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Abstract 

Santilli’s prime chains: baPP jj ±=+1 , 1,,1 −= kj L , abba 2,1),( = . If 

, n
nPPa λλ L1

11 =− bPP nL1 , we have ∞→)(2 ωJ  as ∞→ω . There exist 

infinitely many primes  such that  are primes for arbitrary length . It 

is the Book proof. This is a generalization of Euclid-Euler proof for the existence of 

infinitely many primes. Therefore Euclid-Euler-Jiang theorem in the distribution of 

primes is advanced. It is the Book theorem. 

1P kPP ,,2 L k
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1. Introduction  

A new branch of number theory: Santilli’s additive isoprime theory is introduced. By 
using the arithmetic function )(ωnJ  the following prime theorems have been proved. 
It is the Book proof. [1-10] 
1.  There exist infinitely many twin primes. 

2.  The Goldbach’s theorem. Every even number greater than 4 is the sum of two odd  

primes.  

3.  There exist finitely many Mersenne primes, that is, primes of the form  
where  is prime. 

12 −P

P
4.  There exist finitely many Fermat primes, that is, primes of the form . 122 +

n

5.  There exist finitely many repunit primes whose digits (in base 10) are all ones. 

6.  There exist infinitely many primes of the forms: , , ,  12 +x 14 +x 18 +x
116 +x , , . 132 +x 164 +x

7.  There exist infinitely many primes of the forms: , , ,  bx +2 23 +x 25 +x
27 +x  

8.  There exist infinitely many prime m-chains, )1(1 −±=+ mmPP jj ,   ,,3,2 L=m
including Cunningham chains. 

9.  There exist infinitely many triplets of consecutive integers, each being the product 
of  distinct primes, (Here is an example: 1727913=3×11×52361, 1727914=2
×17×50821, 1727915=5×7×49369.) 

k

10.  There exist infinitely many -tuples of consecutive integers, each being the 
product of  primes, where  

k
m .2,3 >> mk

11.  Every integer  may be written in infinitely many ways in the form  m

                      
1
1

1

2

−
+

= kP
Pm  

where   and  are primes. ,,3,2,1 L=k 1P 2P
12.  There exist infinitely many Carmichael numbers, which are the product of three 

primes, four primes, and five primes. 
13.  There exist infinitely many prime chains in the arithmetic progressions. 

14.  In a table of prime numbers there exist infinitely many k-tuples of primes, where  
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510,,4,3,2 L=k . 
15.  Proof of Schinzel’s hypothesis.  

16.  Every large even number is representable in the form nPPP L21 + . It is the  
primes theorem which has no almost-primes. 

n

17.  Diophantine equation 

bPP
bPP

P
n

n

n

nn
n +++

+++
= ++

+
+

λλ
λ

L

L
1

1

1

122
1  

has infinitely many prime solutions. 

18.  There are infinitely many primes of the forms:  and  2,2 ≥+ nyx n

3
2

3
1 nPmP + , 1),( =nm , mn2 , . 3bn ±≠

19.  There are infinitely many prime 5-tuples represented by  

)176442)(176442)(42)(42(42 2266 +−+++−=− PPPPPPP  

20.  There are infinitely many prime -tuples represented by k mm AP ± . 
In this paper by using the arithmetic function )(2 ωJ  santilli’s prime chains: 

 are studied. It is a generalization of santillis isoprime m-chains: baPP jj ±=+1

)1(1 −±=+ mmPP jj [6]. 
 

2. Euclid-Euler-Jiang Prime Theorem: baPP jj ±=+1  

Theorem 1.  An increasing sequence of primes  is called a Santilli’s 

prime chain of the first kind of length  if 

kPPP ,,, 21 L

k

baPP jj +=+1  

for 1,,1 −= kj L , abba 2,1),( = . 

We have the arithmetic function[6] 

( ))()(
3

2 PPJ
iPP

χω −= ∏
≤≤

, 

where  is called the primorials,  the last prime of the primorials. P
iPP

∏
≤≤

=
2

ω iP

 3



We now calculate )(Pχ . The smallest positive integer such that 

.1),(),(mod1 =≡ baPa s  

kP =)(χ  if sk < ; sP =)(χ  if ; sk ≥ 1)( =Pχ  if abP . 

If 0)(2 =ωJ , there exist finitely many primes  such that  are primes 
for arbitrary length . If 

1P kPP ,,2 L

k ∞→)(2 ωJ  as ∞→ω , there exist infinitely many 
primes  such that  are primes for arbitrary length k . It is the Book 
proof. This is a generalization of the Euclid-Euler proof for the existence of infinitely 
many primes. 

1P kPP ,,2 L

We have the best asymptotic formula of the number of primes NP ≤1  

))1(1(
log)(

)()2,(
1

2 O
N

NJN kk

k

k +=
−

ωφ
ωω

π , 

where )1()(
2

−= ∏
≤≤

P
iPP

ωφ  is called the Euler function of the primorials.  

The baPP jj −=+1  is called a Santilli’s prime chain of the second kind of length . 

Both 

k

baPP jj ±=+1  have the same arithmetic function )(2 ωJ . If  and 

, it is Santilli’s isoprime -chains[6]. 

ma =

1−= mb m

Theorem 2.  bPP jj ±=+ 21 , 1,,1 −= kj L ,  is an odd number. b

We have the arithmetic function [6] 

                ( ) 0)()(
3

2 ≠−= ∏
≤≤

PPJ
iPP

χω  

We now calculate )(Pχ . The smallest positive integer  such that s

)(mod12 Ps ≡ , 

kP =)(χ  if sk < ; sP =)(χ  if ; sk ≥ 1)( =Pχ  if bP . 

Since ∞→)(3 ωJ  as ∞→ω , there exist infinitely many primes  such that 

 are primes for arbitrary length . This is the Book proof. 
1P

kPP ,,2 L k
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We have the best asymptotic formula of the number of primes NP ≤1 . 

))1(1(
log)(

)()2,(
1

2 O
N

NJN kk

k

k +=
−

ωφ
ωω

π  

The 121 ±=+ jj PP  are Cunningham prime chains [6]. 

Example 1. 721 +=+ jj PP , . 5,4,3,2,1=j

We have the arithmetic function 

( ) 0)(66)(
11

2 ≠−−= ∏
≤≤

PPJ
iPP

χω , 

where 1)31( −=χ , 0)( =pχ  otherwise. 

Since ∞→)(2 ωJ  as ∞→ω , there exist infinitely many primes  such that 

 are primes. 
1P

62 ,, PP L

We have the best asymptotic formula of the number of primes NP ≤1 , 

( ))1(1
log)1(

))(6(
8
35

8
1)2,( 66

5

11

5

6 O
N

N
P

PPPN
iPP

+
−
−−

⎟
⎠
⎞

⎜
⎝
⎛= ∏

≤≤

χπ . 

Theorem 3.  bPP jj ±=+ 31 , 1,,1 −= kj L , 1),3( =b , b2 . 

We have the arithmetic function 

( ) 0)()(
3

2 ≠−= ∏
≤≤

PPJ
iPP

χω . 

We now calculate )(Pχ . The smallest positive integer  such that s

)(mod13 Ps ≡ , 

kP =)(χ  if sk < ; sP =)(χ  if ; sk ≥ 1)3( =χ ; 1)( =Pχ  if bP . 

Since ∞→)(2 ωJ  as ∞→ω , there exist infinitely many primes  such that 
 are primes for arbitrary length . 

1P

kPP ,,2 L k
We have the best asymptotic formula of the number of primes NP ≤1 ,  
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))1(1(
log)(

)()2,(
1

2 O
N

NJN kk

k

k +=
−

ωφ
ωω

π . 

Example 2. 431 +=+ jj PP , . 5,4,3,2,1=j

We have the arithmetic function 

( ) 0696)(
17

2 ≠−= ∏
≤≤

PJ
iPP

ω . 

Since ∞→)(2 ωJ  as ∞→ω , there exist infinitely many primes  such that 

 are primes. 
1P

62 ,, PP L

We have the best asymptotic formula of the number of primes NP ≤1 , 

( ))1(1
log)1(

)6(
192
1001

60
1)2,( 66

5

17

5

6 O
N

N
P

PPN
iPP

+
−
−

⎟
⎠
⎞

⎜
⎝
⎛= ∏

≤≤

π . 

Theorem 4.  bPP jj ±=+ 41 , 1,,1 −= kj L ,  is an odd number. b

(1) b3 , we have the arithmetic function 

( ) 0)()(
3

2 ≠−= ∏
≤≤

PPJ
iPP

χω . 

We now calculate )(Pχ . The smallest positive integer  such that  s

)(mod14 Ps ≡ . 

kP =)(χ  if sk < ; sP =)(χ  if ; sk ≥ 1)( =Pχ  if bP . 

Since ∞→)(2 ωJ  as ∞→ω , there exist infinitely many primes  such that 

 are primes for arbitrary length . 
1P

kPP ,,2 L k
We have the best asymptotic formula of the number of primes NP ≤1 ,  

))1(1(
log)(

)()2,(
1

2 O
N

NJN kk

k

k +=
−

ωφ
ωω

π . 

(2) b3 , , we have . 3=k 0)3(2 =J
(3) b3 , , we have 2=k bPP ±= 12 4 . Since ∞→)(2 ωJ  as ∞→ω , there 

exist infinitely many primes  such that  is a prime. 1P 2P
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Theorem 5.  bPP jj ±=+ 51 , 1,,1 −= kj L , bb 2,1),5( = . 

We have the arithmetic function 

( ) 0)()(
3

2 ≠−= ∏
≤≤

PPJ
iPP

χω  

We now calculate )(Pχ . The smallest positive integer  such that  s

)(mod15 Ps = . 

kP =)(χ  if sk < ; sP =)(χ  if ; sk ≥ 1)5( =χ ; 1)( =Pχ  if bP . 

Since ∞→)(2 ωJ  as ∞→ω , there exist infinitely many primes  such that 

 are primes for arbitrary length . 
1P

kPP ,,2 L k
We have the best asymptotic formula of the number of primes NP ≤1 ,  

))1(1(
log)(

)()2,(
1

2 O
N

NJN kk

k

k +=
−

ωφ
ωω

π  

Theorem 6. bPP jj ±=+ 61 , 1,,1 −= kj L , bb ,1),3( =  is an odd number. 

(1) b5 , we have the arithmetic function 

( ) 0)()(
3

2 ≠−= ∏
≤≤

PPJ
iPP

χω . 

We calculate )(Pχ . The smallest positive integer  such that  s

)(mod16 Ps ≡ . 

kP =)(χ  if sk < ; sP =)(χ  if ; sk ≥ 1)3( =χ ; 1)( =Pχ  if bP . 

Since ∞→)(2 ωJ  as ∞→ω , there exist infinitely many primes  such that 

 are primes for arbitrary length . 
1P

kPP ,,2 L k
We have the best asymptotic formula of the number of primes NP ≤1 ,  

))1(1(
)(

)()2,(
1

2 OJN k

k

k +=
−

ωφ
ωω

π . 

(2) b5 , , we have . 5=k 0)5(2 =J
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(3) b5 , , we have 4≤k ∞→)(2 ωJ  as ∞→ω . 

Theorem 7. bPP jj ±=+ 71 , 1,,1 −= kj L , bb 2,1),7( = . 

 (1) b6 , we have ∞→)(2 ωJ  as ∞→ω , there exist infinitely many primes  

such that  are primes for arbitrary length . 
1P

kPP ,,2 L k
(2) b6 , 3=k , we have . 0)3(2 =J
(3) b6 , 2=k , we have ∞→)(2 ωJ  as ∞→ω . 

Theorem 8.  bPP jj ±=+ 81 , 1,,1 −= kj L ,  is an odd number. b

 (1) b7 , we have ∞→)(2 ωJ  as ∞→ω , there exist infinitely many primes  

such that  are primes for arbitrary length . 
1P

kPP ,,2 L k
(2) b7 , 7=k , we have . 0)7(2 =J
(3) b7 , 6≤k , we have ∞→)(2 ωJ  as ∞→ω . 

Theorem 9. bPP jj ±=+ 91 , 1,,1 −= kj L , bb 2,1),3( = . 

We have ∞→)(2 ωJ  as ∞→ω , there exist infinitely many primes  such that 

 are primes for arbitrary length . 
1P

kPP ,,2 L k

Theorem 10. bPP jj ±=+ 101 , 1,,1 −= kj L ,  is an odd number. . b 1),5( =b

 (1) b3 , we have ∞→)(2 ωJ  as ∞→ω , there exist infinitely many primes  

such that  are primes for arbitrary length . 
1P

kPP ,,2 L k
(2) b3 , 3=k , we have . 0)3(2 =J
(3) b3 , 2=k , we have ∞→)(2 ωJ  as ∞→ω . 

Theorem 11.  bPP jj ±=+ 111 , 1,,1 −= kj L , b2 , 1),11( =b . 

 (1) b5 , we have ∞→)(2 ωJ  as ∞→ω , there exist infinitely many primes  

such that  are primes for arbitrary length . 
1P

kPP ,,2 L k
(2) b5 , 5=k , we have . 0)5(2 =J
(3) b5 , 4≤k , we have ∞→)(2 ωJ  as ∞→ω . 

Theorem 12.  bPP jj ±=+ 121 , 1,,1 −= kj L , 1),3( =b ,  is an odd number. b

 8



(1) b11 , we have ∞→)(2 ωJ  as ∞→ω , there exist infinitely many primes 

 such that  are primes for arbitrary length . 1P kPP ,,2 L k
(2) b11 , 11=k , we have 0)11(2 =J . 

(3) b11 , 10≤k , we have ∞→)(2 ωJ  as ∞→ω . 

Theorem 13.  bPP jj ±=+ 161 , 1,,1 −= kj L ,  is an odd number.  b

(1) b15 , we have ∞→)(2 ωJ  as ∞→ω , there exist infinitely many primes  

such that  are primes for arbitrary length . 
1P

kPP ,,2 L k

(2) b3 , 3=k , we have 0)3(2 =J . 2=k , we have ∞→)(2 ωJ  as 

∞→ω . 

(3) b3 , , we have . 5=k 0)5(2 =J 4≤k , we have ∞→)(2 ωJ  as ∞→ω . 

Theorem 14.  bPP jj ±=+ 171 , 1,,1 −= kj L , b2 , 1),17( =b .  

We have ∞→)(2 ωJ  as ∞→ω , there exist infinitely many primes  such that 

 are primes for arbitrary length . 
1P

kPP ,,2 L k

Theorem 15.  , bPP jj ±+=+ )12(1
λ 1,,1 −= kj L , b2 , .  1)),12(( =+ bλ

We have ∞→)(2 ωJ  as ∞→ω , there exist infinitely many primes  such that 

 are primes for arbitrary length . 
1P

kPP ,,2 L k

Theorem 16.  , bPP jj ±+=+ )13(1
λ 1,,1 −= kj L ,  ,  is 

an odd number.  

1)),13(( =+ bn b

 (1) b3 , we have ∞→)(2 ωJ  as ∞→ω , there exist infinitely many primes  

such that  are primes for arbitrary length . 
1P

kPP ,,2 L k
(2) b3 , 3=k , we have 0)3(2 =J . 2=k , we have ∞→)(2 ωJ  as 

∞→ω . 

Theorem 17.  , bPP jj ±+⋅=+ )132( 21
1

λλ 1,,1 −= kj L , b2 ,  

1)),132(( 21 =+⋅ bλλ .  

 (1) b6 , we have ∞→)(2 ωJ  as ∞→ω , there exist infinitely many primes  1P
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such that  are primes for arbitrary length . kPP ,,2 L k
(2) b6 , 3=k , we have 0)3(2 =J . 2=k , we have ∞→)(2 ωJ  as 

∞→ω . 

Theorem 18.  , bPP jj ±+⋅=+ )153( 21
1

λλ 1,,1 −= kj L ,  is an odd 

number. 

b

1)),153(( 21 =+⋅ bλλ  

(1) b15 , we have ∞→)(2 ωJ  as ∞→ω , there exist infinitely many primes  

such that  are primes for arbitrary length . 
1P

kPP ,,2 L k
(2) b3 , , we have . 3=k 0)3(2 =J 2=k , we have ∞→)(2 ωJ  as ∞→ω . 

(3) b3 , , we have . 5=k 0)5(2 =J 4≤k , we have ∞→)(2 ωJ  as ∞→ω . 

Theorem 19.  , bPP jj ±+⋅⋅=+ )1753( 321
1

λλλ 1,,1 −= kj L ,  is an odd 

number,  

b
1)),1753(( 321 =+⋅⋅ bλλλ

(1) b105 , we have ∞→)(2 ωJ  as ∞→ω , there exist infinitely many primes  

such that  are primes for arbitrary length . 
1P

kPP ,,2 L k
(2) b3 , , we have . 5=k 0)5(2 =J 4≤k , we have ∞→)(2 ωJ  as ∞→ω . 

(3) b3 , , we have . 3=k 0)3(2 =J 2=k , we have ∞→)(2 ωJ  as ∞→ω . 

Theorem 20.  , bPP jj ±+⋅⋅⋅=+ )111753( 4321
1

λλλλ 1,,1 −= kj L ,  is an 

odd number,  

b
1)),111753(( 4321 =+⋅⋅⋅ bλλλλ

(1) b1155 , we have ∞→)(2 ωJ  as ∞→ω , there exist infinitely many primes 

 such that  are primes for arbitrary length . 1P kPP ,,2 L k
(2) b3 , , we have . 5=k 0)5(2 =J 4≤k , we have ∞→)(2 ωJ  as ∞→ω . 

(3) b3 , , we have . 3=k 0)3(2 =J 2=k , we have ∞→)(2 ωJ  as ∞→ω . 

Theorem 21.  , bPP jj ±+⋅⋅=+ )131197( 321
1

λλλ 1,,1 −= kj L ,  is an odd 

number,  

b
1)),131197(( 321 =+⋅⋅ bλλλ

(1) b4123 , we have ∞→)(2 ωJ  as ∞→ω , there exist infinitely many primes 

 such that  are primes for arbitrary length . 1P kPP ,,2 L k
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(2) b7 , , we have 19=k 0)19(2 =J . 18≤k , we have ∞→)(2 ωJ  as 

∞→ω . 

(3) b7 , 7=k , we have 0)7(2 =J . 6≤k , we have ∞→)(2 ωJ  as 

∞→ω . 

Theorem 22.  baPP jj ±=+1 , 1,,1 −= kj L , 1),( =ba , ab2 . 

If bPPPPa nn
n LL 11 ,1 1 λλ=− , we have ∞→)(2 ωJ  as ∞→ω . There exist 

infinitely many primes  such that  are primes for arbitrary length [6]. 1P kPP ,,2 L k
 
3. Euclid-Euler-Jiang Prime Theorem  
Around 300BC by using the equation 

1),1( =+ ωω   as  ∞→ω , 

Euclid proved that there are infinitely many primes. 

In 1748 by using the equation 

∞→=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑∏

∞

=

−∞

= nP nii

111
)( 1

1

1ωφ
ω

 as ∞→ω , 

Euler proved that there are infinitely many primes. 

By using the equation [1-10] 
∞→)(2 ωJ  as ∞→ω . 

Jiang has proved that there exist infinitely many primes  such that  are 

primes[1-10]. It is a generalization of Euclid-Euler theorem. Therefore 

Euclid-Euler-Jiang theorem in the distribution of primes is advanced. It is the Book 

theorem. 

1P kPP ,,2 L

From [6] we have 

                  
N

C
PNP log

~11)( 1

2
⎟
⎠
⎞

⎜
⎝
⎛ −= ∏

≤≤ω
ωφ

. 

Therefore we have the prime number theorem. 

                  
N

NN
log

~)(π  
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where )(Nπ  denotes the number of primes N≤ . 
From [6] we have 

N
B

P
kBJ

k
NPk log

~1~)( 2
1

2 ⎟
⎠
⎞

⎜
⎝
⎛ −∏

≤<ω
ω

. 

Therefore we have the prime -tuples theorem k

                  
N

NCN kkk log
~)2,(π , 

where )2,(Nkπ  denotes the number of primes NP ≤1 . 

If the arithmetic constant =kC 0
)(

)( 1
2 ≠

−

ωφ
ωω

k

kJ
, that is 0)(2 ≠ωJ , there exist 

infinitely many primes  such that  are primes. 1P kPP ,,2 L )2,(Nkπ  have the same 

form 
N

N
klog

, but differ in . kC
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