162. Is ComplRLD a distributive lattice? Is ComplRLD a co-brouwerian lattice?

Conjecture 163. If f is a complete reloid and R is a set of reloids then

f ◦
⋃

RLDR=
⋃

RLD〈f ◦ 〉R.

This conjecture can be weakened:
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Conjecture 164. If f is a discrete reloid and R is a set of reloids then

f ◦
⋃

RLDR=
⋃

RLD〈f ◦ 〉R.

5 Relationships of funcoids and reloids

5.1 Funcoid induced by a reloid

Every reloid f induces a funcoid (FCD)f by the following formulas:

X [(FCD)f ]Y⇔∀F ∈ up f :X [F ]Y

〈(FCD)f 〉X =
⋂

F{〈F 〉X | F ∈ up f }.

We should prove that (FCD)f is really a funcoid.

Proof. We need to prove that

X [(FCD)f ]Y⇔Y ∩F 〈(FCD)f 〉X � ∅⇔X ∩F
〈

(FCD)f−1
〉

Y � ∅.

The above formula is equivalent to:

∀F ∈ up f :X [F ]Y⇔Y ∩F
⋂

F{〈F 〉X | F ∈ up f }� ∅⇔X ∩F
⋂

F
{〈

F−1
〉

Y | F ∈up f
}� ∅.

We have Y ∩F
⋂

F{〈F 〉X | F ∈up f }=
⋂

F
{

Y ∩F 〈F 〉X | F ∈ up f
}

.

Let’s denote W =
{

Y ∩F 〈F 〉X | F ∈up f
}

.

∀F ∈ up f :X [F ]Y⇔∀F ∈ up f :Y ∩F 〈F 〉X � ∅⇔∅ � W .

We need to prove that ∅ � W ⇔
⋂

FW � ∅. (The rest follows from symmetry.)
This follows from the fact that W is a generalized filter base.
Let’s prove that W is a generalized filter base. For this enough to prove that V =

{〈F 〉X | F ∈ up f } is a generalized filter base. Let A, B ∈ V that is A= 〈P 〉X , B = 〈Q〉X where
P , Q∈up f . Then for C= 〈P ∩Q〉X is true both C ∈ V and C ⊆A,B. So V is a generalized filter
base and thus W is a generalized filter base. �

Theorem 165. X [(FCD)f ]Y⇔ (X ×RLD Y)∩RLD f � ∅ for every X ,Y ∈F and f ∈RLD.

Proof.

(X ×RLD Y)∩RLD f � ∅ ⇔ ∀F ∈ up f , P ∈up(X ×RLD Y):P ∩F � ∅

⇔ ∀F ∈ up f , X ∈ upX , Y ∈up Y: (X ×RLD Y )∩RLD F � ∅

⇔ ∀F ∈ up f , X ∈ upX , Y ∈up Y: (X ×Y )∩F � ∅

⇔ ∀F ∈ up f ,X ∈upX , Y ∈up Y:X [F ]Y

⇔ ∀F ∈ up f :X [F ]Y

⇔ X [(FCD)f ]Y .

�

Theorem 166. (FCD)f =
⋂

FCDup f for every reloid f .

Proof. Let a is an atomic filter object.
((FCD)f)a=

⋂

F{〈F 〉a | F ∈ up f } by the definition of (FCD).
〈
⋂

FCDup f
〉

a=
⋂

F{〈F 〉a | F ∈up f } by the theorem 55.

So 〈(FCD)f 〉a=
〈
⋂

FCDup f
〉

a for every atomic filter object a. �

Lemma 167. 〈g〉
⋂

FS=
⋂

F〈〈g〉〉S if g is a funcoid and S is a filter base.

Proof. up
⋂

FS=
⋃

〈up〉S by the theorem 3.
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〈g〉
⋂

FS=
⋂

F〈〈g〉〉up
⋂

FS by the theorem 32.
⋂

F〈〈g〉〉up
⋂

FS=
⋂

F〈〈g〉〉
⋃

〈up〉S.

Easy to see that
⋂

F〈〈g〉〉
⋃

〈up〉S=
⋂

F〈〈g〉〉S because S ⊆
⋃

〈up〉S.

Combining these equalities we produce 〈g〉
⋂

FS=
⋂

F〈〈g〉〉S. �

Lemma 168. For every two filter bases S and T of binary relations and every set A
⋂

FS=
⋂

FT ⇒
⋂

F{〈F 〉A | F ∈S}=
⋂

F{〈G〉A | G∈T }

Proof. Let
⋂

FS=
⋂

FT .
First let prove that {〈F 〉A | F ∈ S} is a filter base. Let X, Y ∈ {〈F 〉A | F ∈ S}. Then X =

〈FX 〉A and Y = 〈FY 〉A for some FX , FY ∈ S. Because S is a filter base, we have S ∋ FZ ⊆ FX ∩
FY . So 〈FZ 〉A⊆X ∩Y and 〈FZ〉A∈{〈F 〉A | F ∈S}. So {〈F 〉A | F ∈S} is a filter base.

Suppose X ∈ up
⋂

F{〈F 〉A | F ∈ S}. Then exists X ′∈ {〈F 〉A | F ∈ S} where X ⊇X ′ because

{〈F 〉A | F ∈S} is a filter base. That is X ′= 〈F 〉A for some F ∈S. There exists G∈ T such that
G ⊆ F because T is a filter base. Let Y ′ = 〈G〉A. We have Y ′ ⊆ X ′ ⊆ X ; Y ′ ∈ {〈G〉A | G ∈ T };
Y ′∈ up

⋂

F{〈G〉A | G∈ T }; X ∈up
⋂

F{〈G〉A | G∈T }. The reverse is symmetric. �

Lemma 169. {G ◦F | F ∈up f ,G∈up g} is a filter base for every reloids f and g.

Proof. Let denote D = {G ◦ F | F ∈ up f , G ∈ up g}. Let A ∈D ∧B ∈D. Then A=GA ◦ FA ∧
B =GB ◦ FB for some FA, FB ∈ up f and GA, GB ∈ up g. So A ∩B ⊇ (GA∩GB) ◦ (FA ∩ FB) ∈D

because FA∩FB ∈up f and GA∩GB ∈up g. �

Theorem 170. (FCD)(g ◦ f)= ((FCD)g) ◦ ((FCD)f) for every reloids f and g.

Proof.

〈(FCD)(g ◦ f)〉X =
⋂

F{〈H 〉X | H ∈up(g ◦ f)}

=
⋂

F
{

〈H 〉X | H ∈up
⋂

RLD{G ◦F | F ∈up f ,G∈up g}
}

.

Obviously
⋂

RLD{G ◦F | F ∈ up f ,G∈ up g}=
⋂

RLDup
⋂

RLD{G ◦F | F ∈ up f ,G∈ up g};

from this by the lemma 168 (taking in account that {G ◦ F | F ∈ up f , G ∈ up g} and
up

⋂

RLD{G ◦F | F ∈up f ,G∈up g} are filter bases)

⋂

F
{

〈H 〉X | H ∈up
⋂

RLD{G ◦F | F ∈ up f ,G∈ up g}
}

=
⋂

F{〈G ◦F 〉X | F ∈ up f ,G∈ up g}.

On the other side

〈((FCD)g) ◦ ((FCD)f)〉X = 〈(FCD)g〉〈(FCD)f 〉X

= 〈(FCD)g〉
⋂

F{〈F 〉X | F ∈ up f }

=
⋂

F
{

〈G〉
⋂

F{〈F 〉X | F ∈up f } | G∈ up g
}

.

Let’s prove that {〈F 〉X | F ∈ up f } is a filter base. If A,B ∈ {〈F 〉X | F ∈ up f } then A= 〈F1〉X
and B = 〈F2〉X where F1, F2 ∈ up f . A ∩B ⊇ 〈F1 ∩ F2〉X ∈ {〈F 〉X | F ∈ up f }. So {〈F 〉X | F ∈
up f } is really a filter base.

By the lemma 167 〈G〉
⋂

F{〈F 〉X | F ∈ up f }=
⋂

F{〈G〉〈F 〉X | F ∈ up f }. So continuing the
above equalities,

〈((FCD)g) ◦ ((FCD)f)〉X =
⋂

F
{

⋂

F{〈G〉〈F 〉X | F ∈up f } | G∈up g
}

=
⋂

F{〈G〉〈F 〉X | F ∈ up f ,G∈ up g}

=
⋂

F{〈G ◦F 〉X | F ∈up f ,G∈up g}.

Combining these equalities we get 〈(FCD)(g ◦ f)〉X = 〈((FCD)g) ◦ ((FCD)f)〉X for every set
X . �
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5.2 Reloids induced by funcoid

Every funcoid f induces a reloid in two ways, intersection of outward relations and union of
inward direct products of filter objects:

(RLD)outf =
def⋂

RLDup f ;

(RLD)inf =
def⋃

RLD
{

A×RLD B | A,B ∈F,A×FCD B ⊆ f
}

Theorem 171. (RLD)inf =
⋃

RLD
{

a×RLD b | a, b∈ atomsF℧, a×FCD b⊆ f
}

.

Proof. Follows from the theorem 126. �

Lemma 172. F ∈up (RLD)inf⇔∀a, b∈ atomsF℧: (a[f ]b⇒F ⊇ a×RLD b) for a funcoid f .

Proof.

F ∈up (RLD)inf ⇔ F ∈ up
⋃

F
{

a×RLD b | a, b∈ atomsF℧, a×FCD b⊆ f
}

⇔ ∀a, b∈ atomsF℧: (a×FCD b⊆ f⇒F ∈up(a×RLD b))

⇔ ∀a, b∈ atomsF℧: ((a×FCD b)∩FCD f � ∅⇒F ⊇ a×RLD b)

⇔ ∀a, b∈ atomsF℧: (a[f ]b⇒F ⊇ a×RLD b).

�

Surprisingly a funcoid is greater inward than outward:

Theorem 173. (RLD)outf ⊆ (RLD)inf for a funcoid f .

Proof. We need to prove
⋂

RLDup f ⊆
⋃

RLD
{

A×RLD B | A,B ∈F,A×FCD B ⊆ f
}

.

Let

K ∈ up
⋃

F
{

A×RLD B | A,B ∈F,A×FCD B ⊆ f
}

.

Then

K =
⋃

{

XA× YB | A,B ∈F,A×FCD B ⊆ f
}

=
⋃

RLD
{

XA× YB | A,B ∈F,A×FCD B ⊆ f
}

⊇ f

where XA∈ upA, YB∈ upB. So K ∈up f ; K ⊇
⋂

RLDup f ; K ∈up
⋂

RLDup f . �

Theorem 174. (FCD)(RLD)inf = f for every funcoid f .

Proof. For every sets X and Y

X[(FCD)(RLD)inf ]Y ⇔

(X ×RLD Y )∩RLD (RLD)inf � ∅ ⇔

(X × Y )∩RLD
⋃

RLD
{

a×RLD b | a, b∈ atomsF℧, a×FCD b⊆ f
}

⇔ (theorem 52 in [6])

∃a, b∈ atomsF℧: (a×FCD b⊆ f ∧ (X × Y )∩RLD (a×RLD b)� ∅) ⇔

∃a, b∈ atomsF℧: (a[f ]b⊆ f ∧ a⊆X ∧ b⊆Y ) ⇔

∃a∈ atomsFX, b∈ atomsFY : a[f ]b ⇔

X[f ]Y .

Thus (FCD)(RLD)inf = f . �

Remark 175. The above theorem allows to represent funcoids as reloids.

Conjecture 176. For a convex reloid f

1. (RLD)out(FCD)f = f ;
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2. (RLD)in(FCD)f = f .

6 Galois connections of funcoids and reloids

Theorem 177. (FCD) is the lower adjoint of (RLD)in.

Proof. Because (FCD) and (RLD)in are trivially monotone, it’s enough to prove

f ⊆ (RLD)in(FCD)f and (FCD)(RLD)ing ⊆ g.

The second formula follows from the fact that (FCD)(RLD)ing= g.

(RLD)in(FCD)f =
⋃

RLD
{

a×RLD b | a, b∈ atomsF℧, a×FCD b⊆ (FCD)f
}

=
⋃

RLD
{

a×RLD b | a, b∈ atomsF℧, a[(FCD)f ]b
}

=
⋃

RLD
{

a×RLD b | a, b∈ atomsF℧, (a×RLD b)∩RLD f � ∅
}

⊇
⋃

RLD
{

p | a, b∈ atomsF℧, p∈ atomsRLD(a×RLD b), p∩RLD f � ∅
}

=
⋃

RLD
{

p | p∈ atomsRLD(℧×℧), p∩RLD f � ∅
}

=
⋃

RLD
{

p | p∈ atomsRLD f
}

= f.

�

Corollary 178.

1. (FCD)
⋃

RLDS=
⋃

FCD〈(FCD)〉S if S is a set of reloids.

2. (RLD)in
⋂

FCDS=
⋂

RLD〈(RLD)in〉S if S is a set of funcoids.

7 Continuous morphisms

This section will use the apparatus from the section “Partially ordered dagger categories”.

7.1 Traditional definitions of continuity

7.1.1 Pre-topology

Let µ and ν are funcoids representing some pre-topologies. By definition a function f is contin-
uous map from µ to ν in point a iff

∀ǫ∈up〈ν 〉fa∃δ ∈ up〈µ〉{a}: 〈f 〉δ ⊆ ǫ.

Equivalently transforming this formula we get:

∀ǫ∈up〈ν 〉fa : 〈f 〉〈µ〉{a}⊆ ǫ;

〈f 〉〈µ〉{a}⊆ 〈ν 〉fa;

〈f 〉〈µ〉{a}⊆ 〈ν 〉〈f 〉 {a};

〈f ◦ µ〉{a}⊆ 〈ν ◦ f 〉{a}.

So f is a continuous map from µ to ν in every point of its domain iff f ◦ µ⊆ ν ◦ f .

7.1.2 Proximity spaces

Let µ and ν are proximity (nearness) spaces (which I consider a special case of funcoids). By
definition a function f is a nearness-continuous map from µ to ν iff

∀X,Y ∈P℧: (X [µ]Y ⇒ (〈f 〉X)[ν](〈f 〉Y )).
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Equivalently transforming this formula we get:

∀X,Y ∈P℧: (X[µ]Y ⇒〈f 〉Y ∩ 〈ν 〉〈f 〉X � ∅);

∀X,Y ∈P℧: (X [µ]Y ⇒〈f 〉Y ∩ 〈ν ◦ f 〉X � ∅);

∀X,Y ∈P℧: (X [µ]Y ⇒X [ν ◦ f ]〈f 〉Y );

∀X,Y ∈P℧: (X [µ]Y ⇒〈f 〉Y
[

(ν ◦ f)−1
]

X);

∀X,Y ∈P℧: (X [µ]Y ⇒〈f 〉Y
[

f−1 ◦ ν−1
]

X);

∀X,Y ∈P℧: (X [µ]Y ⇒X ∩
〈

f−1 ◦ ν−1
〉

〈f 〉Y � ∅);

∀X,Y ∈P℧: (X[µ]Y ⇒X ∩
〈

f−1 ◦ ν−1 ◦ f
〉

Y � ∅);

∀X,Y ∈P℧: (X [µ]Y ⇒Y
[

f−1 ◦ ν−1 ◦ f
]

X);

∀X,Y ∈P℧: (X[µ]Y ⇒X
[

f−1 ◦ ν ◦ f
]

Y );

µ⊆ f−1 ◦ ν ◦ f.

So a function f is nearness-continuous iff µ⊆ f−1 ◦ ν ◦ f .

7.1.3 Uniform spaces

Uniform spaces are a special case of reloids.
Let µ and ν are uniform spaces. By definition a function f is a uniformly continuous map

from µ to ν iff

∀ǫ∈ up ν∃δ ∈up µ∀(x; y)∈ δ: (fx; fy)∈ ǫ.

Equivalently transforming this formula we get:

∀ǫ∈up ν∃δ ∈up µ∀(x; y)∈ δ: {(fx; fy)}⊆ ǫ

∀ǫ∈ up ν∃δ ∈up µ∀(x; y)∈ δ: f ◦ {(x; y)} ◦ f−1⊆ ǫ

∀ǫ∈ up ν∃δ ∈up µ : f ◦ δ ◦ f−1⊆ ǫ

∀ǫ∈ up ν: f ◦ µ ◦ f−1⊆ ǫ

f ◦ µ ◦ f−1⊆ ν.

So a function f is uniformly continuous iff f ◦ µ ◦ f−1⊆ ν.

7.2 Our three definitions of continuity

I have expressed different kinds of continuity with simple algebraic formulas hiding the com-
plexity of traditional epsilon-delta notation behind a smart algebra. Let’s summarize these three
algebraic formulas:

Let µ and ν are endomorphisms of some partially ordered precategory. Continuous functions
can be defined as these morphisms f of this precategory which conform to the following formula:

f ∈C(µ; ν)⇔ f ∈Mor(Ob µ;Ob ν)∧ f ◦ µ⊆ ν ◦ f.

If the precategory is a partially ordered dagger precategory then continuity also can be defined
in two other ways:

f ∈C′(µ; ν) ⇔ f ∈Mor(Ob µ;Ob ν)∧ µ⊆ f † ◦ ν ◦ f ;

f ∈C′′(µ; ν) ⇔ f ∈Mor(Ob µ;Ob ν)∧ f ◦ µ ◦ f †⊆ ν.

Remark 179. In the examples about funcoids and reloids the “dagger functor” is the inverse of

a funcoid or reloid, that is f †= f−1.

Proposition 180. Every of these three definitions of continuity forms a sub-precategory (sub-
category if the original precategory is a category).

Proof.

C. Let f ∈C(µ; ν), g ∈C(ν; π). Then f ◦ µ⊆ ν ◦ f , g ◦ ν ⊆ π ◦ g; g ◦ f ◦ µ⊆ g ◦ ν ◦ f ⊆ π ◦ g ◦
f . So g ◦ f ∈C(µ;π). 1Ob µ∈C(µ; µ) is obvious.
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C
′. Let f ∈C′(µ; ν), g ∈C′(ν;π). Then µ⊆ f † ◦ ν ◦ f , ν ⊆ g† ◦π ◦ g;

µ⊆ f † ◦ g† ◦ π ◦ g ◦ f ; µ⊆ (g ◦ f)† ◦π ◦ (g ◦ f).

So g ◦ f ∈C′(µ;π). 1Ob µ∈C′(µ; µ) is obvious.

C′′. Let f ∈C′′(µ; ν), g ∈C′′(ν;π). Then f ◦ µ ◦ f †⊆ ν, g ◦ ν ◦ g†⊆ π;

g ◦ f ◦ µ ◦ f † ◦ g†⊆π; (g ◦ f) ◦ µ ◦ (g ◦ f)†⊆ π.

So g ◦ f ∈C′′(µ;π). 1Ob µ∈C′′(µ; µ) is obvious. �

Proposition 181. For a monovalued morphism f of a partially ordered dagger category and its
endomorphisms µ and ν

f ∈C′(µ; ν)⇒ f ∈C(µ; ν)⇒ f ∈C′′(µ; ν).

Proof. Let f ∈ C′(µ; ν). Then µ ⊆ f † ◦ ν ◦ f ; f ◦ µ ⊆ f ◦ f † ◦ ν ◦ f ⊆ 1Dst f ◦ ν ◦ f = ν ◦ f ; f ∈
C(µ; ν).

Let f ∈C(µ; ν). Then f ◦ µ⊆ ν ◦ f ; f ◦ µ ◦ f †⊆ ν ◦ f ◦ f †⊆ ν ◦ 1Dst f = ν; f ∈C′′(µ; ν). �

Proposition 182. For an entirely defined morphism f of a partially ordered dagger category
and its endomorphisms µ and ν

f ∈C′′(µ; ν)⇒ f ∈C(µ; ν)⇒ f ∈C′(µ; ν).

Proof. Let f ∈C′′(µ; ν). Then f ◦ µ ◦ f †⊆ ν; f ◦ µ ◦ f † ◦ f ⊆ ν ◦ f ; f ◦ µ ◦ 1Src f ⊆ ν ◦ f ; f ◦ µ ⊆
ν ◦ f ; f ∈C(µ; ν).

Let f ∈C(µ; ν). Then f ◦ µ⊆ ν ◦ f ; f † ◦ f ◦ µ⊆ f † ◦ ν ◦ f ; 1Src f ◦ µ⊆ f † ◦ ν ◦ f ; µ⊆ f † ◦ ν ◦ f ;
f ∈C′(µ; ν). �

For entirely defined monovalued morphisms our three definitions of continuity coincide:

Theorem 183. If f is a monovalued and entirely defined morphism then

f ∈C′(µ; ν)⇔ f ∈C(µ; ν)⇔ f ∈C′′(µ; ν).

Proof. From two previous propositions. �

The classical general topology theorem that uniformly continuous function from a uniform
space to an other uniform space is near-continuous regarding the proximities generated by the
uniformities, generalized for reloids and funcoids takes the following form:

Theorem 184. If an entirely defined morphism of the category of reloids f ∈C′′(µ; ν) for some
endomorphisms µ and ν of the category of reloids, then (FCD)f ∈C′((FCD)µ; (FCD)ν).

Exercise 1. I leave a simple exercise for the reader to prove the last theorem.

7.3 Continuousness of a restricted morphism

Consider some partially ordered semigroup. (For example it can be the semigroup of funcoids or
semigroup of reloids regarding the composition.) Consider also some lattice (lattice of objects).
(For example take the lattice of set theoretic filters.)

We will map every object A to identity element IA of the semigroup (for example identity
funcoid or identity reloid). For identity elements we will require

1. IA ◦ IB= IA∩B;

2. f ◦ IA⊆ f ; IA ◦ f ⊆ f .

In the case when our semigroup is “dagger” (that is is a dagger precategory) we will require also
(IA)

†= IA.
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We can define restricting an element f of our semigroup to an object A by the formula
f |A= f ◦ IA.

We can define rectangular restricting an element µ of our semigroup to objects A and B as
IB ◦ µ ◦ IA. Optionally we can define direct product A × B of two objects by the formula (true
for funcoids and for reloids):

µ∩ (A×B)= IB ◦ µ ◦ IA.

Square restricting of an element µ to an object A is a special case of rectangular restricting and
is defined by the formula IA ◦ µ ◦ IA (or by the formula µ∩ (A×A)).

Theorem 185. For every elements f , µ, ν of our semigroup and an object A

1. f ∈C(µ; ν)⇒ f |A∈C(IA◦ µ ◦ IA; ν);

2. f ∈C′(µ; ν)⇒ f |A∈C′(IA ◦ µ ◦ IA; ν);

3. f ∈C′′(µ; ν)⇒ f |A∈C′′(IA ◦ µ ◦ IA; ν).

(Two last items are true for the case when our semigroup is dagger.)

Proof.

1. f |A∈C(IA ◦ µ ◦ IA; ν)⇔ f |A ◦ IA ◦ µ ◦ IA⊆ ν ◦ f |A⇔ f ◦ IA ◦ IA ◦ µ ◦ IA ⊆ ν ◦ f |A⇔ f ◦ IA ◦
µ ◦ IA⊆ ν ◦ f ◦ IA⇐ f ◦ IA ◦ µ⊆ ν ◦ f⇐ f ◦ µ⊆ ν ◦ f⇔ f ∈C(µ; ν).

2. f |A∈C′(IA ◦ µ ◦ IA; ν)⇔ IA◦ µ ◦ IA⊆ (f |A)† ◦ ν ◦ f |A⇐ IA ◦ µ ◦ IA⊆ (f ◦ IA)† ◦ ν ◦ f ◦ IA⇔

IA ◦ µ ◦ IA⊆ IA ◦ f † ◦ ν ◦ f ◦ IA⇐ µ⊆ f † ◦ ν ◦ f⇔ f ∈C′(µ; ν).

3. f |A ∈C′′(IA ◦ µ ◦ IA; ν)⇔ f |A ◦ IA ◦ µ ◦ IA ◦ (f |A)†⊆ ν⇔ f ◦ IA ◦ IA ◦ µ ◦ IA ◦ IA ◦ f †⊆ ν⇔

f ◦ IA ◦ µ ◦ IA ◦ f †⊆ ν⇐ f ◦ µ ◦ f †⊆ ν⇔ f ∈C′′(µ; ν). �

8 Connectedness regarding funcoids and reloids

8.1 Some lemmas

Lemma 186. If ¬(A[f ]B) ∧ A ∪ B ⊇ dom f ∪ im f then f is closed on A for a funcoid f and
sets A and B.

Proof. ¬(A[f ]B) ⇔ B ∩ 〈f 〉A = ∅ ⇔ (dom f ∪ im f) ∩ B ∩ 〈f 〉A = ∅ ⇒ ((dom f ∪ im f) \ A) ∩
〈f 〉A= ∅⇔〈f 〉A⊆A. �

Corollary 187. If ¬(A[f ]B) ∧ A ∪B ⊇ dom f ∪ im f then f is closed on A \B for a funcoid f

and sets A and B.

Proof. Let ¬(A[f ]B) ∧ A ∪ B ⊇ dom f ∪ im f . Then ¬((A \ B)[f ]B) ∧ (A \ B) ∪ B ⊇ dom f ∪
im f . �

Lemma 188. If ¬(A[f ]B)∧A∪B ⊇dom f ∪ im f then ¬(A[fn]B) for every whole positive n.

Proof. Let ¬(A[f ]B) ∧ A ∪ B ⊇ dom f ∪ im f . From the above proposition 〈f 〉A ⊆ A. B ∩
〈f 〉A = ∅, consequently 〈f 〉A ⊆ A \ B. Because (by the above corollary) f is closed on A \ B,
then 〈f 〉〈f 〉A ⊆ A \ B, 〈f 〉〈f 〉〈f 〉A ⊆ A \ B, etc. So 〈fn〉A ⊆ A \ B, B ∩ 〈fn〉A = ∅,
¬(A[fn]B). �

8.2 Endomorphism series

Definition 189. S1(µ)=
def

µ ∪ µ2 ∪ µ3 ∪ 	 for an endomorphism µ of a precategory with count-
able union of morphisms.
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Definition 190. S(µ)=
def

µ0 ∪ S1(µ) where µ0=
def

IOb µ (identity morphism for the object Ob µ)
where Ob µ is the object of endomorphism µ for an endomorphism µ of a category with count-
able union of morphisms.

I call S1 and S endomorphism series .
We will consider the collection of all binary relations (on a set ℧), as well as the collection of

all funcoids and the collection of all reloids, as categories with single object ℧ and the identity
morphism (=) or (=)|℧.

So if µ is a binary relation or a funcoid or a reloid we have
S1(µ)= µ∪ µ2∪ µ3∪	 and S(µ)= (=)∪ µ∪ µ2∪ µ3∪	

Proposition 191. S(µ) is transitive for the category of binary relations.

Proof.

S(µ) ◦S(µ) = µ0 ◦S(µ)∪ µ ◦S(µ)∪ µ2 ◦S(µ)∪	
= (µ0∪ µ1∪ µ2∪	 )∪ (µ1∪ µ2∪ µ3∪	 )∪ (µ2∪ µ3∪ µ4∪	 )

= µ0∪ µ1∪ µ2∪	
= S(µ).

�

8.3 Connectedness regarding binary relations

Before going to research connectedness for funcoids and reloids we will excurse into the basic
special case of connectedness regarding binary relations.

Definition 192. A set A is called (strongly) connected regarding a binary relation µ when

∀X,Y ∈P℧ \ {∅}: (X ∪Y =A⇒X[µ]Y ).

Definition 193. Path between two elements a, b∈℧ in a set A through binary relation µ is the
finite sequence x0	xn where x0 = a, xn = b for n ∈N and xi(µ ∩ A × A)xi+1 for every i = 0, 	 ,

n− 1. n is called path length.

Proposition 194. There exists path between every element a∈℧ and that element itself.

Proof. It is the path consisting of one vertex (of length 0). �

Proposition 195. There is a path from element a to element b in a set A through a binary
relation µ iff a (S(µ∩A×A)) b (that is (a, b)∈S(µ∩A×A)).

Proof.

⇒ . If exists a path from a to b, then {b} ⊆ 〈(µ ∩ A × A)n〉{a} where n is the path length.
Consequently {b}⊆ 〈S(µ∩A×A)〉{a}; a (S(µ∩A×A)) b.

⇐ . If a (S(µ∩A×A)) b then exists n ∈N such that a (µ∩A×A)n b. By definition of compo-
sition of binary relations this means that there exist finite sequence x0	xn where x0 = a,
xn= b for n∈N and xi (µ∩A×A)xi+1 for every i=0,	 , n− 1. That is there is path from
a to b. �

Theorem 196. The following statements are equivalent for a relation µ and a set A:

1. For every a, b∈A there is a path between a and b in A through µ.

2. S(µ∩A×A)⊇A×A.

3. S(µ∩A×A) =A×A.

4. A is connected regarding µ.
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Proof.

(1)⇒ (2). Let for every a, b ∈ A there is a path between a and b in A through µ. Then
a (S(µ∩A×A)) b for every a, b∈A. It is possible only when S(µ∩A×A)⊇A×A.

(3)⇒ (1). For every two vertices a and b we have a (S(µ∩A×A)) b. So (by the previous
theorem) for every two vertices a and b exist path from a to b.

(3)⇒ (4). Suppose that ¬(X[µ∩A×A]Y ) for some X, Y ∈P℧ \ {∅} such that X ∪ Y =A.
Then by a lemma ¬(X [(µ ∩ A × A)n]Y ) for every n ∈ N. Consequently ¬(X[S(µ ∩ A ×
A)]Y ). So S(µ∩A×A)� A×A.

(4)⇒ (3). If 〈S(µ∩A×A)〉{v}=A for every vertex v then S(µ∩A×A)=A×A. Consider

the remaining case when V =
def

〈S(µ∩A×A)〉{v}⊂A for some vertex v. Let W =A \V . If
card A= 1 then S(µ ∩ A ×A)⊇ (=) =A ×A; otherwise W � ∅. Then V ∪W =A and so
V [µ]W what is equivalent to V [µ ∩ A × A]W that is 〈µ ∩ A × A〉V ∩ W � ∅. This is
impossible because 〈µ ∩ A × A〉V = 〈µ ∩ A × A〉〈S(µ ∩ A × A)〉V = 〈S1(µ ∩ A × A)〉V ⊆
〈S(µ∩A×A)〉V =V .

(2)⇒ (3). Because S(µ∩A×A)⊆A×A. �

Corollary 197. A set A is connected regarding a binary relation µ iff it is connected regarding
µ∩A×A.

Definition 198. A connected component of a set A regarding a binary relation F is a maximal
connected subset of A.

Theorem 199. The set A is partitioned into connected components (regarding every binary
relation F ).

Proof. Consider the binary relation a∼ b⇔ a (S(F )) b∧ b (S(F )) a. ∼ is a symmetric, reflexive,
and transitive relation. So all points of A are partitioned into a collection of sets Q. Obviously
each component is (strongly) connected. If a set R ⊆ A is greater than one of that connected
components A then it contains a point b ∈B where B is some other connected component. Con-
sequently R is disconnected. �

Proposition 200. A set is connected (regarding a binary relation) iff it has one connected
component.

Proof. Direct implication is obvious. Reverse is proved by contradiction. �

8.4 Connectedness regarding funcoids and reloids

Definition 201. S1
∗(µ)=

⋂

F{S1(M) | M ∈up µ} for a reloid µ.

Definition 202. Connectivity reloid S∗(µ) for a reloid µ is defined as follows:

S∗(µ) =
⋂

F{S(M) | M ∈ up µ}.

Remark 203. Do not mess the word connectivity with the word connectedness which means
being connected.1

Proposition 204. S∗(µ) = (=)∪RLD S1
∗(µ) for every reloid µ.

Proof. Follows from the theorem about distributivity of ∪ regarding
⋂

F (see [6]). �

Proposition 205. S∗(µ) =S(µ) if µ is a binary relation.

1. In some math literature these two words are used interchangeably.
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Proof. S∗(µ) =
⋂

F{S(µ)}=S(µ). �

Definition 206. A filter A is called connected regarding a reloid µ when
S∗(µ∩RLD (A×RLD A))⊇A×RLD A.

Obvious 207. A filter A is connected regarding a reloid µ when S∗(µ ∩RLD (A ×RLD A)) =
A×RLD A.

Definition 208. A filter A is called connected regarding a funcoid µ when

∀X ,Y ∈F \ {∅}: (X ∪FY =A⇒X [µ]Y).

Proposition 209. A set A is connected regarding a binary relation µ iff it is connected
regarding µ considered as a reloid.

Proof. S∗(µ ∩RLD (A ×RLD A)) = S∗(µ ∩ A × A) = S(µ ∩ A × A). So S∗(µ ∩RLD A ×RLD A) ⊇
A×RLD A⇔S(µ∩A×A)⊇A×A. �

Obvious 210. A filter is connected regarding a reloid µ iff it is connected regarding the reloid
µ∩RLD (A×RLD A).

Obvious 211. A filter is connected regarding a funcoid µ iff it is connected regarding the fun-
coid µ∩FCD A×FCD A.

Theorem 212. A filter A is connected regarding a reloid f iff it is connected regarding every
F ∈up f (considered as a reloid).

Proof.

⇒ . Obvious.

⇐ . F is connected iff S(F )=F 0∪F 1∪F 2∪	 ⊇A×RLD A.
S∗(f)=

⋂

F{S(F ) | F ∈ up f }⊇
⋂

F
{

A×RLD A | F ∈up f
}

=A×RLD A. �

Conjecture 213. A filter A is connected regarding a funcoid µ iff A is connected for every
binary relation F ∈ up µ (considered as a funcoid).

Conjecture 214. A filter A is connected regarding a reloid f iff it is connected regarding the
funcoid (FCD)f .

Conjecture 215. A filter is connected regarding a binary relation considered as a funcoid iff it
is connected regarding this binary relation considered as a reloid.

8.5 Algebraic properties of S and S
∗

Theorem 216. S∗(S∗(f))=S∗(f) for every reloid f .

Proof. S∗(S∗(f)) =
⋂

F{S(R) | R ∈ up S∗(f)} ⊆
⋂

F{S(R) | R ∈ {S(F ) | F ∈ up f }} =
⋂

F{S(S(F )) | F ∈ up f }=
⋂

F{S(F ) | F ∈up f }=S∗(f).

So S∗(S∗(f))⊆S∗(f). That S∗(S∗(f))⊇S∗(f) is obvious. �

Corollary 217. S∗(S(f))=S(S∗(f))=S∗(f) for any reloid f .

Proof. Obviously S∗(S(f))⊇S∗(f) and S(S∗(f))⊇S∗(f).
But S∗(S(f))⊆S∗(S∗(f))=S∗(f) and S(S∗(f))⊆S∗(S∗(f))=S∗(f). �

Conjecture 218. S(S(f))=S(f) for

1. every reloid f ;
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2. every funcoid f .

Conjecture 219. For every reloid f

1. S(f) ◦S(f) =S(f);

2. S∗(f) ◦S∗(f)=S∗(f);

3. S(f) ◦S∗(f)=S∗(f) ◦S(f)=S∗(f).

Conjecture 220. S(f) ◦S(f)=S(f) for every funcoid f .

9 Postface

9.1 Misc

See this Web page for my research plans: http://www.mathematics21.org/agt-plans.html
I deem that now two most important research topics in Algebraic General Topology are:

• to solve the open problems mentioned in this work;

• define and research compactness of funcoids.

Also a future research topic are n-ary (where n is an ordinal, or more generally an index set)
funcoids and reloids (plain funcoids and reloids are binary by analogy with binary relations).

We should also research relationships between complete funcoids and complete reloids.

9.2 Pointfree funcoids and reloids

I have set wiki site http://funcoids.wikidot.com to write on that site the pointfree variant of the
theory of funcoids and reloids (that is generalized funcoids on arbitrary lattices rather than fun-
coids on a lattice of sets as in this work).

However I consider for me research of pointfree funcoids and pointfree reloids a low priority
project. (There are yet enough research topics in the point-set topology and I don’t want to
meddle into pointfree topology in foreseeable future.)

The work about pointfree funcoids and reloids seems being largely technical and boring.
Pointfree theory of funcoids and reloids seems being a trivial generalization of the theory of
point-set funcoids and reloids. It is not similar to the traditional pointfree topology which is not
an obvious generalization of point-set topology.

But if someone indeed wishes to treat pointfree funcoids, please use the above menioned
wiki.

Appendix A Some counter-examples

For further examples we will use the filter object ∆ defined by the formula

∆=
⋂

F{(− ε; ε) | ε∈R, ε > 0}.

Example 221. There exist a funcoid f and a set S of funcoids such that f ∩FCD
⋃

FCDS �
⋃

FCD
〈

f ∩FCD
〉

S.

Proof. Let f = ∆ ×FCD {0} and S =
{

(ε; + ∞) ×FCD {0} | ε > 0
}

. Then f ∩FCD
⋃

FCDS =

(∆×FCD {0})∩FCD ((0; +∞)×FCD {0})= (∆∩FCD (0; +∞))×FCD {0}� ∅ while
⋃

FCD
〈

f ∩FCD
〉

S =
⋃

FCD{∅}= ∅. �

Conjecture 222. There exist a set R of funcoids and a funcoid f such that f ◦
⋃

FCDR �
⋃

FCD〈f ◦ 〉R.
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Example 223. There exist a set R of funcoids and f.o. X and Y such that

1. X
[
⋃

FCDR
]

Y ∧ ∄f ∈R:X [f ]Y ;

2.
〈
⋃

FCDR
〉

X ⊃
⋃

F{〈f 〉X | f ∈R}.

Proof.

1. Let X = ∆ and Y = R. Let R =
{

(ε; +∞) ×FCD
R | ε ∈ R, ε > 0

}

. Then
⋃

FCDR = (0; +

∞)×FCD R. So X
[
⋃

FCDR
]

Y and ∀f ∈R:¬(X [f ]Y).

2. With the same X and R we have
〈
⋃

FCDR
〉

X = R and 〈f 〉X = ∅ for every f ∈ R, thus
⋃

F{〈f 〉X | f ∈R}= ∅. �

Theorem 224. For a f.o. a we have a ×RLD a ⊆ (=)|℧ only in the case if a = ∅ or a is a trivial
atomic f.o. (that is an one-element set).

Proof. If a ×RLD a ⊆ (=)|℧ then exists m ∈ up(a ×RLD a) such that m ⊆ (=)|℧. Consequently
exist A,B ∈ up a such that A×B ⊆ (=)|℧ what is possible only in the case when A=B= a is an
one-element set or empty set. �

Corollary 225. Direct product (in the sense of reloids) of non-trivial atomic filter objects is
non-atomic.

Proof. Obviously (a×RLD a)∩RLD (=)|℧� ∅ and (a×RLD a)∩RLD (=)|℧⊂ a×RLD a. �

Example 226. There exist two atomic reloids whose composition is non-atomic and non-
empty.

Proof. Let a is a non-trivial atomic filter object and x∈℧. Then

(a×{x}) ◦ ({x}× a) =
⋂

F{(A×{x}) ◦ ({x}×A) | A∈up a}=
⋂

F{A×A | A∈ up a}= a× a

is non-atomic despite of a×{x} and {x}× a are atomic. �

Example 227. There exists non-monovalued atomic reloid.

Proof. From the previous example follows that the atomic reloid {x}× a is not monovalued. �

Example 228. (RLD)inf � (RLD)outf for a funcoid f .

Proof. Let f = (=)|℧. Then (RLD)inf =
⋃

RLD
{

a ×RLD a | a ∈ atomsF ℧
}

and (RLD)outf =

(=)|℧. But as we shown above a ×RLD a * (=)|℧ for non-trivial f.o. a, and so (RLD)inf *
(RLD)outf . �

Example 229. There exist discrete funcoids f and g such that f ∩FCD g � f ∩ g.

Proof. An example is f = (=)|℧ and g =℧×℧ \ f . We will show that f ∩FCD g = (=)|Ω (where
Ω is the Fréchet filter object) and thus f ∩FCD g � ∅= f ∩ g.

Note that 〈(=)|Ω〉X =X ∩FΩ.
Let x is a non-trivial atomic f.o. If X ∈ up x then card X > 2 (In fact, X is infinite but we

don’t need this.) and consequently 〈g〉X =℧. Thus 〈g〉x=℧. Consequently
〈

f ∩FCD g
〉

x= 〈f 〉x∩F 〈g〉x= x∩F℧=x.

Also 〈(=)|Ω〉x=x∩FΩ= x.
Let now x is a trivial f.o. Then 〈f 〉x= x and 〈g〉x=℧ \ x. So

〈

f ∩FCD g
〉

x= 〈f 〉x∩F 〈g〉x= x∩F (℧ \ x)= x∩ (℧ \ x)= ∅.

Also 〈(=)|Ω〉x=x∩FΩ= ∅.

So
〈

f ∩FCD g
〉

x= 〈(=)|Ω〉x for every atomic f.o. x. Thus f ∩FCD g=(=)|Ω. �
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Example 230. There exists funcoid h such that uph is not a filter.

Proof. Consider the funcoid h = (=)|Ω. We have (from the previous proof) that f ∈ up h and
g ∈up f , but f ∩ g= ∅ � uph. �

Example 231. There exists a funcoid h� ∅ such that (RLD)outh= ∅.

Proof. Consider h=(=)|Ω. By proved above h= f ∩FCD g where f =(=)|℧ and g=℧×℧ \ f .
We have f , g ∈ uph.
So (RLD)outh=

⋂

RLDuph⊆ f ∩RLD g= f ∩ g= ∅; and thus (RLD)outh= ∅. �

Example 232. There exists a funcoid h such that (FCD)(RLD)outh� h.

Proof. Follows from the previous example. �
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