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Abstract – In this paper, we examine several issues for ordering or partially ordering elements of hyper-
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1 Introduction
The Dezert-Smarandache theory (DSmT for short) of plausible, uncertain and paradoxical reasoning [4, 5,

6, 13] is a generalization of the classical Dempster-Shafer theory (DST) [12] which allows to formally combine
any types of sources of information (rational, uncertain or paradoxical). The DSmT is able to solve complex
data/information fusion problems where the DST usually fails, specially when conflicts (paradoxes) between
sources become large and when the refinement of the frame of discernment Θ is inaccessible because of the
vague, relative and imprecise nature of elements of Θ (see [6] for justification and examples). The foundation
of DSmT is based on the definition of the hyper-powerset DΘ (or free distributive lattice on n generators) of
a general frame of discernment Θ. Θ must be considered as a set {θ1, . . . , θn} of n elements considered as
exhaustive which cannot be precisely defined and separated, so that no refinement of Θ into a new larger set
Θref of disjoint elementary hypotheses is possible in contrast with the classical Shafer’s model on which is
based the DST. We have already presented in a companion paper [7], how to easily generate all elements of DΘ

using the property of isotone Boolean functions. In this paper, we focus our attention, on how to order them
in a clever way in order to get a very interesting matrix representation of belief functions defined over DΘ.The
DSmT deals directly with paradoxical/conflicting sources of information into this new formalism and proposes
a new and very simple (associative and commutative) rule of combination for conflicting sources of informations
(corpus/bodies of evidence). Some interesting results based on DSmT approach can be found in [16, 1]. Before
going deeper into the DSmT it is necessary to briefly present first the foundations of the DST and DSmT for a
better understanding of the important differences between these two theories based on Shafer model and DSm
model.

2 Short presentation of the DST

2.1 The Shafer’s model

The Shafer’s model assumes that the frame of discernment of the problem under consideration is a set
Θ = {θ1, θ2, . . . , θn} of n exhaustive and exclusive elementary hypothesis θi. Such model implicitly imposes that
an ultimate refinement of the problem is always possible so that θi can be well precisely defined/identified in
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such a way that we are sure that they are exclusive and exhaustive. From this model, Shafer defines a basic
belief assignment (bba) m(.) : 2Θ → [0, 1] associated to a given body of evidence B by adding the following
constraints to m(.)

m(∅) = 0 and
∑

A∈2Θ

m(A) = 1 (1)

where 2Θ is called the powerset of Θ, i.e. the set of all subsets of Θ. From any bba, one then defines the belief
and plausibility functions for all A ⊆ Θ as

Bel(A) =
∑

B∈2Θ,B⊆A

m(B) (2)

Pl(A) =
∑

B∈2Θ,B∩A 6=∅

m(B) = 1 − Bel(Ā) (3)

2.2 The Dempster’s combination rule

Let Bel1(.) and Bel2(.) be two belief functions over the same frame of discernment Θ and their corresponding
bba m1(.) and m2(.) provided by two distinct bodies of evidence B1 and B2. Then the combined global belief
function Bel(.) = Bel1(.) ⊕ Bel2(.) is obtained by combining the information granules m1(.) and m2(.) through
the Dempster’s rule of combination [m1 ⊕ m2](∅) = 0 and ∀B 6= ∅ ∈ 2Θ as follows

[m1 ⊕ m2](B) =

∑

X∩Y =B m1(X)m2(Y )

1 −
∑

X∩Y =∅ m1(X)m2(Y )
(4)

The notation
∑

X∩Y =B represents the sum over all X, Y ∈ 2Θ such that X ∩ Y = B. The orthogonal sum

m(.) , [m1 ⊕ m2](.) is considered as a basic belief assignment if and only if the denominator in equation (4) is
non-zero. The term k12 ,

∑

X∩Y =∅ m1(X)m2(Y ) is called degree of conflict between the sources B1 and B2.
When k12 = 1, the orthogonal sum m(.) does not exist and the bodies of evidences B1 and B2 are said to be
in full contradiction. Such a case can arise when there exists A ⊂ Θ such that Bel1(A) = 1 and Bel2(Ā) = 1.
Same kind of trouble can occur also with the Optimal Bayesian Fusion Rule (OBFR) [2, 3].

2.3 Alternatives to Dempter’s rule

The Shafer’s model and the DST is attractive for the Data Fusion community because it gives a nice
mathematical model for ignorance and it includes the Bayesian theory as a special case [12] (p.4). Although
very appealing, the DST presents nevertheless some important weaknesses and limitations because of its model
itself, the theoretical justification of the Dempster’s rule of combination but also because of our confidence
to trust the result of Dempster’s rule of combination specially when the conflict becomes important between
sources (k12 ր 1).The a posteriori justification of the Dempster’s rule of combination has been brought by the
Smets axiomatic of the Transferable Belief Model (TBM) in [14]. But recently, we must also emphasize here
that an infinite number of possible rules of combinations can be built from the Shafer’s model following ideas
initially proposed in [11] and corrected here as follows:

• one first has to compute m(∅) by

m(∅) ,
∑

A∩B=∅

m1(A)m2(B)

• then one redistributes m(∅) on all A ⊆ Θ with some given positive coefficients wm(A) such that
∑

A⊆Θ wm(A) =
1 according to

{

wm(∅)m(∅) → m(∅)

m(A) + wm(A)m(∅) → m(A), ∀A 6= ∅
(5)

The particular choice of the set of coefficients wm(.) provides a particular rule of combination. Actually there
exists an infinite number of possible rules of combination. Some rules can be better justified than others
depending on their ability or not to preserve associativity and commutativity properties of the combination. It
can be easily shown in [11] that such general procedure provides all existing rules developed in the literature
from the Shafer’s model as alternative to the primeval Dempster’s rule of combination depending on the choice



of coefficients w(A). As example the Dempster’s rule of combination can be obtained from (5) by choosing
wm(∅) = 0 and wm(A) = m(A)/(1 − m(∅)) for all A 6= ∅. The Yager’s rule of combination is obtained by
choosing wm(Θ) = 1 while the ”Smets’ rule of combination” is obtained by choosing wm(∅) = 1 and thus
accepting the possibility to deal with bba such that m(∅) > 0.

2.4 Matrix calculus for belief functions

As rightly emphasized recently by Smets in [15], the mathematic of belief functions is often cumbersome
because of the many summations symbols and all its subscripts involved in equations. This renders equations
very difficult to read and understand at first sight and might discourage potential readers for their complexity.
Actually, this is just an appearance because most of the operations encountered in DST with belief functions
and basic belief assignments m(.) are just simple linear operations and can be easily represented using matrix
notation and be handled by elementary matrix calculus. We just focus here our presentation on the matrix
representation of the relationship between a basic belief assignment m(.) and its associated belief function Bel(.).
A nice and more complete presentation of matrix calculus for belief functions can be found in [9, 10, 15]. One
important aspect for the simplification of matrix representation and calculus in DST, concerns the choice of the
order of the elements of the powerset 2Θ. The order of elements of 2Θ can be chosen arbitrarily actually, and it
can be easily seen by denoting m the bba vector of size 2n × 1 and Bel its corresponding belief vector of same
size, that the set of equations (2) holding for all A ⊆ Θ is strictly equivalent to the following general matrix
equation

Bel = BM ·m ⇔ m = BM−1 ·Bel (6)

where the internal structure of BM depends on the choice of the order for enumerating the elements of 2Θ.
But it turns out that the simplest ordering based on the enumeration of integers from 0 to 2n − 1 expressed
as n-binary strings with the lower bit on the right (LBR) (where n = |Θ|) to characterize all the elements
of powerset, is the most efficient solution and best encoding method for matrix calculus and for developing
efficient algorithms in MatLab1 or similar programming languages [15]. By choosing the basic increasing binary
enumeration (called bibe system), one obtains a very nice recursive algorithm on the dimension n of Θ for
computing the matrix BM. The computation of BM for |Θ| = n is just obtained from the iterations up to
i + 1 = n of the recursive relation [15] starting with BM0 , [1] and where 0i+1 denotes the zero-matrix of size
(i + 1) × (i + 1),

BMi+1 =

[
BMi 0i+1

BMi BMi

]

(7)

BM is a binary unimodular matrix (det(BM) = ±1). BM is moreover triangular inferior and symmetrical
with respect to its antidiagonal.

Example for Θ = {θ1, θ2, θ3}
The bibe system gives us the following order for elements of 2Θ = {α0, . . . , α7}:

α0 ≡ 000 ≡ ∅ α1 ≡ 001 ≡ θ1

α2 ≡ 010 ≡ θ2 α3 ≡ 011 ≡ θ1 ∪ θ2

α4 ≡ 100 ≡ θ3 α5 ≡ 101 ≡ θ1 ∪ θ3

α6 ≡ 110 ≡ θ2 ∪ θ3 α7 ≡ 111 ≡ θ1 ∪ θ2 ∪ θ3 ≡ Θ

Each element αi of 2Θ is a 3-bits string. With this bibe system, on has m = [m(α0), . . . , m(α7)]
′ and Bel =

[Bel((α0), . . . , Bel((α7)]
′. The expressions of the matrix BM3 and its inverse BM3

−1 are given by

BM3 =















1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1















1Matlab is a trademark of The MathWorks, Inc.



BM3
−1 =















1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
−1 0 1 0 0 0 0 0
1 −1 −1 1 0 0 0 0
−1 0 0 0 1 0 0 0
1 −1 0 0 −1 1 0 0
1 0 −1 0 −1 0 1 0
−1 1 1 −1 1 −1 −1 1















3 A short DSmT presentation

3.1 The DSm model

The development of the Dezert-Smarandache Theory (DSmT) of plausible, uncertain, and paradoxical rea-
soning comes from the necessity to overcome, for a wide class of problems, the two following inherent limitations
of the DST which are closely related with the acceptance of the third middle excluded principle, i.e.

(C1) - the DST considers a discrete and finite frame of discernment Θ based on a set of exhaustive and exclusive
elementary elements θi.

(C2) - the bodies of evidence are assumed independent and provide their own belief function on the powerset
2Θ but with same interpretation for Θ.

The relaxation of constraints (C1) and (C2) seems necessary for a wide class of fusion problems due to the
possible vague, imprecise and paradoxical nature of the elements of Θ. By accepting the third middle, we can
easily handle the possibility to deal directly with a new kinds of elements with respect to those belonging to the
Shafer’s model. This is the DSm model. A wider class of interesting fusion problems can then be attacked by
the DSmT. The relaxation of the constraint (C1) can be justified since, in many problems (see example in [6]),
the elements of Θ generally correspond only to imprecise/vague notions and concepts so that no refinement of
Θ satisfying the first constraint is actually possible. The relaxation of (C2) is also justified since, in general,
the same frame Θ may be interpreted differently by the distinct sources of evidence. Some subjectivity on the
information provided by a source is almost unavoidable. In most of cases, the sources of evidence provide their
beliefs about some hypotheses only with respect to their own worlds of knowledge, experiences, feelings, senses
without reference to the (inaccessible) absolute truth of the space of possibilities and without any probabilistic
background argumentations. The DSmT includes the possibility to deal with evidences arising from different
sources of information which don’t have access to absolute interpretation of the elements Θ under consideration.
The DSmT can be interpreted as a general and direct extension of Bayesian theory and the Dempster-Shafer
theory in the following sense. Let Θ = {θ1, θ2} be the simplest frame of discernment involving only two
elementary hypotheses (with no additional assumptions on θ1 and θ2), then

• the probability theory deals with basic probability assignments (bpa) m(.) ∈ [0, 1] such that

m(θ1) + m(θ2) = 1

• the DST deals with bba m(.) ∈ [0, 1] such that

m(θ1) + m(θ2) + m(θ1 ∪ θ2) = 1

• the DSmT theory deals with generalized bba m(.) ∈ [0, 1] such that

m(θ1) + m(θ2) + m(θ1 ∪ θ2) + m(θ1 ∩ θ2) = 1

3.2 DSm model versus Shafer’s model

The Shafer’s model considers that the frame Θ of the problem under consideration is a set of finite exhaustive
and exclusive elements θi and requires in some way a refinement in order to choose/select θi as exclusive. The
DSm model can be viewed as the model opposite to the Shafer’s model where none of the θi are considered
exclusive. This DSm model is justified in a wide class of fusion problems when the intrinsic nature of the



elements of Θ to be manipulated is such that Θ is not refinable at all into exclusive and precise subsets [6].
The DSmT can then deal with elements/concepts which have possibly (but not necessary) continuous and/or
relative interpretation to the corpus of evidences like, by example, the relative notions of smallness/tallness,
beauty/ugliness, pleasure/pain, heat/coldness, even the notion of colors (due to the continuous spectrum of the
light), etc. None of these notions or concepts can be clearly refined/separated in an absolute manner so that
they cannot be considered as exclusive and we cannot also define precisely what their conjunctions are. Their
interpretations/estimations through the bba mechanism given by any corpus of evidence is always built from
its own (limited) knowledge/experience and senses. Between these two extreme models, there exists a finite
number of DSm-hybrid models for which some integrity constraints (by forcing some potential conjunctions to
be impossible, i.e. equal to the empty set) between some elements of θ can be introduced depending on the
hybrid-nature of the problem. The DSm model can then be viewed as the most free model and the Shafer’s
model as the most restrictive one. The DSmT has been developed up to now only for the DSm model but
application of the DSmT for DSm-hybrid models is under investigation.

3.3 Notion of hyper-powerset D
Θ

One of the cornerstones of the DSmT is the notion of hyper-powerset which is defined as follows. Let
Θ = {θ1, . . . , θn} be a set of n elements which cannot be precisely defined and separated so that no refinement
of Θ in a new larger set Θref of disjoint elementary hypotheses is possible (we abandon here the Shafer’s model).
The hyper-powerset DΘ is defined as the set of all composite propositions built from elements of Θ with ∪ and
∩ (Θ generates DΘ under operators ∪ and ∩) operators such that

1. ∅, θ1, . . . , θn ∈ DΘ.

2. If A, B ∈ DΘ, then A ∩ B ∈ DΘ and A ∪ B ∈ DΘ.

3. No other elements belong to DΘ, except those obtained by using rules 1 or 2.

The dual (obtained by switching ∪ and ∩ in expressions) of DΘ is itself. There are elements in DΘ which are
self-dual (dual to themselves), for example α8 for the case when n = 3 in the example below. The cardinality of
DΘ is majored by 22n

when Card(Θ) = |Θ| = n. The generation of hyper-powerset DΘ is closely related with
the famous Dedekind’s problem on enumerating the set of isotone Boolean functions [7]. The cardinality of DΘ

for n = |Θ| = 0, 1, 2, 3, ... follows the sequence of Dedekind’s numbers 1,2,5,19,167,7580,... [7]. From a general
frame of discernment Θ, we define a map m(.) : DΘ → [0, 1] associated to a given body of evidence B which
can support paradoxical information, as follows

m(∅) = 0 and
∑

A∈DΘ

m(A) = 1

The quantity m(A) is called A’s generalized basic belief assignment (gbba) or the generalized basic belief mass
for A. The belief and plausibility functions are defined in almost the same manner as within the DST, i.e.

Bel(A) =
∑

B∈DΘ,B⊆A

m(B) (8)

Pl(A) =
∑

B∈DΘ,B∩A 6=∅

m(B) (9)

These definitions are compatible with the DST definitions when the sources of information become uncertain
but rational (they do not support paradoxical information). We still have ∀A ∈ DΘ, Bel(A) ≤ Pl(A).

3.4 The DSm rule of combination

The DSm rule of combination m(.) , [m1 ⊕ m2](.) of two distinct (but potentially paradoxical) sources of
evidences B1 and B2 over the same general frame of discernment Θ with belief functions Bel1(.) and Bel2(.)
associated with general information granules m1(.) and m2(.) is given by ∀C ∈ DΘ,

m(C) =
∑

A,B∈DΘ,A∩B=C

m1(A)m2(B)



Since DΘ is closed under ∪ and ∩ operators, this new rule of combination guarantees that m(.) : DΘ → [0, 1] is
a proper general information granule. This rule of combination is commutative and associative and can always
be used for the fusion of paradoxical or rational sources of information (bodies of evidence). It is important to
note that any fusion of sources of information generates either uncertainties, paradoxes or more generally both.
This is intrinsic to the general fusion process itself. The theoretical justification of the DSm rule can be found
in [6]. A network representation of this DSm rule of combination can be found in [7].

4 Ordering elements of hyper-powerset for matrix calculus
As within the DST framework, the order of the elements of DΘ can be arbitrarily chosen. We denote the

Dedekind number or order n as d(n) , |DΘ| for n = |Θ|. We denote also m the gbba vector of size d(n) × 1
and Bel its corresponding belief vector of the same size. The set of equations (8) holding for all A ∈ DΘ is then
strictly equivalent to the following general matrix equation

Bel = BM ·m ⇔ m = BM−1 ·Bel (10)

Note the similarity between these relations with the previous ones (6). The only difference resides in the size
of vectors Bel and m and the size of matrix BM and their components. We explore in the following sections the
possible choices for ordering (or partially ordering) the elements of hyper-powerset DΘ, to obtain an interesting
matrix structure of BM matrix. Only three issues are examined and briefly presented in the sequel. The first
method is based on the direct enumeration of elements of DΘ according to their recursive generation via the
algorithm for generating all isotone Boolean functions presented in [7]. The second (partial) ordering method is
based on the notion of DSm cardinality which will be introduced in section 4.2. The last and most interesting
solution proposed for partial ordering over DΘ is obtained by introducing the notion of intrinsic informational
strength s(.) associated to each element of hyper-powerset.

4.1 Order based on the enumeration of isotone Boolean functions

We have presented in [7] a recursive algorithm based on isotone Boolean functions for generating DΘ.
Here is briefly the principle of the method. Let consider Θ = {θ1, . . . , θn} satisfying the DSm model and the
Dezert-Smarandache order un of the Smarandache’s codification of parts of Venn diagram Θ with n partially
overlapping elements θi, i = 1, . . . , n (see [7] for details about Smarandache’s codification). All the elements αi

of DΘ can then be obtained by the very simple linear equation [7]

dn = Dn · un (11)

where dn ≡ [α0 ≡ ∅, α1, . . . , αd(n)−1]
′ is the vector of elements of DΘ, un is the proper codification vector and

Dn a particular binary matrix. The final result dn is obtained from the previous matrix product after identifying
(+, ·) with (∪,∩) operators, 0 ·x with ∅ and 1 ·x with x). Dn is actually a binary matrix corresponding to isotone
(i.e. non-decreasing) Boolean functions obtained by applying recursively the steps (starting with Dc

0 = [0 1]′)

• Dc
n is built from Dc

n−1 by adjoining to each row ri of Dc
n−1 any row rj of Dc

n−1 such that ri ∪ rj = rj .
Then Dn is obtained by removing the first column and the last line of Dc

n.



Example for Θ = {θ1, θ2, θ3}




































α0

α1

α2

α3

α4

α5

α6

α7

α8

α9

α10

α11

α12

α13

α14

α15

α16

α17

α18





































︸ ︷︷ ︸

d3

=





































0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 1
0 0 0 0 1 0 1
0 0 0 0 1 1 1
0 0 0 1 1 1 1
0 0 1 0 0 0 1
0 0 1 0 0 1 1
0 0 1 0 1 0 1
0 0 1 0 1 1 1
0 0 1 1 1 1 1
0 1 1 0 0 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
1 0 1 0 1 0 1
1 0 1 0 1 1 1
1 0 1 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 1 1 1





































︸ ︷︷ ︸

D3

·













< 1 >
< 2 >
< 12 >
< 3 >
< 13 >
< 23 >
< 123 >













︸ ︷︷ ︸

u3

Hence we finally get (after simple algebraic simplifications) the following irreducible elements for DΘ

αi (from the isotone Boolean functions alg.)

α0 , ∅
α1 , θ1 ∩ θ2 ∩ θ3

α2 , θ2 ∩ θ3

α3 , θ1 ∩ θ3

α4 , (θ1 ∪ θ2) ∩ θ3

α5 , θ3

α6 , θ1 ∩ θ2

α7 , (θ1 ∪ θ3) ∩ θ2

α8 , (θ2 ∪ θ3) ∩ θ1

α9 , [(θ1 ∩ θ2) ∪ θ3] ∩ (θ1 ∪ θ2)

α10 , (θ1 ∩ θ2) ∪ θ3

α11 , θ2

α12 , (θ1 ∩ θ3) ∪ θ2

α13 , (θ2 ∪ θ3)

α14 , θ1

α15 , (θ2 ∩ θ3) ∪ θ1

α16 , (θ1 ∪ θ3)

α17 , (θ1 ∪ θ2)

α18 , (θ1 ∪ θ2 ∪ θ3)

We denote riso(αi) the position of αi into the column vector dn obtained from the previous enumera-
tion/generation system. Such system provides a total order over DΘ defined ∀αi, αj ∈ DΘ as αi ≺ αj (αi

precedes αj) if and only if riso(αi) < riso(αj). Based on this order, the BM matrix involved in (10) presents
unfortunately no particular interesting structure. We have thus to look for better solutions for ordering the
elements of hyper-powersets.

4.2 Ordering with the DSm cardinality

A second possibility for ordering the elements of DΘ is to (partially) order them by their increasing DSm
cardinality. The DSm cardinality of any element A ∈ DΘ, denoted CM(A), corresponds to the number of parts



of A in the Venn diagram of the problem (model M) taking into account the set of integrity constraints (if
any), i.e. all the possible intersections due to the nature of the elements θi. This intrinsic cardinality depends
on the model M. M is the model that contains A which depends on the dimension of Venn diagram, (i.e. the
number of sets n = |Θ| under consideration), and on the number of non-empty intersections in this diagram.
One has 1 ≤ CM(A) ≤ 2n − 1. CM(A) must not be confused with the classical cardinality |A| of a given set A
(i.e. the number of its distinct elements) - that’s why a new notation is necessary here.

In the (general) case of the free-model Mf (i.e. the DSm model) where all conjunctions are non-empty, one
has for intersections:

• CMf (θ1) = . . . = CMf (θn) = 2n−1

• CMf (θi ∩ θj) = 2n−2 for n ≥ 2

• CMf (θi ∩ θj ∩ θk) = 2n−3 for n ≥ 3

It can be proved by induction that for 1 ≤ m ≤ n, one has CMf (θi1 ∩ θi2 ∩ . . . ∩ θim
) = 2n−m. For the cases

n = 1, 2, 3, 4, this formula can be checked on the corresponding Venn diagrams. Let’s consider this formula true
for n sets, and prove it for n+1 sets (when all intersections/conjunctions are considered non-empty). From the
Venn diagram of n sets, we can get a Venn diagram with n+1 sets if one draws a closed curve that cuts each of
the 2n − 1 parts of the previous diagram (and, as a consequence, divides each part into two disjoint subparts).
Therefore, the number of parts of each intersection is doubling when passing from a diagram of dimension n to
a diagram of dimension n + 1. Q.e.d.

In the case of the free-model Mf , one has for unions:

• CMf (θi ∪ θj) = 3(2n−2) for n ≥ 2

• CMf (θi ∪ θj ∪ θk) = 7(2n−3) for n ≥ 3

It can be proved also by induction that for 1 ≤ m ≤ n, one has CMf (θi1 ∪ θi2 ∪ . . . ∪ θim
) = (2m − 1)(2n−m).

The proof is similar to the previous one, and keeping in mind that passing from a Venn diagram of dimension
n to a dimension n+1, all each part that forms the union θi ∩ θj ∩ θk will be split into two disjoint parts, hence
the number of parts is doubling.

For other elements A in DΘ, formed by unions and intersections, the close-form for CMf (A) seems more
complicated to obtain. But from the generation algorithm of DΘ (see [7] for details), DSm cardinal of a set A
from DΘ is exactly equal to the sum of its coefficients in the un basis, i.e. the sum of its row elements in the
Dn matrix, which is actually very easy to compute by programming. The DSm cardinality plays in important
role in the definition of the Generalized Pignistic Transform (GPT) for the construction of subjective/pignistic
probabilities of elements of DΘ for decision-making [8].

If one imposes a constraint that a set B from DΘ is empty, then one suppresses the columns corresponding
to the parts which compose B in the Dn matrix and the row of B and the rows of all elements of DΘ which
are subsets of B, getting a new matrix D′

n which represents a new model M′. In the un basis, one similarly
suppresses the parts that form B, and now this basis has the dimension 2n − 1 − CM(B).

Example with Mf : Consider the 3D case Θ = {θ1, θ2, θ3} with the free-model Mf corresponding to the following
Venn diagram (where < i > denotes the part which belongs to θi only, < ij > denotes the part which belongs
to θi and θj only, etc; this is the Smarandache’s codification [7]).

The corresponding partial ordering for elements of DΘ is then summarized in the following table:



Figure 1: Venn Diagram for Mf

A ∈ DΘ CMf (A)
∅ 0
θ1 ∩ θ2 ∩ θ3 1
θ1 ∩ θ2 2
θ1 ∩ θ3 2
θ2 ∩ θ3 2
(θ1 ∪ θ2) ∩ θ3 3
(θ1 ∪ θ3) ∩ θ2 3
(θ2 ∪ θ3) ∩ θ1 3
θ1 4
θ2 4
θ3 4
{(θ1 ∩ θ2) ∪ θ3} ∩ (θ1 ∪ θ2) 4
(θ1 ∩ θ2) ∪ θ3 5
(θ1 ∩ θ3) ∪ θ2 5
(θ2 ∩ θ3) ∪ θ1 5
θ1 ∪ θ2 6
θ1 ∪ θ3 6
θ2 ∪ θ3 6
θ1 ∪ θ2 ∪ θ3 7

Note that this partial ordering differs from the one described in the previous section and doesn’t properly
catch the intrinsic informational structure/strength of elements since by example {(θ1∩θ2)∪θ3}∩ (θ1 ∪θ2) and
θ1 have the same DSm cardinal although they don’t look similar because the part < 1 > in θ1 belongs only to
θ1 but none of the parts of {(θ1 ∩ θ2) ∪ θ3} ∩ (θ1 ∪ θ2) belongs to only one part of some θi. A better ordering
function is then necessary to catch the intrinsic informational structure of elements of DΘ. This is the purpose
of the next section.

Example with another model: Consider now the same 3D case with the model M 6= Mf in which we force all
possible conjunctions to be empty, but θ1 ∩ θ2 according to the following Venn diagram.

The corresponding partial ordering for elements of DΘ, taking into account the constraints of this model, is
then summarized in the following table:



Figure 2: Venn Diagram for M

A ∈ DΘ CM(A)
∅ 0
θ1 ∩ θ2 1
θ3 1
θ1 2
θ2 2
θ1 ∪ θ2 3
θ1 ∪ θ3 3
θ2 ∪ θ3 3
θ1 ∪ θ2 ∪ θ3 4

The partial ordering of DΘ based on DSm cardinality does not provide in general an efficient solution to get
an interesting structure for the BM matrix involved in (10), contrarily to the structure obtained by Smets in
the DST framework (sec. 2.4). The partial ordering presented in the sequel will however allow us to get such
nice structure for the matrix calculus of belief functions.

4.3 Ordering based on the intrinsic informational content

As already reported, the DSm cardinality is insufficient to catch the intrinsic informational content of each
element di of DΘ. A better approach to obtain this, is based on the following new function s(.), which describes
the intrinsic information strength of any di ∈ DΘ. A previous, but cumbersome, definition of s(.) had been
proposed in our previous works [5, 6] but it was difficult to handle and questionable with respect to the formal
equivalent (dual) representation of elements belonging to DΘ. We propose here a new solution for s(.), based on
a very simple and natural geometrical interpretation of the relationships between the parts of the Venn diagram
belonging to each di ∈ DΘ. All the values of the s(.) function (stored into a vector s) over DΘ are defined by
the following equation:

s = Dn ·wn (12)

with s , [s(d0) . . . s(dp)]
′ where p is the cardinal of DΘ for the model M under consideration. p is equal

to the Dedekind’s number d(n) − 1 if the free-model Mf is chosen for Θ = {θ1, . . . , θn}. Dn is the hyper-
powerset generating matrix. The components wi of vector wn are obtained from the components of the Dezert-
Smarandache encoding basis vector un as follows (see [7] for definitions and details about Dn and un) :

wi , 1/l(ui) (13)

where l(ui) is the length of Smarandache’s codification ui of the part of the Venn diagram of the model M, i.e
the number of symbols involved in the codification. For example, if ui =< 123 >, then l(ui) = 3 just because
only three symbols 1, 2, and 3 enter in the codification ui, thus wi = 1/3.

From this new DSm ordering function s(.) we can partially order all the elements di ∈ DΘ by the increasing
values of s(.).



Example for Θ = {θ1, θ2} with the free-model Mf :

In this simple case, the DSm ordering of DΘ is given by

αi s(αi)
α0 = ∅ s(α0) = 0
α1 = θ1 ∩ θ2 s(α1) = 1/2
α2 = θ1 s(α2) = 1 + 1/2
α3 = θ2 s(α3) = 1 + 1/2
α4 = θ1 ∪ θ2 s(α4) = 1 + 1 + 1/2

Based on this ordering, it can be easily verified that the matrix calculus of the beliefs Bel from m by
equation (10), is equivalent to









Bel(∅)
Bel(θ1 ∩ θ2)

Bel(θ1)
Bel(θ2)

Bel(θ1 ∪ θ2)









︸ ︷︷ ︸

Bel

=









1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 0 1 0
1 1 1 1 1









︸ ︷︷ ︸

BM2









m(∅)
m(θ1 ∩ θ2)

m(θ1)
m(θ2)

m(θ1 ∪ θ2)









︸ ︷︷ ︸

m

where the BM2 matrix has a interesting structure (triangular inferior and unimodular properties, det(BM2) =
det(BM−1

2 ) = 1). Conversely, the calculus of the generalized basic belief assignment m from beliefs Bel will be
obtained by the inversion of the previous linear system of equations









m(∅)
m(θ1 ∩ θ2)

m(θ1)
m(θ2)

m(θ1 ∪ θ2)









︸ ︷︷ ︸

m

=









1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 −1 0 1 0
0 1 −1 −1 1









︸ ︷︷ ︸

MB2=BM
−1

2









Bel(∅)
Bel(θ1 ∩ θ2)

Bel(θ1)
Bel(θ2)

Bel(θ1 ∪ θ2)









︸ ︷︷ ︸

Bel

Example for Θ = {θ1, θ2, θ3} with the free-model Mf :

In this more complicated case, the DSm ordering of DΘ is now given by

The structure of the matrix BM3 associated to this ordering is given by
The order for elements generating the same value of s(.) can be chosen arbitrarily and doesn’t change the

structure of the matrix BM3. That’s why only a partial order is possible from s(.). It can be verified that BM3



holds also the same previous interesting matrix structure properties and that det(BM3) = det(BM−1
3 ) = 1.

Similar structure can be shown for problems of higher dimensions (n > 3).

Although a nice structure for matrix calculus of belief functions has been obtained in this work, and con-
versely to the recursive construction of BMn in DST framework, a recursive algorithm (on dimension n) for
the construction of BMn from BMn−1 has not yet be found and is still an open problem for further research.

5 Conclusion
A recent theory of plausible, uncertain, and paradoxical reasoning (DSmT) has been developed by the

authors to deal with conflicting/paradoxist sources of information which could not be solved by Dempster-
Shafer theory of evidence (DST). DSm rule of combining works for any kind of sources of information (certain,
uncertain, paradoxist) depending on each particular model (problem), whereas DS rule of combining fails when
the degree of conflict is high. In order to obtain an easy matrix representation of the belief functions in the
DSmT, we need to better order the elements of hyper-powerset DΘ, that’s why we propose in this paper three
such orderings: first, using the direct enumeration of isotone Boolean functions, second, based on the DSm
cardinality, and third, and maybe the most interesting, by introducing the intrinsic informational strength
function s(.) constructed in the DSm encoding basis.
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