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Abstract

It is a part of my Algebraic General Topology research.

In this article I introduce the concepts of funcoids which generalize proximity spaces
and reloids which generalize uniform spaces. The concept of funcoid is generalized concept
of proximity, the concept of reloid is cleared from superfluous details (generalized) concept
of uniformity. Also funcoids and reloids are generalizations of binary relations whose
domains and ranges are filters (instead of sets).

Also funcoids and reloids can be considered as a generalization of (oriented) graphs,
this provides us with a common generalization of analysis and discrete mathematics.

The concept of continuity is defined by an algebraic formula (instead of old messy
epsilon-delta notation) for arbitrary morphisms (including funcoids and reloids) of a par-
tially ordered category. In one formula are generalized continuity, proximity continuity,
and uniform continuity.
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1 Common

1.1 Draft status

This article is a draft.
This text refers to a preprint edition of [5]. Theorem number clashes may appear due editing
both of these manuscripts.

1.2 Used concepts, notation and statements

The set of functions from a set A to a set B is denoted as B4.

I will often skip parentheses and write fz instead of f(z) to denote the result of a function
f acting on the argument z.

I will denote (f)X ={fa | ac X} for a set X.

For simplicity I will assume that all sets in consideration are subsets of universal set O.

1.2.1 Filters

In this work the word filter will refer to a filter on a set U (in contrast to [5] where are consid-
ered filters on arbitrary posets). Note that I do not require filters to be proper.
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I will call the set of filters ordered reverse to set-theoretic inclusion of filters the set of filter
objects § and its element filter objects (f.o. for short). I will denote up F the filter corresponding
to a filter object F. So we have A C B < upA D upB for every filter objects A and B. We also
will equate filter objects corresponding to principal filters with corresponding sets. (Thus we
have 220 C §.) See [5] for formal definition of filter objects in the framework of ZF. Filters (and
filter objects) are studied in the work [5].

Prior reading of [5] is needed to understand this work.

Filter objects corresponding to ultrafilters are atoms of the lattice § and will be called
atomic filter objects.

Also we will need to introduce the concept of generalized filter base.

Definition 1. Generalized filter base is a set S € ZF\ {0} such that
VA,BeS3ICe S:CCANB.

Proposition 2. Let S is a generalized filter base. If Ay,..., A, €S (n € N), then
eSS CCAN...NA,.

Proof. Can be easily proved by induction. O
Theorem 3. If S is a generalized filter base, then up ()5S =J (up)S.

Proof. Obviously up (%S 2 |J (up)S. Reversely, let K € up(3S; then K = A;N...N A,, where
A;eup A; where A;€S5,i=1,...,n,neN; soexists C€S suchthat CC A N...NA, CA1N...N
A,=K, KecupC, K el (up)S. O

Corollary 4. If S is a generalized filter base, then (S =0<0c S.

Proof. N\S=0<0ecupN¥S<0el (up)S<IXeS:heupX<0es. O

1.3 Earlier works

Some mathematicians were researching generalizations of proximities and uniformities before me
but they have failed to reach the right degree of generalization which is presented in this work
allowing to represent properties of spaces with algebraic (or categorical) formulas.

Some references to predecessors:

e In [1] and [2] are studied semi-uniformities and proximities.

e [3] and [4] contains recent progress in quasi-uniform spaces.

2 Partially ordered dagger categories

2.1 Partially ordered categories

Definition 5. I will call a partially ordered (pre)category a (pre)category together with partial
order C on each of its Hom-sets with the additional requirement that

fi€faANgiCga=gi0o fiCge0 fo

for every morphisms fi, g1, f2, g2 such that Src f; = Src fo A Dst f; = Dst fo = Src g1 = Src g2 A
Dst ag1= Dst go.
2.2 Dagger categories

Definition 6. I will call a dagger precategory a precategory together with an involutive con-
travariant identity-on-objects prefunctor z s .



4 SECTION 2

In other words, a dagger precategory is a precategory equipped with a function z — z on its
set of morphisms which reverses the source and the destination and is subject to the following
identities for every morphisms f and g:

1 fiT=f;
2. (go f)T=flogl

Definition 7. I will call a dagger category a category together with an involutive contravariant
identity-on-objects functor x — zT.

In other words, a dagger category is a category equipped with a function z +— zt on its set of
morphisms which reverses the source and the destination and is subject to the following identi-
ties for every morphisms f and g and object A:

L fiT=f;
2. (go f)T=fTogh
3. (1a)T=14.

Theorem 8. If a category is a dagger precategory then it is a dagger category.

Proof. We need to prove only that (14)7T=14. Really
(1a)f=(1a)Tola=(1a)To(1a)T=((1a)Tola)T=(14)T=14. O

For a partially ordered dagger (pre)category I will additionally require (for every morphisms f
and ¢)

ficgte fCy.

An example of dagger category is the category Rel whose objects are sets and whose morphisms
are binary relations between these sets with usual composition of binary relations and with ff=

fh
Definition 9. A morphism f of a dagger category is called unitary when it is an isomorphism
and ff=f~L
Definition 10. Symmetric (endo)morphism of a dagger precategory is such a morphism f that
f=rh
Definition 11. Transitive (endo)morphism of a precategory is such a morphism f that f= fo
f.
Theorem 12. The following conditions are equivalent for a morphism f of a dagger precate-
gory:

1. f is symmetric and transitive.

2. f=ftof.
Proof.

(1) = (2). If f is symmetric and transitive then fTo f= fo f= f.

(2)= Q). fi=(ftof)t=flofit=flof=7Ff so fissymmetric. f=flof=fof sof

O

is transitive.
2.2.1 Monovalued and entirely defined morphisms

Definition 13. For a partially ordered dagger category I will call monovalued morphism such a
morphism f that fo fTClpg ;.

Definition 14. For a partially ordered dagger category I will call entirely defined morphism
such a morphism f that fTo f D1 s.
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Remark 15. Easy to show that this is a generalization of monovalued and entirely defined
binary relations as morphisms of the category Rel.

Definition 16. For a given partially ordered dagger category C' the category of monovalued
(entirely defined) morphisms of C is the category with the same set of objects as of C and the
set of morphisms being the set of monovalued (entirely defined) morphisms of C' with the com-
position of morphisms the same as in C.

We need to prove that these are really categories, that is that composition of monovalued
(entirely defined) morphisms is monovalued (entirely defined) and that identity morphisms are
monovalued and entirely defined.

Proof.

Monovalued. Let f and g are monovalued morphisms, Dst f =Srcg. (go f)o(go f)f=go
fofTonggolDStfogT:go1SrcgogT:gong1Dstg:1Dst(gof). So g o f is mono-
valued.

That identity morphisms are monovalued follows from the following: 14 0 (1 Af=140
la=1a=1psi1, S 1lpst14-

Entirely defined. Let f and g are entirely defined morphisms, Dst f =Src g. (go f)To(go
f):fTOQTOQOfQfTOlSrcgof:fToletfof:fTof:_)lsrszlsrc(gOf)- So go fis
entirely defined.

That identity morphisms are entirely defined follows from the following: (14)T o 14 =
laola=1a=1src1, C lsrcta- O

3 Funcoids

3.1 Informal introduction into funcoids

Funcoids are a generalization of proximity spaces and a generalization of pretopological spaces.
Also funcoids are a generalization of binary relations.

That funcoids are a common generalization of “spaces” (proximity spaces, (pre)topological
spaces) and binary relations (including monovalued functions) makes them smart for describing
properties of functions in regard of spaces. For example the statement “f is a continuous func-
tion from a space p to a space v’ can be described in terms of funcoids as the formula fo u C
vo f (see below for details).

Most naturally funcoids appear as a generalization of proximity spaces.

Let 6 be a proximity that is certain binary relation so that A B is defined for every sets A
and B. We will extend it from sets to filter objects by the formula:

Ad'B&VAecup A, BeupB: Ad B.
Then (as will be proved below) exist two functions a, 3 € §° such that
A§'Be BNSaAd+ 0 ANS BB+0).

The pair (; 3) is called funcoid when BNS ald + () < ANS BB+ (). So funcoids are a generaliza-
tion of proximity spaces.

Funcoids consist of two components the first a and the second . The first component of a
funcoid f is denoted as (f) and the second component is denoted as < f _1>. (The similarity of
this notation with the notation for the image of a set under a function is not a coincidence, we
will see that in the case of discrete funcoids (see below) these coincide.)

One of the most important properties of a funcoid is that it is uniquely determined by just
one of its components. That is a funcoid f is uniquely determined by the function (f). More-
over a funcoid f is uniquely determined by (f)|gw that is by values of function (f) on sets.

Next we will consider some examples of funcoids determined by specified values of the first
component on sets.
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Funcoids as a generalization of pretopological spaces: Let « be a pretopological space that is

a map « € §°. Then we define a'xt US {aX | 2 € X} for every set X. We will prove that
there exists a unique funcoid f such that o’ = (f)| ;. So funcoids are a generalization of pre-
topological spaces. Funcoids are also a generalization of preclosure operators: For every preclo-
sure operator p exists unique funcoid such that (f)|z = p; in this case (f)| g€ PV7C.

For every binary relation p exists unique funcoid f such that VX € 20: (f)X = (p)X (where
(p) is defined in the introduction), recall that a funcoid is uniquely determined by the values of
its first component on sets. I will call such funcoids discrete. So funcoids are a generalization of
binary relations.

Composition of binary relations (i.e. of discrete funcoids) complies with the formulas:

(go fy=(g)o(f) and ((gof)~')=(f"")o(g™").

By the same formulas we can define composition of every two funcoids.

Also funcoids can be reversed (like reversal of X and Y in a binary relation) by the formula
(a; B)~1=(B; ). In particular case if yu is a proximity we have ;~! = u because proximities are
symmetric.

Funcoids behave similarly to (multivalued) functions but acting on filter objects instead of
acting on sets. Below will be defined domain and image of a funcoid (the domain and the image
of a funcoid are filter objects).

3.2 Basic definitions
Definition 17. Let’s call a funcoid a pair (o; ) where a, 3 € F° such that
VX, VET (YNSaX £ 0 XNSBY£0).

Definition 18. ((a; 8))~ a for a funcoid (; A).

Definition 19. (a; )~ 1= (B; ) for a funcoid («; 3).

Proposition 20. If f is a funcoid then f~! is also a funcoid.

Proof. Follows from symmetry in the definition of funcoid. i
Obvious 21. (f~1)~!= f for a funcoid f.

Definition 22. The relation [f] € 2F? is defined by the formula (for every filter objects X, Y

and funcoid f)
def

XY=V 08 (f)X £0.

Obvious 23. X[f]Y< VNS ()X #0< X NS (f~1)Y for every filter objects X', ¥ and funcoid
f.

Obvious 24. [ =] =[f]"! for a funcoid f.

Theorem 25.
1. For given value of (f) exists no more than one funcoid f.

2. For given value of [f] exists no more than one funcoid f.

Proof. Let f and g are funcoids.

Obviously (f)=(g) = [f]=[g) and (f~1) = (g~ ") =[f]=1g]- So enough to prove that [f]=
l9]=(f)=(9).

Provided that [f]=[g] we have Y NS (/)X £ 0= X[f]V & X[g]Y < VNS (g)X #+ (0 and conse-
quently (f)X = (g)X for every f.o. X and ) because the set of filter objects is separable [5],
thus ()= (g). O
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Proposition 26. (f)(ZUS J)=(f)ZUS (f)J for every funcoid f and Z,J € 3.
Proof.

*(fHTUST) =

{YeF | ynS(FHTUST)#0}

{YeF | @B NNS (1Y +#0}

{(YeF | @3 (fFHMUS(INS(fHY)#0} =

{(YeF IS (fHYLIVI NS (f~H)YV+0}

{(YeF YN (HTZHOVYNS (/)T +#0} =

{Yeg | s (HDUS NS (f)T)+0}

{YeF | YN (NI (£)T)+0} =
*((FYZUS(f)T).

Thus (fY(ZUS J)=(f)ZUS(f)J because § is separable.

(by corollary 10 in [5])

(by corollary 10 in [5])

3.2.1 Composition of funcoids

Definition 27. Composition of funcoids is defined by the formula
(az; B2) o (a3 B1) = (az 0 ax; Bro fa).

Proposition 28. If f, g are funcoids then go f is funcoid.

Proof. Let f=(ai;f1), 9= (ag; B2).

VNS (agoa)X #£0 YNS a1 X # 0= X NS oY £ 0 X NS 1Y+ 0 X NS (B0 B2)Y

0.

So (g0 ay; f10 B2) is a funcoid.
Obvious 29. (go f)={(g)o(f) for every funcoids f and g.
Proposition 30. (hog)o f=ho(go f) for every funcoids f, g, h.

Proof.

((hog)o f)=(hog)o(f)=((h)o(g))e(f)=(h)o((g)o(f))=(h)o(go f)=(ho(go [))

Theorem 31. (go f)~!= f~log! for every funcoids f and g.
Proof. <(go f)71> = <f*1> o <g*1> = <f710g71>.

3.3 Funcoid as continuation

Theorem 32. For every funcoid f and filter objects X and )

L (/)X =N5((f))up X;
2. X[f]YeVXecup X, Y eup V: X[f]Y.

Proof. 2. X[f]Y & YNS (X £D=VY cupV: Y NS (FHX £ D= VY cup V: X[f]Y.
Analogously X[f]Y < VX €up &: X[f]Y. Combining these two equalities we get

X[flYy VX cupX,Y cupY: X[f]Y.
LYNS(AHXEDSVX eupX: YN ()X 0

+

O

O

Let’s denote W = {J} NS (X | X €up X}. We will prove that W is a generalized filter base.

To prove this enough to show that V ={(f)X | X €eup X'} is a generalized filter base.

Let P, Q€ V. Then P = (f)A, Q= (f)B where A,BcupX; ANBcupX and RCP NS Q
for R=(fY(ANB)€eV. So V is a generalized filter base and thus W is a generalized filter base.
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0 ¢ W < NSW 20 by the corollary 4 of the theorem 3. That is
VX €eup X: Y8 (f)X £ 0 VS [5(f))up X 0.

Comparing with the above, Y N% (f)X £ 0 < Y NS OS((fNup X # 0. So (£)X =S ((f))up X
because the lattice of filter objects is separable. O

Theorem 33.
1. A function o € 7Y conforming to the formulas (for every I,.J € 20)

al=0, a(IuJ)=alUSal

can be continued to the function (f) for a unique funcoid f;

()X =(Flaup X 1)
for every filter object X.
2. A relation § € Z(2U)? conforming to the formulas (for every I,J, K € 20)

~(061), TUJSK<ISKVJISK, @
~(160), KSIUJ&KSIVKS.T

can be continued to the relation [f] for a unique funcoid f;
X[f]YyeVXeupX,Y cupy: XY (3)

for every filter objects X', V.

Proof. Existence of no more than one such funcoids and formulas (1) and (3) follow from the
previous theorem.

2. Let define a € §7Y by the formula d(aX) ={Y € U | XY} for every X € 2U. (It is
obvious that {Y € 22U | X §Y} is a free star.) Analogously can be defined 3 € FZY by the for-
mula d(BX) = {X € U | X§Y}. Let’s continue a and 8 to o’ € F°¥ and ' € F by the for-
mulas

a’X:ﬂ3<o¢>upX and ﬂ’XzﬂWﬂ}upX.
and 6 to 0’ € 2F? by the formula
X6 YevVXeupX,Yeup): XdY.

V¥’ X £ 0= YNSOS(a)yup X £ 0= NS(YNS ) (a)up X # 0. Let’s prove that
W:<yﬁg><oz>up?(

is a generalized filter base: To prove it is enough to show that (a)up X is a generalized filter
base. If A, B € (a)up X then exist X1, Xo € up X such that A=aX; and A=aX>.

Then a(X;NX3) € (a)up X. So {a)up X is a generalized filter base and thus W is a general-
ized filter base.

Accordingly the corollary 4 of the theorem 3, <JJ NS > (a)up X # 0 is equivalent to

VX eupX: Y NS aX +£0,

what is equivalent to VX cup X, Y €cupY: Y " aX£0eVX cup,Y cupY:Y €9(aX) <
VX €upX,Y €upY: X §Y. Combining the equivalencies we get Y NS a’X #+ (< X §'Y. Analo-
gously X NS B'Y +0 < X3§'Y. So Y NS a'X + 0 < X NS B'Y + 0, that is (a’; §') is a funcoid.
From the formula Y N¥ a/X # () < X 'Y follows that [(a'; 37)] is a continuation of §.

1. Let define the relation § € 2(20)? by the formula XY <Y NS a X # ().

That —(@51) and —~(I50) is obvious. We have I U JOK < (I U J) NS aK # 0 <
(IS NN aK+0e(IMSaK)US (JUSaK)#0sINaK+0VvJUSaK+£0<ISKVJSK
and KSTUJ & KM a(IUJ)+ 0 KM allUJ)+0s KNS (al USald) + 0 <
(KNS al)US (KNS aJ)£0ea KMSal+0VKMSaJ+£0e KSIVKSJ.
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That is the formulas (2) are true.

Accordingly the above § can be continued to the relation [f] for some funcoid f.

VXY € ZU: X[f]Y &Y NS aX # 0, consequently VX € ZU:aX = (f)X. So (f) is a contin-
uation of a. 0

Note that by the last theorem to every proximity § corresponds a unique funcoid. So fun-
coids are a generalization of proximity structures.

Definition 34. Any (multivalued) function f will be considered as a funcoid, where by defini-
tion (f)X =NS((f))up for every X € F.

Using the last theorem it is easy to show that this definition is monovalued and does not
contradict to former stuff.

Definition 35. Funcoids corresponding to a binary relation are called discrete funcoids.

We may equate discrete funcoids with corresponding binary relations by the method of
appendix B in [5]. This is useful for describing relationships of funcoids and binary relations,
such as for the formulas of continuous functions and continuous funcoids (see below). For sim-
plicity I will not dive here into formal definition of equating discrete funcoids with binary rela-
tions (by the method shown in appendix B in [5]) but we simply will (informally) assume that
discrete funcoids can be equated with binary relations.

I will denote FCD the set of funcoids or the category of funcoids (see below) dependently on
context.

3.4 Lattice of funcoids

Definition 36. fC g~ [f]C[g] for f, g e FCD.

Thus FCD is a poset.

Definition 37. I will call the filtrator of funcoids (see [5] for the definition of filtrators) the fil-
trator (FCD; 2205?).
Conjecture 38. The filtrator of funcoids is:

1. with separable core;

2. with co-separable core.

Theorem 39. The set of funcoids is a complete lattice. For every Re€ #FCD and X,Y € £20
1L X[UFPR]Y & 3f e R: X[f]Y
2. (UFPR)X =US{(/)X | feR}.
Proof.
2. aXd:erS{U’)X | f€R}. We have af) =10,
a(1ud) = SN | feR)
= JS{nHuud g | fery
= U3{<f)IU3 yJ | feR}

= (JUNT | FERYUS| JS{(f) | fER}
= alUSalJ.

So a can be continued to (h) for a funcoid h. Obviously

VfERRhDF. (4)
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And h is the least funcoid for which holds the condition (4). So h=J PR,
L X[UFPR]Y &« v ¥ (UFPR)X £ 0« Y NS US{()X | feRY+0 & 3f € R
YOS (f)X #£0<3f € R: X[f]Y (used the theorem 52 in [5]). ad

In the next theorem, compared to the previous one, the class of infinite unions is replaced with
lesser class of finite unions and simultaneously class of sets is changed to more wide class of filter
objects.

Theorem 40. For every funcoids f and ¢ and a filter object X’
L (JUPg)X = ()X US (g)X;
2. [fUsg]=[f1U]g].
Proof.
1. Let oa?(d:eﬁ(f’ﬂ(u3 (9)X; ﬂyﬁ%f*l)yu@ (g=1)Y for every X,V €F. Then

VSaX+£0 & YOS (HXLDVYNS ()X +0
& XNS(fTHYEIVINT (g7 HY£D
& XNSBY+£0D.

So h = («; B) is a funcoid. Obviously h D f and h D g. If p D f and p D ¢ for some fun-
coid p then (p)X D (f )X US (g)X = (h)X that is pDh. So fUFP g=h.

2. X[fUFP Y« Y8 (fUFP )X £0 0 VNS ((HX US (g)X) # 0 VS (X +0V
VNS (g)X £ 0= X[f]YV X[g]Y for every X,V €. O

3.5 More on composition of funcoids
Proposition 41. [go f]=[g]o(f)= (g~ ') 'o[f] for f,geFCD.

Proof. X[go flY & Y NS (go X # 0 Y03 (g)(f)X # 0 (f)X[g)Y & X([g] o ()Y for
([%;]ery X, Ve lgofl=[(fTtog H =[fltog |t =(f"]e(g ) = <g‘1>‘1Do

The following theorem is a variant for funcoids of the statement (which defines compositions
of relations) that z(go f)z< Jy(x fy A ygz) for every x and z and every binary relations f and

g.
Theorem 42. For every X, Z€§ and f, g€ FCD

X[go f1Z & Ty € atoms®T: (X[ fly A ylg] Z).
Proof.

Jy € atomsSU: (X[fly A y[g]Z) & Ty €atomsSU: (ZNS (g)y+DA ynS (fYX £0)
& JyecatomsSU: (208 (g)y#£DA y C{f)X)
= Zn¥(g)(f)X+0
& X[go f]Z2.
Reversely, if X[go f]Z then (f)X[g]Z, consequently exists y € atoms®(f)X such that y[g]Z; we
have X[ f]y. O
Theorem 43. If f, g, h are funcoids then
1. fo(gUFPh)=fogUFCP foh;
2. (gUFPhYo f=go fUFP ho f.
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Proof. I will prove only the first equality because the other is analogous.
For every X, Ze€§

X[fo(gUFP h)]Z & 3Ty eatomsSU: (X[gUFP hlyA y[f]2)
& JycatomsSU: ((X[gly vV X[h]y) A y[f]2)
& Jy€atomsSU: (X[gly A y[fIZV X[h]ly A y[f]Z)
& Jy€atomsSU: (X[gly A y[f]2) V Ty € atomsST: (X[h]y A y[f]Z)
& X[fog|ZV X[foh]Z
= X[fogUFCDth]Z
O
3.6 Domain and range of a funcoid
Definition 44. Let A€ §. The identity funcoid [4=(ANS; ANS).
Proposition 45. The identity funcoid is a funcoid.
Proof. We need to prove that (ANSX) NS Y+ 0 (AN Y)NS X # () what is obvious. O

Obvious 46. (I4) " t=14.
Obvious 47. X[IA]y(:)AﬂgXﬂgy#@foranyX,ye&.

DeI;l’lr%ition 48. I will define restricting of a funcoid f to a filter object A by the formula
fla=fola.

Obviously the last definition does not contradict to the previous.

Definition 49. Image of a funcoid f will be defined by the formula im f = (f)O.
Domain of a funcoid f is defined by the formula dom f=im f~1.

Proposition 50. (f)X = (f)(X N¥dom f) for every f€FCD, X €3.

Proof. For every filter object Y we have Y NS (f)(X NSdom f)#0 < X NSdom fNS (f~1) Y+
pexnSimf~'nd (fHYE£EDe XN (fFHY£0e Y0NS (fHX # 0. Thus (f)X =
(£)(X NS dom f) because the lattice of filter objects is separable. O

Proposition 51. X N¥dom f+# 0 < (f)X #0 for every f€FCD, X €3.
Proof. X N¥dom f#£ 0= XN (f~HO£00NS (F)X £0e (fHX+0. O
Corollary 52. dom f=J%{a | a € atoms™0, (f)a+#0}.

Proof. This follows from that § is an atomistic lattice. ]

3.7 Category of funcoids
I will define the category FCD of funcoids:
e The set of objects is §.

e The set of morphisms from a filter object A to a filter object B is the set of triples (f; A;
B) where f is a funcoid such that dom f C A, im f CB.

e Composition of morphisms is defined in the natural way.

e Identity morphism of a filter object A is (I4;.4; A).
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To prove that it is really a category is trivial.

3.8 Specifying funcoids by functions or relations on atomic filter
objects
Theorem 53. For every funcoid f and filter objects X and )
L ()X =5 ((f))atoms’X;
2. X[f]YV & 3z € atoms® X, y € atoms®Y: z[ f]y.
Proof. 1.
YOS (HXAD & XF(f)Y 40

& JreatomsSX:xnS (Y40
& Jz €atomsSA: Y NS (f)z £ 0.

D)X = (9) ({f))atomsSX = A5 (( ) atoms X

2. If X[f]Y, then Y NS (f)X # 0, consequently exists y € atoms®Y such that y NS (f)X + 0,
X[f]y. Repeating this second time we get that there exist x € atomsSX such that z[f]y. From
this follows

Jz € atoms® X, y € atoms®Y: [ f]y.

The reverse is obvious. O

Theorem 54.

1. A function a € F*°ms°0 guch that (for every a € atomsS U)

aaC (13<LJ3 oatomsg>upa (5)
can be continued to the function (f) for a unique funcoid f;
LJg a)atomsS X (6)

for every filter object X'.
2. A relation § € Z(atoms® U)? such that (for every a,b € atoms® U)
VX cupa,Y eupbIz catoms’ X, ycatomsSY:zdy=adb (7)
can be continued to the relation [f] for a unique funcoid f;
X[f]Y < Ix €atomsS X, y € atomsSY:x § y (8)

for every filter objects X', V.

Proof. Existence of no more than one such funcoids and formulas (6) and (8) follow from the
previous theorem.
1. Consider the function o’ € ¥ defined by the formula (for every X € 220)
o'X = U3<a)atomng.
Obviously o/ @ =(). For every I,.J € 20
a(Tu)) = | J¥(a)atomsS(1U.J)

= Ug(a’ )(atomsS I Uatoms® J)

= Ug( "atoms® I U (o')atoms® J )

= LJg ) atomsS T US LJg "Yatoms® J.

= a'IUSa’J.

Let continue o till a funcoid f (by the theorem 25): ()X =[¥(a/)up X.



Funcoibs 13

Let’s prove the reverse of (5):

ﬂs<U3 o{a)o atoms3>up 0 —

N

I
DODDODD
c
B

Finally,
oa— ﬂ3<UEO <a> o atoms§>upa = ﬂ3<04/>11pa = <f>a‘7

so (f) is a continuation of «a.
2. Consider the relation ¢’ € 2(20)? defined by the formula (for every X,Y € 20)
X 6'Y &3z catomsSX, y € atomsSY: x5 y.
Obviously —(X §'()) and ~(0d'Y).
(IUJ)§'Y & JzcatomsS(IUJ),yE€atomsSY: 26y
& JzcatomsSI UatomsSJ, y € atomsSY:zdy
& JxcatomsSI,y catomsSY: 26y V Iz € atomsSJ, y €atomsSY:xdy
o I8'YV JSY:
analogously X §' (IUJ)< X §'TV X 6’ J. Let’s continue ¢’ till a funcoid f (by the theorem 25):
X[f]YeVXecupX,YeupY: Xo'Y
The reverse of (7) implication is trivial, so
VX cupa,Y cupbIz catomsS X,y catomsSY:zdy<adb.

VX €upa,Y €upbIz €atoms’ X,y €atomsY: 2§y VX €upa,Y cupb: X §'Y < a[f]b.
So ad b a[f]b, that is [f] is a continuation of ¢. O

One of uses of the previous theorem is proof of the following theorem:

Theorem 55. If R is a set of funcoids, z, y € atoms® U, then
L (N PR)yz=N{(f)z | feR};
2. z[NFPR]y &V feR:z[fly.

Proof. 2. Let denote zdy<V f € R:x[f]y.

VX cupa,Y eupb3Iz € atomsSX, y € atoms®Y: 26 y <
VfeR,X €upa,Y €upbIz € atoms’ X, y € atomsSY: z[ f]y =
VfeR, X cupa,Y cupb: X[f]Y =
VieR:a[flbe
adb.

So, by the theorem 54, § can be continued till [p] for some funcoid p.

For every funcoid ¢ such that Vf € R: ¢ C f we have z[¢ly=Vf € R:z[fly <z 0 y< z[ply, so
q C p. Consequently p=["PR.

From this 2[\"“PR]y &V f € R:z[f]y.

1. From the former y € atoms® (\FPR)z < ynS (NFPR)z £ 0 VfeRynS (flz#0 &
yeN <atomsg>{<f>ac | f € R} & y € atoms® OS{(f)x | f € R} for every y € atoms® U. From
this follows (FPRYz=N¥{(f)z | f€R}. O
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3.9 Direct product of filter objects

A generalization of direct (Cartesian) product of two sets is direct product of two filter objects
as defined in the theory of funcoids:

Definition 56. Direct product of filter objects A and B is such a funcoid A xFP B that

X[AXFPBI Y& XS ALOANY NS B+).

Proposition 57. A x P B is really a funcoid and

ro o v | B if XS AL
(Ax B>X{® i XN A=0.

Proof. Obvious. O
Obvious 58. A x B=A x"P B for sets A and B.
Proposition 59. f C Ax"® B&dom f C AAiIm f CB for every f€FCD and A,BE3.

Proof. If f C A xFP B then dom f C dom(A xFP B) C A, im f C im(A x P B) C B. If
dom f C AAim f C B then

VX, VET (X[fIV=XNSALOANYNSB+0);

consequently f C A xFCP B, O

The following theorem gives a formula for calculating an important particular case of inter-
section on the lattice of funcoids:

Theorem 60. fNFP (A XFPC B)=Tg0 foly for every f€FCD and A, BEF.
Proof. hd:CfIBo foly. For every X €§
()X =(Ip){f)(Ta)X =BN{f)(ANX).

From this, as easy to show, hC f and hC Ax B. If gC f A gC A x P B for a funcoid g then
domg C A, img C B,

(9)X =Bn05 (g)(ANSX) CBNF (f)(ANSX) = (Ip)(f){La) X = (1) X,
gCh. So h=fnFCP (A xFCP B). O
Corollary 61. f|4= fN(Ax"P0) for every f€FCD and A€ .
Proof. fNFPC (AXFPU)=T50 foly=fols= f|a. O
Corollary 62. f NP (A x P B) =L (< A[f|B for every fcFCD, A, BEF.

Proof. f NFP (A xFP B) £ ) & (f NFP (A XFPL B £ 0 & (Ipo foll)U +0 &
(Ig)(fYIAT# 0= BAFP (FYANST) £ 0= BNS (f)A+ D= Alf]B. O

Corollary 63. The filtrator of funcoids is star-separable.
Proof. The set of direct products of sets is a separation subset of the lattice of funcoids. O

Theorem 64. If S € 232 then
(VT C{AXFPB| (4 B)€S}=(dom S x P (5im 5.
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Proof. If x € atomsSU then by the theorem 55
((YCLAXFPB | (A;B) € S} o= {(AXPB)a | (4:B)es}.

If NS Sdom S # () then

V(A;B) e S: (@nNS A DA (AXFEL BYx =B);
{{AXFPBYz | (A;B)€ S} =imS;

if xS ¥dom S =0 then

IA;B)eS: (xS A=0DA (AXFPBYz=0);
{{AXFPBYz | (A;B)eS} 0.

So

FCD FCD . _J N¥im S if an¥NSdom S+ 0;
<ﬂ {Ax B|(A’B)GS}>JC_{(Z] it NS NSdom S =0.

From this follows the statement of the theorem. O

Corollary 65. (Ag x"P By) NFCP (A xFCP By) = (4 NFEP Ay) xFCP (By NFEP By) for every Ao,
Ar, Bo, B1 €F.

Proof. (.Ao XFCD Bo) ﬂFCD (.A1 XFCD Bl) = ﬂS{AO XFCD Bo, .Al XFCD Bl} what is by the last the-
orem equal to (AgNFL Ay) xFCP (BynFeP By). O

Theorem 66. If A€ Fthen A x P is a complete homomorphism of the lattice § to a complete
sublattice of the lattice FCD, if also \A# ) then it is an isomorphism.

Proof. Let S € 2§, X € 20U, = € atomsSU.
(UFP(AxFe)s)x = JH{(AXFPB)X | Bes)

USS if X NS A+
0 if XS A=0

_ <AXFCDU(§S>X
<ﬂFCD ><FCD S>l‘ = mg xFCDB x | BES}

) NSs ifanSA£0
0 ifxNSA=0

AT (oS )
If A+ () then obviously the function A xFCP is injective. O

The following proposition states that cutting a rectangle of atomic width from a funcoid
always produces a rectangular (representable as a direct product of filter objects) funcoid (of
atomic width).

Proposition 67. If a is an atomic filter object, f € FCD then f|,=a x P (f)a.
Proof. Let X €§.
XN%a#0= (floX=(fla, XNSa=0= (fl.)Xx =0. O

3.10 Atomic funcoids

Theorem 68. A funcoid is an atom of the lattice of funcoids iff it is direct product of two
atomic filter objects.



16 SECTION 3

Proof.
= . Let f is an atomic funcoid. Let’s get elements a € atoms® dom f and b € atoms¥(f)a.
Then for every X € §
X¥a=0= (axFPHYX=0C(f)X, XNSat0= (ax"Ph)X=bC(f)X.

So a xFEPp C f; because f is an atomic funcoid f=a x"CPb.

<. Let a,b € atoms’0, f € FCD. If bNS (f)a =0 then —(a[f]b), f NS (a x P ) =0; if b C
(fla then VX € §: (X NS a # 0 = ()X D b), f 2 a x P b Consequently
FOFCP (@ xFP B =0V f Da x"Pb; that is a x"P b is an atomic filter object. O

Theorem 69. The lattice of funcoids is atomic.

Proof. Let f is a non-empty funcoid. Then dom f # ), thus by the theorem 46 in [5] exists a €
atomsS dom f. So (f)a # () thus exists b € atoms (f)a. Finally the atomic funcoid a xFP b C
I O

Theorem 70. The lattice of funcoids is separable.

Proof. Let f, g€ FCD, f C g. Then exists a € atomsS0 such that (f)a C (g)a. So because the
lattice § is atomically separable then exists b € atomsS0 such that (f)anNSb =0 and b C (g)a.
For every x € atoms® U
(fYan® {axFPbya=(flanSb=0,
z#aé(f)zﬁgﬂz x FeP b>x:<f>xﬁ3 h=0

Thus (f)x NS (a x b)z =) and consequently fNFP (a xFPb) =10,

<a x FCD b>a*bC< Ya,
z#a= (axFPbyz=0C (g)a.
Thus (a x P b))z C (g)z and consequently a x"PbC g.
So the lattice of funcoids is separable by the theorem 19 in [5]. O

Corollary 71. The lattice of funcoids is:
1. separable;
2. atomically separable;

3. conforming to Wallman’s disjunction property.
Proof. By the theorem 22 in [5]. O

Remark 72. For more ways to characterize (atomic) separability of the lattice of funcoids see
[5], subsections “Separation subsets and full stars” and “Atomically separable lattices”.

Corollary 73. The lattice of funcoids is an atomistic lattice.

Proof. Let f is a funcoid. Suppose contrary to the statement to be proved that
USatoms P f  f. Then exists a € atoms™ P f such that a NS | JSatoms P f = () what is impos-
sible. 0

Proposition 74. atoms™P(f US g) = atoms™ P f U atoms P g for every funcoids f and g.

Proof. (a xFPb) NFCL (FUFP g) LD a fUFP gl a[f]bV a[glb< (a xFPb)NFL F L0V
(a xFCP b)NFED gL () for every atomic filter objects a and b. O

Corollary 75. For every f,g,h€FCD, Re ZFCD
1. fﬁFCD (g UFCD h) — (f mFCD g) UFCD (f mFCD h);
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2. fUFCD ﬂFCDR:ﬂFCD<fUFCD >R

Proof. We will take in account that the lattice of funcoids is an atomistic lattice. To be concise
I will write atoms instead of atoms™P and N and U instead of NFCP and UFCP.

1. atoms(f N (gUh))=atoms f Natoms(gU h)=atoms f N (atoms g Uatoms h) = (atoms f N
atoms g) U (atoms f Natoms h) = atoms(f N g) Uatoms(f Nh) =atoms((fNg)U(fNh)).

2. atoms(f U NFPR) = atoms f U atoms PR = atoms f U N P(atoms)R =
NFCP((atoms f) U )(atoms) R = (NFCP(atoms)(f U )R = atoms (FP(f U)R. (Used the fol-
lowing equality.)

((atoms f) U )(atoms)R
{(atoms f)UA | A€ (atoms)R}
{(atoms f)UA | IC € R: A=atomsC'} =
{(atoms f) U (atoms C) | C € R}
{atoms(fUC) | CeR} =
{atoms B | 3IC e R:B= fUC'}
{atoms B | B€(fU)R} =

(atoms)(fU).

O

Note that distributivity of the lattice of funcoids is proved through using atoms of this lattice. I
have never seen such method of proving distributivity.

Corollary 76. The lattice of funcoids is co-brouwerian.

The next proposition is one more (among the theorem 42) generalization for funcoids of com-
position of relations.

Proposition 77. For every f, g€ FCD

atoms"P(go f) = {z xFP 2 | 2,z € atoms®V, Ty € atomsSV: (z xFP y € atoms P f A y xFPL 2 €

atoms™Pg)}.

Proof. (z xFP2)NFCP (go f)+ 0 & z[go flz © Fy € atomsSU: ([ f]y A y[g]z) & 3y € atomsSU:
((z xFP ) NFEL F L P A (y xFEP 2) NFEP g L ) (were used the theorem 42). O

Conjecture 78. The set of discrete funcoids is the center of the lattice of funcoids.

3.11 Complete funcoids

Definition 79. I will call co-complete such a funcoid f that VX € 2U: (f)X € 0.

Remark 80. I will call generalized closure such a function o € 20570 that
1. ad=0;
2. VI, Je PB:a(lUJ)=alUal.
Obvious 81. A funcoid f is co-complete iff {f)| g is a generalized closure.
Remark 82. Thus funcoids can be considered as a generalization of generalized closures. A

topological space in Kuratowski sense is the same as reflexive and transitive generalized closure.
So topological spaces can be considered as a special case of funcoids.
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Definition 83. I will call a complete funcoid a funcoid whose reverse is co-complete.

Theorem 84. The following conditions are equivalent for every funcoid f:
1. funcoid f is complete;
2. VS € 2§, J € 20: (USS[f]J & 3IT € S I[f]J);
3. VS e 20, J e 20: (U S[f]lJ< 3 eS:I[f]J]);
1. VS € 2§ (HUTS = US((1))S;
5. WS € 220: () S=US(F)S:
6. VA€ 20: (fYA=US{(f)a | a€ A}.

Proof.
(8) = (1). For every S € P20, Je PV

U SnS(f1)J#0e3res: 103 (f~1)J#4, (9)
consequently by the theorem 52 in [5] we have ( f~1)J € ZU.

(1) = (2). For every S € 2§, J € 20U we have ( f~1)J € PV, consequently the formula (9)
is true. From this follows (2).

©)=(5). (/) US = U{(fala € U S} = US{US{(f)ala € 4} A € 5} =
US{(HA | A ST =U((1))s.

(2)=(4). J NS (HUSS £ 0 USS[flJ o T e S I[flJ eI es JnS (IT+0 o
JOSUS((£))S+#0 (used the theorem 52 in [5]).

(2) = (3), (4) = (5), (5) = (3), (5) = (6). Obvious. O

The following proposition shows that complete funcoids are a direct generalization of pre-topo-
logical spaces.

Proposition 85. To specify a complete funcoid f it is enough to specify (f) on one-element
sets, values of (f) on one element sets can be specified arbitrarily.

Proof. From the above theorem is clear that knowing (f) on one-element sets (f) can be found
on every set and then its value can be inferred for every filter objects.
Choosing arbitrarily the values of (f) on one-element sets we can define a complete funcoid

the following way: <f>Xd:CfU3{<f>{a} | € X} for every X € Z0. Obviously it is really a com-
plete funcoid. O

Theorem 86. A funcoid is discrete iff it is both complete and co-complete.

Proof.
= . Obvious.

<. Let f is both a complete and co-complete funcoid. Consider the relation g defined by
that (g){a} = (f){a} (g is correctly defined because f is a generalized closure). Because
f is a complete funcoid f=g. O

Theorem 87. If R is a set of (co-)complete funcoids then [ JF*PR is a (co-)complete funcoid.

Proof. It is enough to prove only for co-complete funcoids. Let R is a set of co-complete fun-
coids. Then for every X € ZU

(Urer)x=J ()X | feRye 70
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(used the theorem 39). O
Corollary 88. If R is a set of binary relations then JF*PR=J R.

Proof. From two last theorems. g
Theorem 89. The filtrator of funcoids is filtered.

Proof. It’s enough to prove that every funcoid is representable as (infinite) meet (on the lattice
of funcoids) of some set of discrete funcoids.

Let f € FCD, Ae 20, B eup(f)A, g(A; B)= A xFP BUFP I xFCO (5. For every X € 20

0 ifX=0
(g(AB)X = (AXFPB)XU(AXFPU)X=| (¢ B if0+XCA |D(f)X;
UifXZA

so g(A4; B) D f. For every A€ U
(VF{(a(4;B))A | Beup(f)A} =B | Beup(f)A}=(f)4;

consequently

(YP{9(A;B) | Ac U, Beup(f)A}= /. 0
Conjecture 90. If f is a complete funcoid and R is a set of funcoids then f o UFCDR =
UFP(fo)R.
This conjecture can be weakened:

Conjecture 91. If f is a discrete funcoid and R is a set of funcoids then f o UFCDR =
UFP(fo)R.

I will denote ComplFCD and CoComplFCD the sets of complete and co-complete funcoids
correspondingly.

Obvious 92. ComplFCD and CoComplFCD are closed regarding composition of funcoids.
Proposition 93. ComplFCD and CoComplFCD (with induced order) are complete lattices.

Proof. Follows from the corollary 87. 0

3.12 Completion of funcoids

Theorem 94. Cor f = Cor’ f for an element f of the filtrator of funcoids. (Core part is taken
for the filtrator of funcoids.)

Proof. From the theorem 26 in [5] and the corollary 88 and theorem 89. O

Definition 95. Completion of a funcoid f is the complete funcoid Compl f defined by the for-
mula (Compl f){a} = (f){a} for a €U.

Definition 96. Co-completion of a funcoid f is defined by the formula
CoCompl f = (Compl f~1)~L.

Obvious 97. Compl f C f and CoCompl f C f for every funcoid f.

Proposition 98. The filtrator (FCD; ComplFCD) is filtered.

Proof. Because the filtrator (FCD; 220?) is filtered. O
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Theorem 99. Compl f = Cor(FCP:CompIFCD) £ Cor’(FCD;ComplFCD)f.

Proof. Cor(FCD:CompIFCD) ¢ gy (FCDIComPIFCD) 1) o (the theorem 26 in [5]) the filtrator
(FCD; ComplFCD) is filtered and with join closed core (the theorem 87).
Let g € up(FEP:CompIFCD) ¢ Then g € ComplFCD and g D f. Thus g = Compl g D Compl f.
Thus Vg € up(FCP:CompIFCD) £ v 5 Compl f.
Let Vg € up(FEP:CompIFCD) £ ¢ for some h € ComplFCD.
Then h C ﬂFCDup(FCD?ComplFCD) f = f and consequently h= Complh C Compl f.
Thus Compl f — ﬂCOmplFCDup(FCD;ComplFCD) f — Cor(FCD;ComplFCD)f. 0

Theorem 100. Atoms of the lattice ComplFCD are exactly direct products of the form
{a} xFCP b where o € U and b is an atomic f.o.

Proof. First, easy to see that {a} x P b are elements of ComplFCD. Also () is an element of
ComplFCD.

{a} xFP b are atoms of ComplFCD because these are atoms of FCD.

Remain to prove that if f is an atom of ComplFCD then f = {a} x P b for some o € ¥ and
an atomic f.o. b.

Suppose f is a non-empty complete funcoid. Then exists o € U such that (f){a} # . Thus
{a} xFCPH C f for some atomic f.o. b. If f is an atom then f={a} xFPp. O

Theorem 101. (CoCompl f)X = Cor (f)X for every funcoid f and set X.

Proof. CoCompl f C f thus (CoCompl f)X C (f)X, but (CoCompl f)X € LU thus
(CoCompl f)X CCor (f)X.
Let aX =Cor (f)X. Then af) =0 and

a(XUY)=Cor (f)(XUY)=Cor({f)XU(f)Y)=Cor (f)XUCor (f)Y =aXUaY.

(used the theorem 64 from [5]). Thus « can be continued till (g) for some funcoid g. This fun-
coid is co-complete.

Evidently g is the greatest co-complete funcoid which is lower than f.

Thus g = CoCompl f and so Cor (f)X =aX = (g)X = (CoCompl f)X. O

Theorem 102. ComplFCD is an atomistic lattice.

Proof. Let f € ComplFCD. (f)X = US{(f){z} |z € X} = UN{(flio}){z} |2 € X} =
US{(fl{a})X | 2 € X}, thus f={J P{fle} | z € X}. It is trivial that every f|(} is a union
of atoms of ComplFCD. g

Theorem 103. A funcoid is complete iff it is a join (on the lattice FCD) of atomic complete
funcoids.

Proof. Follows from the theorem 87 and the previous theorem. (]
Corollary 104. ComplFCD is join-closed.

Theorem 105. Compl(| JFPR) =J P (Compl) R for every set R of funcoids.

Proof. (Compl(J"PR))X = US{(U"PR){a} |a € X} = US{US{(f){a} | fF € R} |a €
X} =UNUS{(f){a} |ae X} | feR} =US{(Compl /)X | feR}=(UFP(Compl)R)X for
every set X. O

Lemma 106. Co-completion of a complete funcoid is complete.
Proof. Let f is a complete funcoid.

(CoCompl f)X = Cor (f)X = Cor JS{(f{z} |z € X} = {Cor (f{{z} |z e X} =U
{{CoCompl f) {z} | z € X} for every set X. Thus CoCompl f is complete. O
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Theorem 107. Compl CoCompl f = CoCompl Compl f = Cor f for every funcoid f.

Proof. Compl CoCompl f is co-complete since (used the lemma) CoCompl f is co-complete.
Thus Compl CoCompl f is a discrete funcoid. CoCompl f is the the greatest co-complete funcoid
under f and Compl CoCompl f is the greatest complete funcoid under CoCompl f. So
Compl CoCompl f is greater than any discrete funcoid under CoCompl f which is greater than
any discrete funcoid under f. Thus Compl CoCompl f it is the greatest discrete funcoid under
f. Thus Compl CoCompl f =Cor f. Similarly CoCompl Compl f = Cor f. 0

Question 108. Is ComplFCD a co-brouwerian lattice?

3.13 Monovalued funcoids
Following the idea of definition of monovalued morphism let’s call monovalued such a funcoid f

that fo f=1C Iy, .

Obvious 109. A morphism (f;.4;B) of the category of funcoids is monovalued iff the funcoid f
is monovalued.

Theorem 110. The following statements are equivalent for a funcoid f:

1. f is monovalued.

2. Va € atomsS A: ( f)a € atomsS B U {0}.
3. VL, J €5 (f~)TN J)=(fV)Znd (f~1)J.
4.V, Je20:(f~HINT)=(f~HInNS(f~1)J.

Proof.
(2) = (3). Let a€atoms® U, (f)a=b. Then because b € atoms® BU {0}

TS TS b£0=InS b£0ATNSb+0;
al (T3 T) < alfIZA a[f]T;
TS asIZ[fHanT[f a;
anS (NI T)#£0anS (f"OI4OAand (f~1)T #0;
(f"H@ST)=(f1HInS(f~1J.

(4)=(1). {f~HanS (f~1)b =0 for every two distinct atomic filter objects a and b. This
is equivalent to =({ f="a[f]b); 6N (fY{(f~a=0;bNS (fo f~Ha=0; =(a] fo f~1]b).
So a[f o f’l}b:> a = b for every atomic filter objects @ and b. This is possible only when
Jfof 1 Clpg .

(3) = (4). Obvious.

—(2) = —(1). Suppose (f)a ¢ atoms®B U {0} for some a € atomsSA. Then there exist two
atomic filter objects p # ¢ such that (f)a 2 p A (f)a 2 g. Consequently p NS (f)a # 0;

an® (f~)p# 0 aC(f ) (fof p={(H{Fp2(fla2q (fof " )pLp. Soit
cannot be fo f=1C Ipg s O

Corollary 111. A binary relation is a monovalued funcoid iff it is a function.

Proof. Because VI, J € ZU: <f_1>(Iﬂ J)= <f_1>I NS <f_1>J is true for a binary relation f if
and only if it is a function. O

Remark 112. This corollary can be reformulated as follows: For binary relations the classic
concept of monovaluedness and monovaluedness in the above defined sense of monovaluedness of
a funcoid are the same.
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3.14 Ty-, Ti- and Ts-separable funcoids

For funcoids can be generalized Ty-, T1- and T»- separability. Worthwhile note that Ty and T3
separability is defined through Tj separability.

Definition 113. Let call T1-separable such funcoid f that for every a, 8 € U is true

at f=-({a}[f{B})

Definition 114. Let call Ty-separable such funcoid f that fN P f=1 is Ti-separable.
Definition 115. Let call Th-separable such funcoid f that the funcoid f~!o f is Ti-separable.
For symmetric transitive funcoids T3- and Th-separability are the same (see theorem 12).

Obvious 116. A funcoid f is Th-separable iff a# B= (f){a} NS (f){B} =0 for every o, B€U.

3.15 Filter objects closed regarding a funcoid
Definition 117. Let’s call closed regarding a funcoid f such filter object A that (f)A C A.
This is a generalization of closedness of a set regarding an unary operation.

Proposition 118. If 7 and J are closed (regarding some funcoid), S is a set of closed filter
objects, then

1. ZUS J is a closed filter object;
2. %9 is a closed filter object.

Proof. Let denote the given funcoid as f. (f)(ZUS J) = (f)ZUS (f)T CTUS T, (f)NS C
NS((F))S CNSS. Consequently the filter objects ZUS J and (55 are closed. O

Proposition 119. If S is a set of closed regarding a complete funcoid filter objects, then the
filter object | J¥9 is also closed regarding our funcoid.

Proof. (f)JSS=US{(f))S CJ®S where f is the given funcoid. O

4 Reloids

Definition 120. I will call a reloid a filter object on the set of binary relations.

Reloids are a generalization of uniform spaces. Also reloids are generalization of binary rela-
tions (the set of binary relations is a subset of the set of reloids, I will call discrete these reloids
which are binary relations).

Definition 121. The reverse reloid of a reloid f is defined by the formula

upfﬁl:{Ff1 | Feup ffl}.

Reverse reloid is a generalization of conjugate quasi-uniformity.
I will denote RLD either the set of reloids or the category of reloids (defined below), depen-
dently on context.

4.1 Composition of reloids

Definition 122. Composition of reloids is defined by the formula
gOf:ﬂRLD{GOF | Feup f,Geupg}.
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Composition of reloids is a reloid.
Theorem 123. (hog)o f=ho(go f) for every reloids f, g, h.

Proof. For two nonempty collections A and B of sets I will denote
A~B& (VK eAJLeB: LCK)A (VK eB3ILe A: LCK).

It is easy to see that ~ is a transitive relation.
I will denote BoA={LoK|K €A, L€ B}.
Let first prove that for every nonempty collections of relations A, B, C

A~B=AoC~BoC(C.

Suppose A~ B and P€ Ao(C thatis K€ A and M € C such that P=KoM. 3K'e B:K'CK
because A~ B. We have P'=K’o M € Bo C. Obviously P’ C P. So for every P € Ao C exist
P’ € Bo(C such that P’ C P; vice versa is analogous. So AoC~ BoC.

up((hog)o f)~up(hog)oup f, up(hog)~ (uph)o (upg). By proven above up((hog)o f)~
(uph)o (up g) o (up f).

Analogously up(ho (go f))~ (uph) o (up g) o (up f).

So up((ho g)o f)~up(ho(go f)) what is possible only if up((ho g)o f) =up(ho(go f)). O
Theorem 124.

L fof=N"P{FoF | Fecupf};

2. fflof:ﬂRLD{FfloF | FGupf};

8. Jo  '=NRP{FoF~1| Feupf}.

Proof. I will prove only (1) and (2) because (3) is analogous to (2).
1. Enough to show that VF,Ge€up f3H €up f: Ho H CGo F. To prove it take H=FNG.
2. Enough to show that VF,G cup f3H cup f: H-' o H C G~ 'o F. To prove it take H =
FNG. Then H 1o H=(FNG)~'o(FNG)CG~'oF. O
Conjecture 125. If f, g, h are reloids then
1. fo(gURPR)=fogURLD foh;
2. (gURLP h)o f=go fURLD ho f.

4.2 Direct product of filter objects
In theory of reloids direct product of filter objects A and B is defined by the formula

AXRL BE(HAx B | Acup A, BeupB}.

Theorem 126. A xR0 B = U‘?{a xR p | a € atomsSA, be atomsgB} for every A, B€ 5.

Proof. Obviously
AxRLD B3> Ug{a xRP b | g € atomsSA, be atomsSB}

Reversely, let K € up [J¥{a xR'P b | a € atomsSA, b € atoms’B}. Then K € up(a xR-P b) for
every a € atomsSA, b € atoms®B; K DO X, xRP Y, for some X, cupa, Y, cupb; K D U {Xa X
Y, | a € atomsSA, b € atomsSB} =) {X, | a € atomsSA} x (J {V, | b € atomsSA} D A x B
where A € upA, B cupB; K € up(A xRP B). O

Theorem 127. (Ag xRtP By) NREP (A3 xRED B1) = (Ao NREP Ay) xRED (By NRLP By) for every Ao,
A15807Bl GS
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Proof.

(Ao xRLP Bg) MRLD (4 xREP By) = (RP{PNQ | Peup(Ag xRMP By), Q € up(A; xRP By)}
= (*-P{(A¢ x Bo) N (A1 x B1) | Ag € upAg, By € upBo, A €
upAi, By €uphBi}
= [**P{(4o N A1) x (Bo N By) | Ag € up Ao, By € upBo, A €
upAj, By € upB}
= (F*P{K x L | K €up(AgN A1), L €up(BoNB1)}
= (Ao ARLD Ay) «RLD (Bo ARLD By).

O
Theorem 128. If S € 2F? then
(VFP{AXRLB | (4;8) € 5} =(Fdom § xR-P (|Fim S.

Proof. Let P=%dom S, Q=%im S; I=RP{AXRPB | (4;B) e S}.

P xRLD 9 C 1 is obvious.

Let F €up(P x RLD Q). Then exist PeupP and @ €up Q such that FF O P x Q.

P=PN..NP, where P; € (up)dom S and Q@ =Q1N...N Qy where Q; € (up)im S.

P x Q:ﬂid‘ (Pix Q).

Pix Q; 2 AxRP B for some (A;B)€S. Px Q= ; (Pix Q)21 Feupl. a

Conjecture 129. If AcF then A xR'P is a complete homomorphism of the lattice § to a com-
plete sublattice of the lattice RLD, if also A () then it is an isomorphism.

Definition 130. I will call a reloid convez iff it is a union of direct products.
Example 131. Non-convex reloids exist.

Proof. Let a is a non-trivial atomic f.o. Then (=)|, is non-convex. This follows from the fact
that only direct products which are below (=) are direct products of atomic f.o. and (=)|, is
not their join.

I will call two filter objects isomorphic when the corresponding filters are isomorphic (in the
sense defined in [5]).

Theorem 132. The reloid {a} xR'P F is isomorphic to the filter object F for every a € U.

Proof. Consider B={a} x U and f={(z;(a;z)) | x € U}. Then f is a bijection from U to B.
If X €upF then (f)X CB and (f)X={a} x X €up({a} xRD F).
For every Y € up({a} xR0 F) N #B we have Y = {a} x X for some X € up F and thus Y =
X
< >So (£)up 7o = (f)|up 7 is a bijection from up F N 2T to up({a} xR0 F)n ZB.
We have up F N 20 and up({a} xR F) N ZB directly isomorphic and thus up F is isomor-
phic to up({a} xRP F). O

4.3 Restricting reloid to a filter object. Domain and image
Definition 133. I call restricting a reloid f to a filter object A as f|4= f NP (A xRLP ).

Definition 134. Domain and image of a reloid f are defined as follows:
domf:ﬂ5<dom>up 7 imf:ﬂgﬁrn}up f.

Proposition 135. f C A xRP Be dom f C AAim f CB.
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Proof.
= . Follows from dom(A xRP B) C AAim(A xRP B) C B.
<. dom fCAsVAcupAIF €up f:dom F'C A. Analogously
imfCBsVYBeupBiG cup f:im G CB.

Let dom f CAAim f C B, A€ upA, B € upB. Then exist F €up f, G € up f such that
dom F C AANim G C B. Consequently FNG €up f, dom(FNG)C A, im(FNG)C B that
is FNG C A x B. So exists H € up f such that H C A x B for every A € upA, B € upB.
So f CAxRPB, O

ef
Definition 136. I call identity reloid for a filter object A the reloid IAd: (=)|a-
Theorem 137. I4=(5{Ia | A€upA} where I, is the identity relation on a set A.
Proof. Let K € up ﬂg{lA | A € up A}, then exists A € upA such that K D I4. Then I4 =

(=)a==) NP (AX V) C(=)N(AxV)=11CK; K €up L.
Reversely let K € up I4 = up((=) NRP (A xRLP §5)); then exists A € upA such that K €

up((=)N(AxU))=upls Cup¥{la | AcupA}. O
Proposition 138. I, '=14.
Proof. Follows from the previous theorem. O

Theorem 139. f|4= fol4 for every reloid f and filter object .A.

Proof. We need to prove that f NRP (A x U) = fo ORP{I4 | AcupA}. foORP{I4| A€
upA} =R {Foly | Feup f,AcupA}=ORP{F|a| Feup f, AcupA} =NRP{F N (A x
O)|F € up f, A € wpA} = ORP{F|F € uwp f} n NRP{A x U| A € uwAd} =
fNRLD (A xRLD 35, a

Theorem 140. (go f)|a=go(f|a) for every reloids f and g and filter object A.
Proof. (go f)la=(go f)ola=go(fola)=go(f|a) O
Theorem 141. fNRLP (A XRLD B)=Tz0 fol4 for every reloid f and filter objects A and B.

Proof. f mRLD (.A ><RLD B) — f mRLD (.A ><RLD U) ﬂRLD (U ><RLD B) — f|.A ﬂRLD (U X B) — f o
Ly R (5 x B) = (f 0 L)~ R0 (5 xR0 B) =)~ = (Lo f1) NP (B xR0 15)) =1 = (140
flolg)~t=1Igo folyu. O

4.4 Category of reloids
I will define the category RLD of reloids:
e The set of objects is §.

e The set of morphisms from a filter object A to a filter object B is the set of triples (f; A;
B) where f is a reloid such that dom f C A, im f CB.

e Composition of morphisms is defined in the natural way.
e Identity morphism of a filter object A is (I4;.4; A).

To prove that it is really a category is trivial.

4.4.1 Monovalued reloids

Following the idea of definition of monovalued morphism let’s call monovalued such a reloid f
that f o f_l - Iirn f
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Obvious 142. A morphism (f;A; B) of the category of reloids is monovalued iff the reloid f is
monovalued.

Conjecture 143. If a reloid is monovalued then it is a monovalued function restricted to some
filter object.

Conjecture 144. A reloid f is monovalued iff Vg €RLD: (¢ C f=3A€F: 9= f|a)-

Conjecture 145. A monovalued reloid restricted to an atomic filter object is atomic or empty.
A weaker conjecture:

Conjecture 146. A (monovalued) function restricted to an atomic filter object is atomic or

empty.

4.5 Complete reloids and completion of reloids

Definition 147. A complete reloid is a reloid representable as join of direct products
{a} xRP b where a € U and b is an atomic f.o.

Definition 148. A co-complete reloid is a reloid representable as join of direct products
a xRLP L31 where 3 €U and a is an atomic f.o.

I will denote the sets of complete and co-complete reloids correspondingly as ComplRLD and
CoComplRLD.

Obvious 149. Complete and co-complete are dual.

Obvious 150. Complete and co-complete reloids are convex.

Obvious 151. Discrete reloids are complete and co-complete.

Conjecture 152. If a reloid is both complete and co-complete then it is discrete.
Conjecture 153. Composition of complete reloids is complete.

Obvious 154. Join (on the lattice of reloids) of complete reloids is complete.

Corollary 155. ComplRLD (with the induced order) is a complete lattice.

Definition 156. Completion and co-completion of a reloid f are defined by the formulas:

Complf:COI,(RLD;ComleLD)f and Cocomplf:Cor(RLD;CoComleLD)‘f.

Theorem 157. Atoms of the lattice ComplRLD are exactly direct products of the form
{a} xRLPh where a € U and b is an atomic f.o.

Proof. First, easy to see that {a} x P b are elements of ComplRLD. Also () is an element of
ComplRLD.

{a} xRLP b are atoms of ComplFCD because these are atoms of RLD.

Remain to prove that if f is an atom of ComplRLD then f = {a} xRPb for some a € U and
an atomic f.o. b.

Suppose f is a non-empty complete reloid. Then {a} xRPb C f for some o € U and atomic
f.o. b. If fis an atom then f={a} x"Pb. O

Obvious 158. ComplRLD is an atomistic lattice.

Conjecture 159. Compl f NRP Compl g = Compl( f NRLP g) for every reloids f and g.
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Conjecture 160. Compl(|JR'PR)=JR'P(Compl)R for every set R of reloids.
Conjecture 161. Compl CoCompl f = CoCompl Compl f = Cor f for every reloid f.
Question 162. Is ComplRLD a distributive lattice? Is ComplRLD a co-brouwerian lattice?

Conjecture 163. If f is a complete reloid and R is a set of reloids then

fOURLDR:URLD<fO>R_
This conjecture can be weakened:

Conjecture 164. If f is a discrete reloid and R is a set of reloids then

fOURLDR:URLD<fO>R-

5 Relationships of funcoids and reloids

5.1 Funcoid induced by a reloid
Every reloid f induces a funcoid (FCD) f by the following formulas:

X[(FCD) f]Y & VF cup f: X[F]Y
((FCD)N)X = J¥{(F)X | Feup f}.
We should prove that (FCD) f is really a funcoid.

Proof. We need to prove that
X[(FCD) /1Yy < Y NS ((FCD) f)X #0 < X NS ((FCD) f =1V +0.

The above formula is equivalent to:
VEeup f: X[FIY&YNS (V{(F)X | Feup f1#0eX0S([F{(F- )Y | Feup f}+0.

We have YNSO\S{F)X | Feup f} =N {YNS(F)X | Feup f}.

Let’s denote W ={Y NS (F)X | Feup f}.

VEcup f: X[F]Y<VEcup f:YNS(FYX+0=0¢ W.

We need to prove that (¢ W< (SW (0. (The rest follows from symmetry.)

This follows from the fact that W is a generalized filter base.

Let’s prove that W is a generalized filter base. For this enough to prove that V =
{{F)X | F €up f} is a generalized filter base. Let A, B €V that is A= (P)X, B={(Q)X where
P,Qecup f. Then for C= (PN Q)X is true both Ce V and C CA,B. So V is a generalized filter
base and thus W is a generalized filter base. O

Theorem 165. X[(FCD)f]Y & (X xR Y)RLD fL () for every X,V €F and f € RLD.
Proof.

(X xRLD PYARLD L VEcup f,Peup(X xR Y): PAF 40
VEcup f, X cupX,Y cupY: (X xRLPY)nRLD L)
VFeup f,XeupX,YeupV: (X xY)NF£0
VFeup f,XcupX,Y eup V: X[F|Y

VEF cup f: X[F]|Y

X[(FCD) f1Y.

te e
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Theorem 166. (FCD)f=\"Pup f for every reloid f.

Proof. Let a is an atomic filter object.
((FCD)f)a=¥{(F)a | F €up f} by the definition of (FCD).
{NFPup fla=N¥{(F)a | F €up f} by the theorem 55.
o ((FCD) fya= (N Pup f)a for every atomic filter object a. O

Lemma 167. ()5S =N%((g))S if g is a funcoid and S is a filter base.

Proof. up(¥S=J (up)S by the theorem 3.
(NS =N%({g))up NS by the theorem 32.
N¥{gNuwp NS =N5%((g)) U (up)S.
Easy to see that (¥((g)) U (up)S=N%((g))S because S C|J (up)s.
Combining these equalities we produce ()5S =N¥({g))S. O

Lemma 168. For every two filter bases S and T of binary relations and every set A
(VFS=(VT= VA | FeSt={(G)A | GeT}

Proof. Let N$S=N%T.

First let prove that {(F)A | F € S} is a filter base. Let X,Y € {(F)A | F € S}. Then X =
(Fx)A and Y = (Fy)A for some Fx, Fy € S. Because S is a filter base, we have S Fz C Fx N
Fy. So (Fz)ACXNY and (Fz)Ac{{FYA| FeS}. So {{F)A| FeS}is a filter base.

Suppose X € up (\S{(F)A | F € S}. Then exists X' € {(F)A | F € S} where X DO X’ because
{{F)A | F €S} is a filter base. That is X’'=(F)A for some F € S. There exists G € T such that
G C F because T is a filter base. Let Y/ = (G)A. We have Y/ C X' C X;Y' e {(G)A| GeT};
Y'eupNS{(GYA | GET}; X eup(¥{(G)A | G€T}. The reverse is symmetric. O

Lemma 169. {GoF | Fcup f,G€upg} is a filter base for every reloids f and g.

Proof. Let denote D={GoF |Feup f,Geupg}. Let Ae DAB€D. Then A=G40F4 A
B=GpoFp for some Fy, Fgcup f and G4,Gg€upg. So ANBD(GaNGg)o(FaNnFp)eD
because FyNFpecup f and G4NGpecupg. d
Theorem 170. (FCD)(go f)=((FCD)g) o ((FCD) f) for every reloids f and g.

Proof.

((FCD)(go /X = (V{(H)X | Heup(go f)}
= ﬂ3{<H>X | HeupﬂRLD{GoF | FEupf,Geupg}}.
Obviously
ﬂRLD{GoF | FGupf,GEupg}:ﬂRLDupﬂRLD{GOF | Feup f,Geupg}l;

from this by the lemma 168 (taking in account that {G o F |F € up f, G € up ¢} and
upRYP{Go F | Feup f,G €up g} are filter bases)

ﬂg{<H>X | HGupﬂRLD{GOFlFGupf,GGupg}}:ﬂg{<GoF>X | Feup f,Geupg}.
On the other side

((FCD)g) o ((FCD) f))X = ((FCD)g)((FCD) f)X
((FCD)g)( JS{(F)X | Feup f}

:ﬂg{ (V)X | Feup | Geupg)
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Let’s prove that {(F)X | F €up f} is a filter base. If A, Be {(F)X | F €up f} then A= (F)X
and B = (Fy)X where Fy, Fyeup f. ANB D (FiNFy)X € {(FYX | Feup f}. So {(F)X | F e
up f} is really a filter base.
By the lemma 167 (G)NS{(F)X | F€up f} =NS{{(G)(F)X | F €up f}. So continuing the
above equalities,
((FCD)g) o ((FCD) )X = (V{(FFUGHE)X | Feup f} | Geupg)
— (FUG)HF)X | Feu f,Geupg)
= (F{GoF)X | Feup f,Geupg}.

Combining these equalities we get ((FCD)(g o f))X = (((FCD)g) o ((FCD)f))X for every set
X. O

5.2 Reloids induced by funcoid

Every funcoid f induces a reloid in two ways, intersection of outward relations and union of
inward direct products of filter objects:

(RLD)ou /= (F-Pup /1
(RLD) f< | JRP{AXRO B | A, BEF, AXFPBC [}
Theorem 171. (RLD);, f = URLD{a xR p | a, b€ atomsSU,a xFP b C f}
Proof. Follows from the theorem 126. O
Lemma 172. F cup (RLD)i, f & Va,be atomsSU: (a[f]b=F Da xRLP b) for a funcoid f.

Proof.

Feup (RLD)f < FEupUS{a xRLDp | a,bEatomsSU,axFCDbgf}
& Va,beatoms® U: (a xFPbhC f= F cup(a xR0 b))
& Va,bcatomsS U: ((a xFLH)NFP fL = F Da xRPp)
& Va,be atomsS U: (a[flb=F Da xRPp).

O
Surprisingly a funcoid is greater inward than outward:
Theorem 173. (RLD)oytf € (RLD)iy f for a funcoid f.
Proof. We need to prove
mRLDupf C URLD{‘A «RLD B | ABeF, A XFCDBQ f}
Let
Keup| JS{AXRPB | A, BeF AxFPBCf}.
Then
K = U {XaxYp| ABeF AxFPBC [}
= [ JRP{Xax V5| A, BeF, AxFPBC [}
2 f
where X4€up A, YgeupB. So K €up f; K 2XPup f; K €eupN\RPup f. O

Conjecture 174. (FCD)(RLD);, f = f for every funcoid f.

Conjecture 175. For every funcoid f and reloid g
(RLD)out f € g € (RLD)in f <= (FCD)g = f.
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Conjecture 176. For a convex reloid f
L. (RLD)out(FCD) f = f;
2. (RLD)i,(FCD) f = f.

6 Continuous morphisms

This section will use the apparatus from the section “Partially ordered dagger categories”.

6.1 Traditional definitions of continuity

6.1.1 Pre-topology

Let pu and v are funcoids representing some pre-topologies. By definition a function f is contin-
uous map from p to v in point a iff

Vecup(v) fadd eup(p){a}: (f)0 Ce.

Equivalently transforming this formula we get:

Vecup(v) fa: (f)(n >{a}C€;
(F){u){a} S () fa
(F){up{a} < w)(f >{a}'
(fou)fay S{vo fifa}.

So f is a continuous map from u to v in every point of its domain iff fou Cwvo f.

6.1.2 Proximity spaces

Let pu and v are proximity (nearness) spaces (which I consider a special case of funcoids). By
definition a function f is a nearness-continuous map from g to v iff

VX,Y € 20: (X[u]Y = (/)X [V]((F)Y)).
Equivalently transforming this formula we get:
VXY € ZU: (X[]Y = (£)Y N W) (f)X £0 )
VX,Y € 2U: (X[p]Y = (f)Y N (vo f)X £0)
VXY € 20: (X[p]Y = X[vo fI{f)Y);
VX,Y € 20 (X[p]Y = ()Y [(vo /)~']X);

VX,Y € 20: (X[p]Y = (f) [f Loy~ 1]X),
VXLV € P (XY > X1 ([ or™ Y)Y £0)
VX, Y € 2T (X[p]Y = X O { f~Lov—To f)Y £0);

f1X);

VX,Y € U (X[p]Y = Y[ flov o
VX,Y € PU: (X[p]Y = X[ fLovo f]Y);
wC f~lovof.

So a function f is nearness-continuous iff 4 C f~tovo f.

6.1.3 Uniform spaces

Uniform spaces are a special case of reloids.
Let p and v are uniform spaces. By definition a function f is a uniformly continuous map
from p to v iff

VecupvId eup uV(z;y) €9: (fa; fy)€e
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Equivalently transforming this formula we get:
Vecupvdd €up pV(z;y) €0: {(fz; fy)} Ce
VecupvId €up pV(z;y) €6: fo{(z;y)}of1Ce
Vecupvadd€up u: fodo f71Ce
Vecupv: fouo f~1Ce
fouof=icCuw.

So a function f is uniformly continuous iff fo puo f=1Cuw.

6.2 Our three definitions of continuity

I have expressed different kinds of continuity with simple algebraic formulas hiding the com-
plexity of traditional epsilon-delta notation behind a smart algebra. Let’s summarize these three
algebraic formulas:

Let p and v are endomorphisms of some partially ordered precategory. Continuous functions
can be defined as these morphisms f of this precategory which conform to the following formula:

feC(uv)e feMor(Obu;Obv)A fouCuro f.

If the precategory is a partially ordered dagger precategory then continuity also can be defined
in two other ways:

feC (uv) < feMor(Obu;Obv)AuC flovo f;
feC(u;v) & feMor(Obu;Obv)A fopo fiCw.

Remark 177. In the examples about funcoids and reloids the “dagger functor” is the inverse of
a funcoid or reloid, that is ff= f~1

Proposition 178. Every of these three definitions of continuity forms a sub-precategory (sub-
category if the original precategory is a category).

Proof.

C. Let feC(u;v), geC(v;m). Then fouCro f, govCmog; gofouCgovo fCmogo
f. So go feC(u;m). lob u€ C(p; ) is obvious.

C'. Let feC'(u;v), g€C'(v;7). Then uC flovof,vCglomogy;

uC ffogtomogo f; ,ug(gof)ToTro(gof).
So go feC'(u;m). Llob € C/(; 1) is obvious.
C”. Let f€C"(u;v), g€C”(v;m). Then fouo fTCw, govogiCr;

gofopofloghCm; (gof)opo(gof)icm
So go feC’(p;m). lob € C”(p; p) is obvious. O

Proposition 179. For a monovalued morphism f of a partially ordered dagger category and its
endomorphisms y and v

feC(wv)=feCuv)= feC"(uv).

Proof. Let f € C'(u;v). Then uC ffovo f; fouC foflfovofClpyrovof=vof; fe
Cp;v).
Let f€C(u;v). Then fouCrof; fouo fiCvofofiCrvolpy r=v; f€C”(pu;v). O

Proposition 180. For an entirely defined morphism f of a partially ordered dagger category
and its endomorphisms p and v

feC(wv)= feClyv)= feC(uv).
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Proof. Let f€C”(u;v). Then fopuo fiCuw; fouoflofCvof; fouolsesCrvof; fouC
vo f; feC(u;v).

Let f€C(u;v). Then fouCvof; flofouC flovo filgepouC flovof; nC flovo f;
feC(pv). O

For entirely defined monovalued morphisms our three definitions of continuity coincide:

Theorem 181. If f is a monovalued and entirely defined morphism then

FeC ()& feC(uv) & feC (i),
Proof. From two previous propositions. O

The classical general topology theorem that uniformly continuous function from a uniform
space to an other uniform space is near-continuous regarding the proximities generated by the
uniformities, generalized for reloids and funcoids takes the following form:

Theorem 182. If an entirely defined morphism of the category of reloids f € C”(u;v) for some
endomorphisms £ and v of the category of reloids, then (FCD) f € C'((FCD)u; (FCD)v).

Exercise 1. I leave a simple exercise for the reader to prove the last theorem.

6.3 Continuousness of a restricted morphism

Consider some partially ordered semigroup. (For example it can be the semigroup of funcoids or
semigroup of reloids regarding the composition.) Consider also some lattice (lattice of objects).
(For example take the lattice of set theoretic filters.)

We will map every object A to identity element I4 of the semigroup (for example identity
funcoid or identity reloid). For identity elements we will require

1. ITnolp=1Iang;
2. folaC fiIaofCf.

In the case when our semigroup is “dagger” (that is is a dagger precategory) we will require also
(I4)T=14.

We can define restricting an element f of our semigroup to an object A by the formula
f | a= folga.

We can define rectangular restricting an element p of our semigroup to objects A and B as
Ig o poly. Optionally we can define direct product A X B of two objects by the formula (true
for funcoids and for reloids):

pN(Ax B)=1Igopoly.
Square restricting of an element 1 to an object A is a special case of rectangular restricting and

is defined by the formula 40 o4 (or by the formula pN (A x A)).

Theorem 183. For every elements f, u, v of our semigroup and an object A
1. feCluv)= flaeClaopola;v);
2. feCl(v)=flaeC(Taopoly;v);
3. feC(uv)= flaeC'(Igopoly;v).

(Two last items are true for the case when our semigroup is dagger.)

Proof.

1. flaeClaopola;v)e flaoTlaopolaCro flae folpolpopolsCroflae folyo
polyCvo folp< folpouCrof<fouCrofe feClyv).
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2. f|AEC/(IAOMOIA;Z/)@IAOMOIAg(f|A)Toz/of|A<:IAoMoIAg(foIA)ToyofoIA<:>
TaopolpaClao ffovofolae=pnuC flovo fe feCl(uy).

3. flaeC"(Igopola;v) e flaolaopolso(fla)tCrve folpolpopolsolso fiCre
folpopuolso fiCv« fouofiCve feC’(u;v). O

7 Connectedness regarding funcoids and reloids

7.1 Some lemmas

Lemma 184. If —=(A[f]B) A AU B Ddom fUim f then f is closed on A for a funcoid f and
sets A and B.

Proof. —(A[f]B) = BN (f)A=0< (dom fUim f)Nn BN (f)A=0= ((dom fUim f)\ A) N
(fYA=0 s (f)ACA. O

Corollary 185. If =(A[f]B)ANAUB Ddom fUim f then f is closed on A\ B for a funcoid f
and sets A and B.

Proof. Let =(A[f]B) ANAUB 2D dom fUim f. Then =((A\ B)[f]B) A (A\ B)UB Ddom fU
im f. O

Lemma 186. If ~(A[f]|B)ANAUB Ddom fUim f then —~(A[f"|B) for every whole positive n.

Proof. Let ~(A[f]B) AN AU B D dom f Uim f. From the above proposition (f}A C A. BN
(f)A =10, consequently (f)A C A\ B. Because (by the above corollary) f is closed on A \ B,
then (f)(fYA C A\ B, (f){f){f)A C A\ B, etc. So (f"YA C A\ B, BN (f"A =0,
~(A[f"]B). O

7.2 Endomorphism series

def
Definition 187. Si(u) = wU p? U pd UL, for an endomorphism g of a precategory with count-
able union of morphisms.

def def
Definition 188. S(u)= 1° U S1(p) where u%= Iy, (identity morphism for the object Ob p)
where Ob p is the object of endomorphism p for an endomorphism p of a category with count-
able union of morphisms.

I call Sy and S endomorphism series.

We will consider the collection of all binary relations (on a set U), as well as the collection of
all funcoids and the collection of all reloids, as categories with single object U and the identity
morphism (=) or (=)|s.

So if p is a binary relation or a funcoid or a reloid we have

Si(p)=pUpPUpdu...and S(p)=(=)upup?Upiu...

Proposition 189. S(u) is transitive for the category of binary relations.
Proof.

S(u)oS(u) = ploS(u)UpoS(p)Up?oS(u)U...
(WPUuptup?u.)u(prupupdu.)uplupduptu..))
pluptuplu...

S(p)-
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7.3 Connectedness regarding binary relations
Before going to research connectedness for funcoids and reloids we will excurse into the basic

special case of connectedness regarding binary relations.

Definition 190. A set A is called (strongly) connected regarding a binary relation pu when
VXY € ZU\{0}: (X UY = A= X[u]Y).

Definition 191. Path between two elements a,b € U in a set A through binary relation p is the
finite sequence x...x, where zo=a, x, =b for n € N and z;(uN A x A)x;4q for every i =0, ...,
n — 1. n is called path length.

Proposition 192. There exists path between every element a € U and that element itself.
Proof. It is the path consisting of one vertex (of length 0). O

Proposition 193. There is a path from element a to element b in a set A through a binary
relation p iff a (S(pNAxA))b (that is (a,b) € S(uN A x A)).
Proof.

= . If exists a path from a to b, then {b} C ((uN A x A)"){a} where n is the path length.
Consequently {b} C{(S(uNAx A)){a}; a(S(uNAxA))b.

<. If a(S(pNAxA))b then exists n € N such that a (uNAxA)"b. By definition of compo-
sition of binary relations this means that there exist finite sequence xg...x,, where zo = a,
Zn=">0for n€N and x; (uUNA X A) x;11 for every i=0,...,n — 1. That is there is path from
a to b. O

Theorem 194. The following statements are equivalent for a relation p and a set A:
1. For every a,be€ A there is a path between a and b in A through pu.
2. S(uNAxA)DAxA.
3. S(uNAxA)=AxA.
4

. A is connected regarding .

Proof.

(1) = (2). Let for every a, b € A there is a path between a and b in A through p. Then
a(S(upNAxA))b for every a,be A. It is possible only when S(uNA x A) D A x A.

(3) = (1). For every two vertices a and b we have a (S(pNAxA))b. So (by the previous
theorem) for every two vertices a and b exist path from a to b.

(3) = (4). Suppose that =(X[pN A x A]Y) for some X,Y € 20\ {0} such that X UY = A.
Then by a lemma —(X[(u N A x A)"]Y) for every n € N. Consequently —(X[S(p N A x
A)Y). So S(uNAx A)# A x A.

(4)=(3). If (S(uN A x A)){v} = A for every vertex v then S(uNA x A)=A x A. Consider

the remaining case when Vd;f(S(,u NAx A)){v} C A for some vertex v. Let W=A\V. If
card A=1 then S(uN A x A) D (=)=A x A; otherwise W # ). Then VUW = A and so
V[u]W what is equivalent to V[p N A x AJW that is (u N A x A)V N W # (. This is
impossible because (uNA X AV =(uNAx A(S(pNAXx ANV =(S1(pNAx A)V C
(S(LNAXA))V =V.

(2) = (3). Because S(uNAx A)C Ax A. O

Corollary 195. A set A is connected regarding a binary relation p iff it is connected regarding
wNAXxA.
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Definition 196. A connected component of a set A regarding a binary relation F' is a maximal
connected subset of A.

Theorem 197. The set A is partitioned into connected components (regarding every binary
relation F').

Proof. Consider the binary relation a~b<a (S(F))bAb(S(F))a. ~ is a symmetric, reflexive,
and transitive relation. So all points of A are partitioned into a collection of sets (). Obviously
each component is (strongly) connected. If a set R C A is greater than one of that connected
components A then it contains a point b € B where B is some other connected component. Con-
sequently R is disconnected. O

Proposition 198. A set is connected (regarding a binary relation) iff it has one connected
component.

Proof. Direct implication is obvious. Reverse is proved by contradiction. 0

7.4 Connectedness regarding funcoids and reloids
Definition 199. Si(u)=N%{S1(M) | M €up p} for a reloid p.
Definition 200. Connectivity reloid S*(u) for a reloid p is defined as follows:

S* () =(\F{S(M) | M € up u}.

Remark 201. Do not mess the word connectivity with the word connectedness which means
being connected.!

Proposition 202. S*(u)= (=) URP Si(u) for every reloid p.

Proof. Follows from the theorem about distributivity of U regarding (¥ (see [5]). O
Proposition 203. S*(u)=5(p) if p is a binary relation.

Proof. S*(u) = F{S(u)} = S(10). n

Definition 204. A filter A is called connected regarding a reloid p  when
S*(MQRLD (AXRLDA)):_).AXRLDA.

Obvious 205. A filter A is connected regarding a reloid g when S*(u NRLD (A xRLD A)) =
A xRLD 4,

Definition 206. A filter A is called connected regarding a funcoid p when

VX,V eF\{0H: (X USY=A= X[u])).

Proposition 207. A set A is connected regarding a binary relation p iff it is connected
regarding p considered as a reloid.

Proof. S*(u NRLP (A xRP A)) =S*(un A x A)=S(un A x A). So S*(uNRL A xRLD 4) D
AxRP A S(uNAx A)DAxXA. O

Obvious 208. A filter is connected regarding a reloid g iff it is connected regarding the reloid
1 NRED (A xRLD ).

Obvious 209. A filter is connected regarding a funcoid p iff it is connected regarding the fun-
coid pNFCEP A xFCD 4,

1. In some math literature these two words are used interchangeably.
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Theorem 210. A filter A is connected regarding a reloid f iff it is connected regarding every
F €up f (considered as a reloid).

Proof.
=-. Obvious.
<. Fis connected iff S(F)=F°UF'UF?U...2 AxRD A

S* (/) =N {SF) | Feup f} 2N {AxRPA| Feup f} =AxRP A O

Conjecture 211. A filter A is connected regarding a funcoid p iff A is connected for every
binary relation F' € up p (considered as a funcoid).

Conjecture 212. A filter A is connected regarding a reloid f iff it is connected regarding the
funcoid (FCD) f.

Conjecture 213. A filter is connected regarding a binary relation considered as a funcoid iff it
is connected regarding this binary relation considered as a reloid.

7.5 Algebraic properties of S and S*
Theorem 214. S*(S*(f))=S5*(f) for every reloid f.

Proof. S*(S*(f)) = NS{S(R) | R € up S*(f)} € NS{S(R) | R € {S(F)|F € uwp [}} =
NS{S(S(F)) | Feup fy=N¥S(F) | Feup f}=5*(f).

So S*(S*(f)) CS*(f). That S*(S*(f)) 2 S*(f) is obvious. O
Corollary 215. S*(S(f))=S(S*(f))=S*(f) for any reloid f.

Proof. Obviously S*(S(f))2 *( ) and S(S*(f)) 2 .5*(f).

But S*(S(f)) €5*(57(f)) = 5°(f) and S(S5*(f)) € 5*(S*(f)) = 5*(f)- 0
Conjecture 216. S(S(f))=S(f) for

1. every reloid f;

2. every funcoid f.

Conjecture 217. For every reloid f
L S(f)eS(f)=5S(f)
2. 57(f)e 57 (f)=5"(f);
3. 5(f)eS87(f)=5"(f)eS(f)=5"(f).
Conjecture 218. S(f)oS(f)=S(f) for every funcoid f.

8 Postface

8.1 Misc

See this Web page for my research plans: http://www.mathematics21.org/agt-plans.html
I deem that now two most important research topics in Algebraic General Topology are:

e to solve the open problems mentioned in this work;
e define and research compactness of funcoids.

Also a future research topic are n-ary (where n is an ordinal, or more generally an index set)
funcoids and reloids (plain funcoids and reloids are binary by analogy with binary relations).
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We should also research relationships between complete funcoids and complete reloids.

8.2 Pointfree funcoids and reloids

I have set wiki site http://funcoids.wikidot.com to write on that site the pointfree variant of the
theory of funcoids and reloids (that is generalized funcoids on arbitrary lattices rather than fun-
coids on a lattice of sets as in this work).

However I consider for me research of pointfree funcoids and pointfree reloids a low priority
project. (There are yet enough research topics in the point-set topology and I don’t want to
meddle into pointfree topology in foreseeable future.)

The work about pointfree funcoids and reloids seems being largely technical and boring.
Pointfree theory of funcoids and reloids seems being a trivial generalization of the theory of
point-set funcoids and reloids. It is not similar to the traditional pointfree topology which is not
an obvious generalization of point-set topology.

But if someone indeed wishes to treat pointfree funcoids, please use the above menioned
wiki.

Appendix A Some counter-examples

For further examples we will use the filter object A defined by the formula
A:ﬂg{(fs;s) | e€eR,e>0}.

Example 219. There exist a funcoid f and a set S of funcoids such that f NFCP [ JFCPS £
UFCD<fﬁFCD >S.

Proof. Let f = A x P {0} and S = {(e; + o0) x P {0} | & > 0}. Then f NFP |JFPS =
(A xFEPL0}) NFEP ((0; + 00) xFEP{0}) = (A NFEP (0; 4 00)) xFP {0} # O while (JFPL(fNFP ) S =
UFeL{oy =0. O
Conjecture 220. There exist a set R of funcoids and a funcoid f such that f o |JFPR #
UFCD<f ° >R

Example 221. There exist a set R of funcoids and f.o. X and ) such that
L X[UFPRIYABSf e R: X[V
2. <UFCDR>X3U3{(f>X | feR}.

Proof.

1. Let Y =A and Y =R. Let R={(;+ 00) xR | e € R, & > 0}. Then J*°R = (0; +
00) xFEOR. So X[(JFPR]Y and V[ € R: ~(X[f]Y).

2. With the same X and R we have ((JFPR)X = R and (f)X = 0 for every f € R, thus
US((NHX | feR}=0. O

Theorem 222. For a f.o. a we have a xR'P a C (=)|¢s only in the case if a =0 or a is a trivial
atomic f.o. (that is an one-element set).

Proof. If a xR'P a C (=)|s then exists m € up(a xR'P a) such that m C (=)[5. Consequently

exist A, B € upa such that A x B C (=)| what is possible only in the case when A= B =a is an
one-element set or empty set. O

Corollary 223. Direct product (in the sense of reloids) of non-trivial atomic filter objects is
non-atomic.

Proof. Obviously (a xRP a) NRLP (=)|54£ 0 and (a xRLP a) NRLP (=) |5 C a xRPa. O
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Example 224. There exist two atomic reloids whose composition is non-atomic and non-
empty.

Proof. Let a is a non-trivial atomic filter object and x € 5. Then
(ax{z}o({z}xa)=[T{(Ax{z}o({z}x A) | Acupa}={Ax A | Acupa}=axa
is non-atomic despite of a x {z} and {z} x a are atomic. O

Example 225. There exists non-monovalued atomic reloid.
Proof. From the previous example follows that the atomic reloid {z} x a is not monovalued. O
Example 226. (RLD);, f # (RLD)oys f for a funcoid f.

Proof. Let f = (=)|s. Then (RLD)i,f = URLD{a xR0 g | a € atoms® U} and (RLD)ou f =
(=)l But as we shown above a xR q ¢ (=)[; for non-trivial f.o. a, and so (RLD);, f &
(RLD)outf

OJ

Example 227. There exist discrete funcoids f and g such that fNFP g=£ fng.

Proof. An example is f = (=)|s and g =0 x U\ f. We will show that fNFP g=(=)|q (where
€ is the Fréchet filter object) and thus fNFP gL = fng.

Note that ((=)|q)X =X NS Q.

Let z is a non-trivial atomic f.o. If X € up = then card X > 2 (In fact, X is infinite but we
don’t need this.) and consequently (g)X =0. Thus (g)z =0. Consequently

<fﬂFCDg>x:(f>xﬂg<g>x:xﬂgU:x.
Also ((=)|g)r=2N5Q=u=.
Let now x is a trivial f.o. Then (f)z =2z and (g)x=U\z. So
<fﬂFCDg>:c:<f>xﬂg(g)$:xﬂg(6\x):xﬂ(U\x)z(l).

Also ((=)]|a)r=2nQ=10.
So <fﬁFCD g)x=((=)|a)z for every atomic f.o. z. Thus fOFEP g =(=)|q. O

Example 228. There exists funcoid h such that up h is not a filter.

Proof. Consider the funcoid h = (=)|q. We have (from the previous proof) that f € up h and
geup f,but fNg=0&uph. O

Example 229. There exists a funcoid h such that (FCD)(RLD)oyush # h.

Proof. Consider h=(=)|q. By proved above h= f NFP g where f=(=)|s and g=Ux U\ f.
We have f,gecuph.
So (RLD)ouith =NRPuph C fNRLP g= f N g=0; and thus (RLD)ouih = 0.
We have (FCD)(RLD)guch = 02 h. 0
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