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Forward 

 

   The purpose of this book is to apply the Artificial Intelligence and control systems to 

different real models. 

 

   In part 1, we have defined a fuzzy utility system, with different financial goals, 

different levels of risk tolerance and different personal preferences, liquid assets, etc. A 

fuzzy system (extendible to a neutrosophic system) has been designed for the evaluations 

of the financial objectives. We have investigated the notion of fuzzy and neutrosophiness 

with respect to time management of money. 

 

   In part 2, we have defined a computational model for a simple portfolio insurance 

strategy using a protective put and computationally derive the investor’s governing utility 

structures underlying such a strategy under alternative market scenarios. The Arrow-Pratt 

measure of risk aversion has been used to determine how the investors react towards risk 

under the different scenarios. 

 

   In Part 3, it is proposed an artificial classification scheme to isolate truly benign tumors 

from those that initially start off as benign but subsequently show metastases. A non-

parametric artificial neural network methodology has been chosen because of the 

analytical difficulties associated with extraction of closed-form stochastic-likelihood 

parameters given the extremely complicated and possibly non-linear behavior of the state 

variables we have postulated an in-depth analysis of the numerical output and model 

findings and compare it to existing methods of tumor growth modeling and malignancy 

prediction 

 

   In part 4, an alternative methodological approach has been proposed for quantifying 

utility in terms of expected information content of the decision-maker’s choice set. It is 

proposed an extension to the concept of utility by incorporating extrinsic utility; which is 

defined as the utility derived from the element of choice afforded to the decision-maker. 
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   This book has been designed for graduate students and researchers who are active in the 

applications of Artificial Intelligence and Control Systems in modeling. In our future 

research, we will address the unique aspects of Neutrosophic Logic in modeling and data 

analysis.  

 

The Authors 
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Abstract 

 Each individual investor is different, with different financial goals, different levels of 

risk tolerance and different personal preferences. From the point of view of investment 

management, these characteristics are often defined as objectives and constraints. 

Objectives can be the type of return being sought, while constraints include factors such 

as time horizon, how liquid the investor is, any personal tax situation and how risk is 

handled. It’s really a balancing act between risk and return with each investor having 

unique requirements, as well as a unique financial outlook – essentially a constrained 

utility maximization objective.  To analyze how well a customer fits into a particular 

investor class, one investment house has even designed a structured questionnaire with 

about two-dozen questions that each has to be answered with values from 1 to 5. The 

questions range from personal background (age, marital state, number of children, job 

type, education type, etc.) to what the customer expects from an investment (capital 

protection, tax shelter, liquid assets, etc.). A fuzzy logic system (extendible to a 

neutrosophic logic system) has been designed for the evaluation of the answers to the 

above questions. We have investigated the notion of fuzzy and neutrosophiness with 

respect to funds allocation.  
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Introduction. 

In this paper we have designed our fuzzy system so that customers are classified to 

belong to any one of the following three categories: 1 

 

 *Conservative and security-oriented (risk shy) 

                                 *Growth-oriented and dynamic (risk neutral) 

  *Chance-oriented and progressive (risk happy) 

 

A neutrosophic system has three components – that’s why it may be considered as just a 

generalization of a fuzzy system which has only two components. 

Besides being useful for clients, investor classification has benefits for the professional 

investment consultants as well. Most brokerage houses would value this information as it 

gives them a way of targeting clients with a range of financial products more effectively - 

including insurance, saving schemes, mutual funds, and so forth. Overall, many 

responsible brokerage houses realize that if they provide an effective service that is 

tailored to individual needs, in the long-term there is far more chance that they will retain 

their clients no matter whether the market is up or down. 

Yet, though it may be true that investors can be categorized according to a limited 

number of types based on theories of personality already in the psychological profession's 

armory, it must be said that these classification systems based on the Behavioral Sciences 

are still very much in their infancy and they may still suffer from the problem of their 

meanings being similar to other related typographies, as well as of greatly 

oversimplifying the different investor behaviors. 2 
 

(I.1) Exploring the implications of utility theory on investor classification. 

 In our present work, we have used the familiar framework of neo-classical utility theory 

to try and devise a structured system for investor classification according to the utility 

preferences of individual investors (and also possible re-ordering of such preferences). 
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The theory of consumer behavior in modern microeconomics is entirely founded on 

observable utility preferences, rejecting hedonistic and introspective aspects of utility. 

According to modern utility theory, utility is a representation of a set of mutually 

consistent choices and not an explanation of a choice. The basic approach is to ask an 

individual to reveal his or her personal utility preference and not to elicit any numerical 

measure. [1] However, the projections of the consequences of the options that we face and 

the subsequent choices that we make are shaped by our memories of past experiences – 

that “mind’s eye sees the future through the light filtered by the past”. However, this 

memory often tends to be rather selective. [9] An investor who allocates a large portion of 

his or funds to the risky asset in period t-1 and makes a significant gain will perhaps be 

induced to put an even larger portion of the available funds in the risky asset in period t. 

So this investor may be said to have displayed a very weak risk-aversion attitude up to 

period t, his or her actions being mainly determined by past happenings one-period back. 

There are two interpretations of utility – normative and positive. Normative utility 

contends that optimal decisions do not always reflect the best decisions, as maximization 

of instant utility based on selective memory may not necessarily imply maximization of 

total utility. This is true in many cases, especially in the areas of health economics and 

social choice theory. However, since we will be applying utility theory to the very 

specific area of funds allocation between risky and risk-less investments (and investor 

classification based on such allocation), we will be concerned with positive utility, which 

considers the optimal decisions as they are, and not as what they should be. We are 

simply interested in using utility functions to classify an individual investor’s attitude 

towards bearing risk at a given point of time. Given that the neo-classical utility 

preference approach is an objective one, we feel it is definitely more amenable to formal 

analysis for our purpose as compared to the philosophical conceptualizations of pure 

hedonism if we can accept decision utility preferences generated by selective memory. 

If u is a given utility function and w is the wealth coefficient, then we have E [u (w + k)] 

= u [w + E (k) – p], that is, E [u (w + k)] = u (w - p), where k is the outcome of a risky 

venture given by a known probability distribution whose expected value E (k) is zero. 

Since the outcome of the risky venture is as likely to be positive as negative, we would be 

willing to pay a small amount p, the risk premium, to avoid having to undertake the risky 
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venture. Expanding the utilities in Taylor series to second order on the left-hand side and 

to first order on the right-hand side and subsequent algebraic simplification leads to the 

general formula p = - (v/2) u’’(w)/u’ (w), where v = E (k2) is the variance of the possible 

outcomes. This shows that approximate risk premium is proportional to the variance – a 

notion that carries a similar implication in the mean-variance theorem of classical 

portfolio theory.  The quantity –u’’ (w)/u’ (w) is termed the absolute risk aversion. [6] The 

nature of this absolute risk aversion depends on the form of a specific utility function. For 

instance, for a logarithmic utility function, the absolute risk aversion is dependent on the 

wealth coefficient w, such that it decreases with an increase in w.  On the other hand, for 

an exponential utility function, the absolute risk aversion becomes a constant equal to the 

reciprocal of the risk premium.  

 

(I.2) The neo-classical utility maximization approach. 

In its simplest form, we may formally represent an individual investor’s utility 

maximization goal as the following mathematical programming problem: 

 

                                         Maximize U = f (x, y) 

                                         Subject to x + y = 1,  

                                                          x ≥ 0 and y is unrestricted in sign 
 

Here x and y stand for the proportions of investable funds allocated by the investor to the 

market portfolio and a risk-free asset. The last constraint is to ensure that the investor can 

never borrow at the market rate to invest in the risk-free asset, as this is clearly unrealistic 

- the market rate being obviously higher than the risk-free rate. However, an overtly 

aggressive investor can borrow at the risk-free rate to invest in the market portfolio. In 

investment parlance this is known as leverage. [5] 

As in classical microeconomics, we may solve the above problem using the Lagrangian 

multiplier technique. The transformed Lagrangian function is as follows: 

 

                                       Z = f (x, y) + λ (1-x-y)                                                          … (i) 
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By the first order (necessary) condition of maximization we derive the following system 

of linear algebraic equations: 

                                       Zx = fx - λ = 0             (1) 

                                       Zy = fy - λ = 0              (2) 

                                       Zλ = 1 - x - y = 0          (3)                                                     … (ii) 

 

The investor’s equilibrium is then obtained as the condition fx = fy = λ*. λ* may be 

conventionally interpreted as the marginal utility of money (i.e. the investable funds at the 

disposal of the individual investor) when the investor’s utility is maximized. [2] 

The individual investor’s indifference curve will be obtained as the locus of all 

combinations of x and y that will yield a constant level of utility. Mathematically stated, 

this simply boils down to the following total differential: 

 

                               dU = fxdx +fydy = 0                                                                    … (iv) 

 

The immediate implication of (3) is that dy/dx  = -fx/fy, i.e. assuming (fx, fy) > 0; this gives 

the negative slope of the individual investor’s indifference curve and may be equivalently 

interpreted as the marginal rate of substitution of allocable funds between the market 

portfolio and the risk-free asset. 

A second order (sufficient) condition for maximization of investor utility may be also 

derived on a similar line as that in economic theory of consumer behavior, using the sign 

of the bordered Hessian determinant, which is given as follows: 

                        __ 
                        |H| = 2βxβyfxy – βy

2fxx – βx
2fyy                                                              … (v) 

 

βx and βy stand for the coefficients of x and y in the constraint equation. In this case we 

have βx = βy = 1. Equation (4) therefore reduces to: 

                         __ 
                         |H| = 2fxy – fxx – fyy                                                                             … (vi) 
                                      

      __ 
 If  |H|  > 0 then the stationary value of the utility function U* attains its maximum.  
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 To illustrate the application of classical utility theory in investor classification, let the 

utility function of a rational investor be represented by the following utility function: 

 

                                   U (x, y) = ax2 - by2; where 

 

                           x = proportion of funds invested in the market portfolio; and 

                           y = proportion of funds invested in the risk-free asset. 

 

Quite obviously, x + y = 1 since the efficient portfolio must consist of a combination of 

the market portfolio with the risk-free asset. The problem of funds allocation within the 

efficient portfolio then becomes that of maximizing the given utility function subject to 

the efficient portfolio constraint. As per J. Tobin's Separation Theorem; which states that 

investment is a two-phased process with the problem of portfolio selection which is 

considered independent of an individual investor's utility preferences (i.e. the first phase) 

to be treated separately from the problem of funds allocation within the selected portfolio 

which is dependent on the individual investor's utility function (i.e. the second phase). 

Using this concept we can mathematically categorize all individual investor attitudes 

towards bearing risk into any one of three distinct classes: 

 

                   Class A+: “Overtly Aggressive”(no risk aversion attitude) 

                   Class A: “Aggressive” (weak risk aversion attitude) 

                   Class B: “Neutral”(balanced risk aversion attitude) 

                   Class C: “Conservative”(strong risk aversion attitude) 

 

The problem is then to find the general point of maximum investor utility and 

subsequently derive a mathematical basis to categorize the investors into one of the three 

classes depending upon the optimum values of x and y. The original problem can be 

stated as a classical non-linear programming with a single equality constraint as follows: 

                              

                             Maximize U (x, y) = ax2 - by2 

                             Subject to: 
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                                                x + y = 1,  

                                                x ≥ 0 and y is unrestricted in sign 

 

We set up the following transformed Lagrangian objective function: 

 

                             Maximize Z = ax2 – by2 + λ (1 - x - y) 

                             Subject to:     

                                                x + y = 1, 

                                                x ≥ 0 and y is unrestricted in sign, (where λ is the  

                                                                                             Lagrangian multiplier) 

 

 By the usual first-order (necessary) condition we therefore get the following system of 

linear algebraic equations: 

 

                             Zx = 2ax - λ = 0     (1) 

                             Zy = -2by - λ = 0   (2) 

                             Zλ = 1 – x – y = 0   (3)                                                                            … (vii) 

Solving the above system we get x/y = -b/a. But x + y = 1 as per the funds constraint. 

Therefore (-b/a) y + y = 1 i.e. y* = [1 + (-b/a)]-1 = [(a-b)/a]-1 = a/(a-b). Now substituting 

for y in the constraint equation, we get x* = 1-a/(a-b) = -b/(a-b). Therefore the stationary 

value of the utility function is U* = a [-b/(a-b)] 2 – b [a/(a-b)] 2  = -ab/(a – b).  

Now, fxx = 2a, fxy = fyx = 0 and fyy = -2b. Therefore, by the second order (sufficient) 

condition, we have:                        

                              __                           
                             |H| = 2fxy – fxx – fyy = 0 –2a – (–2b) = 2 (b – a)                          … (viii) 

 

Therefore, the bordered Hessian determinant will be positive in this case if and only if we 

have (a – b) < 0. That is, given that a < b, our chosen utility function will be maximized 

at U* = ax*2 - by*2. However, the satisfaction of the non-negativity constraint on x* 

would require that b > 0 so that – b < 0; thus yielding [– b / (a – b)] > 0.  
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Classification of investors: 

              Class                  Basis of determination 

              A+                      (y*< x*) and (y*≤ 0) 

              A                        (y*< x*) and (y*> 0)             

              B                        (y*= x*) 

              C                        (y*> x*)  

 

(I.3) Effect of a risk-free asset on investor utility. 

The possibility to lend or borrow money at a risk-free rate widens the range of investment 

options for an individual investor. The inclusion of the risk-free asset makes it possible 

for the investor to select a portfolio that dominates any other portfolio made up of only 

risky securities. This implies that an individual investor will be able to attain a higher 

indifference curve than would be possible in the absence of the risk-free asset. The risk-

free asset makes it possible to separate the investor’s decision-making process into two 

distinct phases – identifying the market portfolio and funds allocation. The market 

portfolio is the portfolio of risky assets that includes each and every available risky 

security. As all investors who hold any risky assets at all will choose to hold the market 

portfolio, this choice is independent of an individual investor’s utility preferences.  

Now, the expected return on a two-security portfolio involving a risk-free asset and the 

market portfolio is given by E (Rp) = xE (Rm) + yRf, where E (Rp) is the expected return 

on the optimal portfolio, E (Rm) = expected return on the market portfolio; and Rf is the 

return on the risk-free asset. Obviously, x + y = 1. Substituting for x and y with x* and y* 

from our illustrative case, we therefore get: 

 

                E (Rp)* = [-b/ (a-b)] E (Rm) + [a/ (a-b)] Rf                                             … (ix) 

 

As may be verified intuitively, if b = 0 then of course we have E (Rp) = Rf, as in that case 

the optimal value of the utility function too is reduced to U* = -a0/ (a-0) = 0. 
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The equation of the Capital Market Line in the original version of the CAPM may be 

recalled as E (Rp) = Rf + [E (Rm) - Rf](sp/sm); where E (Rp) is expected return on the 

efficient portfolio, E (Rm) is the expected return on the market portfolio, Rf is the return 

on the risk-free asset, sm is the standard deviation of the market portfolio returns; and sp is 

the standard deviation of the efficient portfolio returns. Equating E (Rp) with E (Rp)* we 

therefore get: 

 

                  Rf + [E (Rm) - Rf] (sp/sm) = [-b/ (a-b)] E (Rm) + [a/ (a-b)] Rf, i.e. 

                  sp* = sm [Rf {a/(a-b) – 1} + {-b/(a-b)} E (Rm)] / [E (Rm) – Rf]                   

                        = sm [E (Rm) – Rf][-b/(a-b)] / [E (Rm) – Rf] 

                        = sm [-b/(a – b)]                                                                                    … (x) 

 

This mathematically demonstrates that a rational investor having a quadratic utility 

function of the form U = ax2 – by2, at his or her point of maximum utility (i.e. affinity to 

return coupled with averseness to risk), assumes a given efficient portfolio risk (standard 

deviation of returns) equivalent to Sp* = Sm [-b/(a – b)]; when the efficient portfolio 

consists of the market portfolio coupled with a risk-free asset. 

The investor in this case, will be classified within a particular category A, B or C 

according to whether –b/(a-b) is greater than, equal in value or lesser than a/(a-b), given 

that a < b and b > 0.   

 

Case I: (b > a, b > 0 and a >0) 

Let b = 3 and a = 2. Thus, we have (b > a) and (-b < a). Then we have x* = -3/(2-3) = 3 

and y* = 2/(2-3) = -2. Therefore (x*>y*) and (y*<0). So the investor can be classified as 

Class A+. 

Case II: (b > a, b > 0, a < 0 and b > |a|) 

 Let b = 3 and a = - 2. Thus, we have (b > a) and (- b < a). Then, x* = -3/(-2-3) = 0.60 and 

y* = -2/(-2-3) = 0.40. Therefore (x* > y*) and (y*>0). So the investor can be re-classified 

as Class A! 

Case III: (b > a, b > 0, a < 0 and b = |a|) 
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Let b = 3 and a = -3. Thus, we have (b > a) and (b = |a|). Then we have x* = -3/(-3-3) = 

0.5 and y* = -3/(-3-3) = 0.5. Therefore we have (x* = y*). So now the investor can be re-

classified as Class B! 

Case IV: (b > a, b > 0, a < 0 and b < |a|) 

Let b = 3 and a = -5. Thus, we have (b>a) and (b<|a|). Then we have x* = -3/(-5-3) = 

0.375 and y* = -5/(-5-3) = 0.625. Therefore we have (x* < y*). So, now the investor can 

be re-classified as Class C! 

So we may see that even for this relatively simple utility function, the final classification 

of the investor permanently into any one risk-class would be unrealistic as the range of 

values for the coefficients a and b could be switching dynamically from one range to 

another as the investor tries to adjust and re-adjust his or her risk-bearing attitude. This 

makes the neo-classical approach insufficient in itself to arrive at a classification. Here 

lies the justification to bring in a complimentary fuzzy modeling approach which may be 

further extended to neutrosophic modeling. Moreover, if we bring in time itself as an 

independent variable into the utility maximization framework, then one choice variable 

(weighted in favour of risk-avoidance) could be viewed as a controlling factor on the 

other choice variable (weighted in favour of risk-acceptance). Then the resulting problem 

could be gainfully explored in the light of optimal control theory. 

    

(II.1) Modeling fuzziness in the funds allocation behavior of an individual investor. 

The boundary between the preference sets of an individual investor, for funds allocation 

between a risk-free asset and the risky market portfolio, tends to be rather fuzzy as the 

investor continually evaluates and shifts his or her position; unless it is a passive buy-

and-hold kind of portfolio. 

Thus, if the universe of discourse is U =  {C, B, A and A+} where C, B, A and A+ are 

our four risk classes “conservative”, “neutral”, “aggressive” and “overtly aggressive” 

respectively, then the fuzzy subset of U given by P = {x1/C, x2/B, x3/A, x4/A+} is the true 

preference set for our purposes; where we have 0 ≤ (x1, x2, x3, x4) ≤ 1, all the symbols 

having their usual meanings. Although theoretically any of the P (xi) values could be 

equal to unity, in reality it is far more likely that P (xi) < 1 for i = 1, 2, 3, 4 i.e. the fuzzy 

subset P is most likely to be subnormal. Also, similarly, in most real-life cases it is 
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expected that P (xi) > 0 for i = 1, 2, 3, 4 i.e. all the elements of P will be included in its 

support: supp (P) = {C, B, A, A+} = U. 

The critical point of analysis is definitely the individual investors preference ordering i.e. 

whether an investor is primarily conservative or primarily aggressive. It is 

understandable that a primarily conservative investor could behave aggressively at times 

and vice versa but in general, their behavior will be in line with their classification. So the 

classification often depends on the height of the fuzzy subset P: height (P) = MaxxP (x). 

So one would think that the risk-neutral class becomes largely superfluous, as investors in 

general will tend to get classified as either primarily conservative or primarily aggressive.  

However, as already said, in reality, the element B will also generally have a non-zero 

degree of membership in the fuzzy subset and hence cannot be dropped.  

The fuzziness surrounding investor classification stems from the fuzziness in the 

preference relations regarding the allocation of funds between the risk-free and the risky 

assets in the optimal portfolio. It may be mathematically described as follows: 

Let M be the set of allocation options open to the investor. Then, the fuzzy preference 

relation is a fuzzy subset of the M x M space identifiable by the following membership 

function: 

                                        µR (mi, mj) = 1; mi is definitely preferred to mj 

                                        c∈ (0.5, 1); mi is somewhat preferred to mj  

                                        0.5;              point of perfect neutrality 

                                        d ∈ (1, 0.5); mj is somewhat preferred to mi; and 

                                        0;                  mj is definitely preferred to mi                                   … (xi) 

The neutrosophic preference relation is obtained by including an intermediate neutral 

value of mn between mi and mj. The preference relations are assumed to meet the necessary 

conditions of reciprocity and transitivity. However, owing to substantial confusion 

regarding acceptable working definition of transitivity in a fuzzy set-up, it is often 

entirely neglected thereby leaving only the reciprocity property. This property may be 

succinctly represented as follows: 

 

                               µR (mi, mj) = 1 - µR (mj, mi), ∀i ≠ j                                           … (xii) 
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If we are to further assume a reasonable cardinality of the set M, then the preference 

relation Rv of an individual investor v may also be written in a matrix form as follows: [12] 

 

                               [rij
v] = [µR (mi, mj)], ∀i, j, v                                                     … (xiii) 

 

Classically, given the efficient frontier and the risk-free asset, there can be one and only 

one optimal portfolio corresponding to the point of tangency between the risk-free rate 

and the convex efficient frontier. Then fuzzy logic modeling framework does not in any 

way disturbs this bit of the classical framework. The fuzzy modeling, like the classical 

Lagrangian multiplier method, comes in only after the optimal portfolio has been 

identified and the problem facing the investor is that of allocating the available funds 

between the risky and the risk-free assets subject to a governing budget constraint. The 

investor is theoretically faced with an infinite number of possible combinations of the 

risk-free asset and the market portfolio but the ultimate allocation depends on the 

investor’s utility function to which we now extend the fuzzy preference relation. 

The available choices to the investor given his or her utility preferences determine the 

universe of discourse. The more uncertain are the investor’s utility preferences, the wider 

is the range of available choices and the greater is the degree of fuzziness involved in the 

preference relation, which would then extend to the investor classification. Also, wider 

the range of available choices to the investor the higher is the expected information 

content or entropy of the allocation decision.  

 

(II.2) Entropy as a measure of fuzziness.  

The term entropy arises in analogy with thermodynamics where the defining expression 

has the following mathematical form: 

 

                                       S = k log b ω                                                                       … (xiv) 

 

In thermodynamics, entropy is related to the degree of disorder or configuration 

probability ω of the canonical assembly. Its use involves an analysis of the microstates’ 

distribution in the canonical assembly among the available energy levels for both 
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isothermal reversible and isothermal irreversible (spontaneous) processes (with an 

attending modification). The physical scale factor k is the Boltzmann constant. [7]  

However, the thermodynamic form has a different sign and the word negentropy is 

therefore sometimes used to denote expected information. Though Claude Shannon 

originally conceptualized the entropy measure of expected information, it was DeLuca 

and Termini who brought this concept in the realms of fuzzy mathematics when they 

sought to derive a universal mathematical measure of fuzziness. 

 Let us consider the fuzzy subset F = {r1/X, r2/Y}, 0 ≤ (r1, r2) ≤ 1, where X is the event 

(y<x) and Y is the event (y≥x), x being the proportion of funds to be invested in the 

market portfolio and y being the proportion of funds to be invested in the risk-less 

security. Then the DeLuca-Termini conditions for measure of fuzziness may be stated as 

follows: [3] 

• FUZ (F) = 0 if F is a crisp set i.e. if the investor classified under a particular risk 

category always invests entire funds either in the risk-free asset (conservative 

attitude) or in the market portfolio (aggressive attitude) 

• FUZ (F) = Max FUZ (F) when F = (0.5/X, 0.5/Y) 

• FUZ (F) ≥ FUZ (F*) if F* is a sharpened version of F, i.e. if F* is a fuzzy subset 

satisfying F*(ri) ≥ F (ri) given that F (ri) ≥ 0.5 and F (ri) ≥ F*(ri) given that 0.5 ≥ F (ri) 

The second condition is directly derived from the concept of entropy. Shannon’s 

measure of entropy for an n – events case is given as follows: [10] 

 

                                                  H = - k Σ(pi log pi), where we have Σpi = 1           … (xv) 

 

The Lagrangian form of the above function is as follows: 

 

                                                  HL = - k Σ(pi log pi) + λ (1 - Σpi)                          … (xvi) 

 

Taking partial derivatives with respect to pi and setting equal to zero as per the necessary 

condition of maximization, we have the following stationary condition: 

 

                                             ∂ HL/∂ pi = -k [log pi +1] - λ = 0                                 … (xvii) 
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It may be derived from (16) that at the point of maximum entropy, log pi = -[(λ/k)+1], 

i.e. log pi becomes a constant. This means that at the point of maximum entropy, pi 

becomes independent of the i and equalized to a constant value for i = 1, 2 ... n. In an n-

events case therefore, at the point of maximum entropy we necessarily have:  

 

                                                  p1 = p2 = … = pi = … = pn = 1/n                         … (xviii) 

 

For n = 2 therefore, we obviously have the necessary condition for entropy maximization 

as p1 = p2 = ½ = 0.5. In terms of the fuzzy preference relation, this boils down to exactly 

the second DeLuca-Termini condition. Keeping this close relation with mathematical 

information theory in mind, DeLuca and Termini even went on to incorporate Shannon’s 

entropy measure as their chosen measure of fuzziness. For our portfolio funds allocation 

model, this measure could simply be stated as follows: 

 

FUZ (F) = - k [{F(r1) log F(ri) + (1-F(r1)) log (1-F (r1))}+ {F(r2) log F(r2) + (1-F(r2))  

log (1-F(r2))}]                                                                                                            …(xix) 

  

(II.3) Metric measures of fuzziness. 

Perhaps the best method of measuring fuzziness will be through measurement of the 

distance between F and Fc, as fuzziness is mathematically equivalent to the lack of 

distinction between a set and its complement. In terms of our portfolio funds allocation 

model, this is equivalent to the ambivalence in the mind of the individual investor 

regarding whether to put a larger or smaller proportion of available funds in the risk-less 

asset. The higher this ambivalence, the closer F is to Fc and greater is the fuzziness.  

 This measure may be constructed for our case by considering the fuzzy subset F as a 

vector with 2 components. That is, F (ri) is the ith component of a vector representing the 

fuzzy subset F and (1 – F (ri)) is the ith component of a vector representing the 

complementary fuzzy subset Fc. Thus letting D be a metric in 2 space; we have the 

distance between F and Fc as follows: [11] 
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               Dρ (F, Fc) = [Σ|F (ri) – Fc (ri)|ρ] 1/ρ, where ρ = 1, 2 …                               … (xx) 

 

For Euclidean Space with ρ=2, this metric becomes very similar to the statistical variance 

measure RMSD (root mean square deviation).  Moreover, as Fc (ri) = 1 – F (ri), the above 

formula may be written in a simplified manner as follows: 

 

          Dρ (F, Fc) = [Σ|2F (ri) – 1|ρ] 1/ρ, where ρ = 1, 2 …                                        … (xxi) 

 

For ρ=1, this becomes the Hamming metric having the following form: 

 

             D1 (F, Fc) = Σ|2F(ri) – 1|                                                                             … (xxii) 

 

If the investor always puts a greater proportion of funds in either the risk-free asset or the 

market portfolio, then F is reduced to a crisp set and |2F (ri) – 1| = 1. 

Based on the above metrics, a universal measure of fuzziness may now be defined as 

follows for our portfolio funds allocation model. This is done as follows: 

 

For a crisp set F, Fc is truly complementary, meaning that the metric distance becomes:  

 

          Dρ *(F, Fc) = 21/ρ, where ρ = 1, 2                                                                 … (xxiii) 

 

An effective measure of fuzziness could therefore be as follows: 

 

     FUZρ (F) = [21/ρ - Dρ (F, Fc)]/ 21/ρ = 1 - Dρ (F, Fc)]/ 21/ρ                                                  … (xxiv) 

 

For the Euclidean metric we would then have: 

 

            FUZ2 (F) = 1 – [Σ(2F (ri) – 1) 2] ½ 

                                                                    √2           

           = 1 –   (√2) (RMSD), where RMSD = ([Σ(2F (ri) – 1) 2] ½)/2                      … (xxv) 
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For the Hamming metric, the formula will simply be as follows: 

 

          FUZ1 (F) = 1 – Σ|2F (ri) – 1|                                                                                   

2                                                                                   … (xxvi) 

 

Having worked on the applicable measure for the degree of fuzziness of our governing 

preference relation, we devote the next section of our present paper to the possible 

application of optimal control theory to model the temporal dynamics of funds allocation 

behavior of an individual investor. 

 

(IV) Exploring time-dependent funds allocation behavior of individual investor in 

the light of optimal control theory. 

If the inter-temporal utility of an individual viewed from time t is recursively defined as 

Ut = W [ct, µ (Ut+1| It)], then the aggregator function W makes current inter-temporal 

utility a function of current consumption ct and of a certainty equivalent of next period’s 

random utility It that is computed using information up to t. Then, the individual could 

choose a control variable xt in period t to maximize Ut. [4] In the context of the mean-

variance model, a suitable candidate for the control variable could well be the proportion 

of funds set aside for investment in the risk-free asset. So, the objective function would 

incorporate the investor’s total temporal utility in a given time range [0, T]. Given that 

we include time as a continuous variable in the model, we may effectively formulate the 

problem applying classical optimal control theory. The plausible methodology for 

formulating this model is what we shall explore in this section. 

The basic optimal control problem can be stated as follows: [8] 

Find the control vector u = (u1, u2 … um) which optimizes the functional, called the 

performance index, J = ∫ f0 (x, u, t) dt over the range (0, T), where x = (x1, x2 … xn) is 

called the state vector, t is the time parameter, T is the terminal time and f0 is a specified 

function of x, u and t. The state variables xi and the control variables ui are related as 

dxi/dt = fi (x1, x2 … xn; u1, u2 … um; t), i = 1, 2 … n.  

 In many control problems, the system is linearly expressible as x (.) = [A] nxn x + [B] nxm 

u, where all the symbols have their usual connotations. As an illustrative example, we 
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may again consider the quadratic function that we used earlier f0 (x, y) = ax2 – by2. Then 

the problem is to find the control vector that makes the performance index given by the 

integral J = ∫(ax2 – by2) dt stationary with x = 1 – y in the range (0, T).  

The Hamiltonian may be expressed as H = f0 + λy = (ax2 – by2) + λy. The standard 

solution technique yields -Hx = λ(.)  … (i) and Hu = 0 … (ii) whereby we have the 

following system of equations: -2ax = λ(.) … (iii) and  -2y + λ = 0 … (iv). 

Differentiation of (iv) leads to –2y(.) + λ(.) = 0 … (v). Solving (iii) and (v) 

simultaneously, we get 2ax = -2y(.) = -λ(.) i.e. y(.) = -ax … (vi). Transforming (iii) in 

terms of x and solving the resulting ordinary differential equation would yield the state 

trajectory x (t) and the optimal control u (t) for the specified quadratic utility function, 

which can be easily done by most standard mathematical computing software packages. 

So, given a particular form of a utility function, we can trace the dynamic time-path of an 

individual investor’s fund allocation behavior (and hence; his or her classification) within 

the ambit of the mean-variance model by obtaining the state trajectory of x – the 

proportion of funds invested in the market portfolio and the corresponding control 

variable y – the proportion of funds invested in the risk-free asset using the standard 

techniques of optimal control theory. 
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Abstract 

In this paper we take a look at a simple portfolio insurance strategy using a protective put 

and computationally derive the investor’s governing utility structures underlying such a 

strategy under alternative market scenarios. Investor utility is deemed to increase with an 

increase in the excess equity generated by the portfolio insurance strategy over a simple 

investment strategy without any insurance. Three alternative market scenarios 

(probability spaces) have been explored – “Down”, “Neutral” and “Up”, categorized 

according to whether the price of the underlying security is most likely to go down, stay 

unchanged or go up. The methodology used is computational, primarily based on 

simulation and numerical extrapolation. The Arrow-Pratt measure of risk aversion has 

been used to determine how the investors react towards risk under the different scenarios. 

We have further proposed an extension of the classical computational modeling to a 

neutrosophical one 

 

Keywords: Option pricing, investment risk, portfolio insurance, utility theory, behavioral 
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Introduction: 

 Basically, a derivative financial asset is a legal contract between two parties – a buyer 

and a seller, whereby the former receives a rightful claim on an underlying asset while 

the latter has the corresponding liability of making good that claim, in exchange for a 

mutually agreed consideration. While many derivative securities are traded on the floors 

of exchanges just like ordinary securities, some derivatives are not exchange-traded at all. 

These are called OTC (Over-the-Counter) derivatives, which are contracts not traded on 

organized exchanges but rather negotiated privately between parties and are especially 

tailor-made to suit the nature of the underlying assets and the pay-offs desired therefrom. 

While countless papers have been written on the mathematics of option pricing 

formulation, surprisingly little work has been done in the area of exploring the exact 

nature of investor utility structures that underlie investment in derivative financial assets. 

This is an area we deem to be of tremendous interest both from the point of view of 

mainstream financial economics as well as from the point of view of a more recent and 

more esoteric perspective of behavioral economics. 

 

The basic building blocks of derivative assets: 

 

Forward Contract 

 A contract to buy or sell a specified amount of a designated commodity, currency, 

security, or financial instrument at a known date in the future and at a price set at the time 

the contract is made. Forward contracts are negotiated between the contracting parties 

and are not traded on organized exchanges. 

 

Futures Contract 

 Quite similar to a forwards contract – this is a contract to buy or sell a specified amount 

of a designated commodity, currency, security, or financial instrument at a known date in 

the future and at a price set at the time the contract is made. What primarily distinguishes 

forward contracts from futures contracts is that the latter are traded on organized 



 26 

exchanges and are thus standardized. These contracts are marked to market daily, with 

profits and losses settled in cash at the end of the trading day. 

 

Swap Contract 

 A private contract between two parties to exchange cash flows in the future according to 

some prearranged formula. The most common type of swap is the "plain vanilla" interest 

rate swap, in which the first party agrees to pay the second party cash flows equal to 

interest at a predetermined fixed rate on a notional principal. The second party agrees to 

pay the first party cash flows equal to interest at a floating rate on the same notional 

principal. Both payment streams are denominated in the same currency. Another common 

type of swap is the currency swap. This contract calls for the counter-parties to exchange 

specific amounts of two different currencies at the outset, which are repaid over time 

according to a prearranged formula that reflects amortization and interest payments. 

 

Option Contract 

 A contract that gives its owner the right, but not the obligation, to buy or sell a specified 

asset at a stipulated price, called the strike price. Contracts that give owners the right to 

buy are referred to as call options and contracts that give the owner the right to sell are 

called put options. Options include both standardized products that trade on organized 

exchanges and customized contracts between private parties. 

  

 In our present analysis we will be restricted exclusively to portfolio insurance strategy 

using a long position in put options and explore the utility structures derivable therefrom. 

 

 The simplest option contracts (also called plain vanilla options) are of two basic types – 

call and put. The call option is a right to buy (or call up) some underlying asset at or 

within a specific future date for a specific price called the strike price. The put option is a 

right to sell (or put through) some underlying asset at or within a specified date – again 

for a pre-determined strike price. The options come with no obligations attached – it is 

totally the discretion of the option holder to decide whether or not to exercise the same. 
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 The pay-off function (from an option buyer’s viewpoint) emanating from a call option is 

given as Pcall = Max [(ST – X), 0]. Here, ST is the price of the underlying asset on 

maturity and X is the strike price of the option. Similarly, for a put option, the pay-off 

function is given as Pput = Max [(X – ST), 0]. The implicit assumption in this case is that 

the options can only be exercised on the maturity date and not earlier. Such options are 

called European options. If the holder of an option contract is allowed to exercise the 

same any time on or before the day of maturity, it is termed an American option. A third, 

not-so-common category is one where the holder can exercise the option only on 

specified dates prior to its maturity. These are termed Bermudan options. The options we 

refer to in this paper will all be European type only but methodological extensions are 

possible to extend our analysis to also include American or even Bermudan options. 

 

Investor’s utility structures governing the purchase of plain vanilla option 

contracts: 

 Let us assume that an underlying asset priced at S at time t will go up or down by ∆s or 

stay unchanged at time T either with probabilities pU (u), pU (d) and pU (n) respectively 

contingent upon the occurrence of event U, or with probabilities pD (u), pD (d) and pD (n) 

respectively contingent upon the occurrence of event D, or with probabilities pN (u), pN 

(d) and pN (n) respectively contingent upon the occurrence of event N, in the time period 

(T – t).  This, by the way, is comparable to the analytical framework that is exploited in 

option pricing using the numerical method of trinomial trees. The trinomial tree 

algorithm is mainly used in the pricing of the non-European options where no closed-

form pricing formula exists.  

 

 Theorem: 

 Let PU, PD and PN be the three probability distributions contingent upon events U, D and 

N respectively. Then we have a consistent preference relation for a call buyer such that 

PU is strictly preferred to PN and PN is strictly preferred to PD and a corresponding 

consistent preference relation for a put buyer such that PD is strictly preferred to PN and 

PN is strictly preferred to PU. 
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Proof: 

Case I:  Investor buys a call option for $C maturing at time T having a strike price of $X 

on the underlying asset. We modify the call pay-off function slightly such that we now 

have the pay-off function as: Pcall = Max (ST – X – Cprice, – Cprice). 

Event U:   

EU (Call) = [(S + e-r (T-t) ∆s) pU (u) + (S – e-r (T-t) ∆s) pU (d)  + S pU (n)] – C – Xe-r (T-t)  

                = [S + e-r (T-t) ∆s {pU (u) – pU (d)}] – C – Xe-r (T-t) … pU (u) > pU (d) 

 Therefore, E (Pcall) = Max [S + e-r (T-t) {∆s (pU (u) – pU (d)) – X} – C, – C]               … (i) 

                                                      

Event D:  

ED (Call) = [(S + e-r (T-t) ∆s) pD (u) + (S – e-r (T-t) ∆s) pD (d)  + S pD (n)] – C – Xe-r (T-t) 

                    = [S + e-r (T-t) ∆s {pD (u) – pD (d)}] – C – Xe-r (T-t) … pD (u) < pD (d) 

Therefore, E (Pcall) = Max [S – e-r (T-t) {∆s (pD (d) – pD (u)) + X}– C, – C]                 … (ii) 

                                

Event N:   

EN (Call) = [(S + e-r (T-t) ∆s) pN (u) + (S – e-r (T-t) ∆s) pN (d)  + S pN (n)] – C – Xe-r (T-t)  

                               = [S + e-r (T-t) ∆s {pN (u) – pN (d)}] – C – Xe-r (T-t)  

                               = S – C – Xe-r (T-t) … pN (u) = pN (d) 

Therefore, E (Pcall) = Max [S –Xe-r (T-t) – C, – C]                                                        … (iii) 

 

Case II:  Investor buys a put option for $P maturing at time T having a strike price of $X 

on the underlying asset. Again we modify the pay-off function such that we now have the 

pay-off function as: Pput = Max (X – ST – Pprice, – Pprice).  

 

Event U:  

 EU (Put) = Xe-r (T-t) – [{(S + e-r (T-t) ∆s) pU (u) + (S – e-r (T-t) ∆s) pU (d)  + S pU (n)} + P]                                

      = Xe-r (T-t) – [S + e-r (T-t) ∆s {pU (u) – pU (d)} + P] 
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= Xe-r (T-t) – [S + e-r (T-t) ∆s {pU (u) – pU (d)} + (C + Xe-r (T-t) – S)] … put-call parity 

      = – e-r (T-t) ∆s {pU (u) – pU (d)} – C                                                 

     Therefore, E (Pput) = Max [– e-r (T-t) ∆s {pU (u) – pU (d)} – C, – P]  

                      = Max [– e-r (T-t) ∆s {pU (u) – pU (d)} – C, – (C + Xe-r (T-t) – S)]            … (iv) 

 

Event D:  

 ED (Put) = Xe-r (T-t) – [{(S + e-r (T-t) ∆s) pD (u) + (S – e-r (T-t) ∆s) pD (d)  + S pD (n)} + P]  

       = Xe-r (T-t) – [S + e-r (T-t) ∆s {pD (u) – pD (d)} + P]  

= Xe-r (T-t) – [S + e-r (T-t) ∆s {pU (u) – pU (d)} + (C + Xe-r (T-t) – S)] … put-call parity 

      = e-r (T-t) ∆s {pD (d) – pD (u)} – C 

Therefore, E (Pput) = Max [e-r (T-t) ∆s {pD (d) – pD (u)} – C, – P]  

                            = Max [e-r (T-t) ∆s {pD (d) – pD (u)} – C, – (C + Xe-r (T-t) – S)]          … (v) 

 

Event N:   

EN (Put) = Xe-r (T-t) – [{(S + e-r (T-t) ∆s) pN (u) + (S – e-r (T-t) ∆s) pN (d)  + S pN (n)} + P]  

                              = Xe-r (T-t) – [S + e-r (T-t) ∆s {pN (u) – pN (d)}+ P] 

                              = Xe-r (T-t) – (S + P)  

                              = (Xe-r (T-t) – S) – {C + (Xe-r (T-t) – S)} … put-call parity 

                              = – C 

Therefore, E (Pput) = Max [– C, – P]  

                     = Max [–C, – (C + Xe-r (T-t) – S)]                                                    … (vi) 

 

 From equations (4), (5) and (6) we see that EU (Put) < EN (Put) < ED (Put) and hence it 

is proved why we have the consistent preference relation PD is strictly preferred to PN 

and PN is strictly preferred to PU from a put buyer’s point of view. The call buyer’s 

consistent preference relation is also explainable likewise.   

 

 We can now proceed to computationally derive the associated utility structures using a 

Monte Carlo discrete-event simulation approach to estimate the change in equity 

following a particular investment strategy under each of the aforementioned event spaces.    
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Computational derivation of investor’s utility curves under a protective put strategy: 

 

There is a more or less well-established theory of utility maximization in case of 

deductible insurance policy on non-financial assets whereby the basic underlying 

assumption is that cost of insurance is a convex function of the expected indemnification. 

Such an assumption has been showed to satisfy the sufficiency condition for expected 

utility maximization when individual preferences exhibit risk aversion. The final wealth 

function at end of the insurance period is given as follows: 

 

                                                   ZT = Z0 + M – x + I (x) – C (D)                             … (vii) 

 

Here ZT is the final wealth at time t = T, Z0 is the initial wealth at time t = 0, x is a 

random loss variable, I (x) is the indemnification function, C (x) is the cost of insurance 

and 0 ≤ D ≤ M is the level of the deductible. However the parallels that can be drawn 

between ordinary insurance and portfolio insurance is different when the portfolio 

consists of financial assets being continuously traded on the floors of organized financial 

markets. While the form of an insurance contract might look familiar – an assured value 

in return for a price – the mechanism of providing such assurance will have to be quite 

different because unlike other tangible assets like houses or cars, when one portfolio of 

financial assets gets knocked down, virtually all others are likely to follow suit making 

“risk pooling”, the typical method of insurance, quite inadequate for portfolio insurance. 

Derivative assets like options do provide a suitable mechanism for portfolio insurance. 

 

  If the market is likely to move adversely, holding a long put alongside ensures that the 

investor is better off than just holding a long position in the underlying asset. The long 

put offers the investor some kind of price insurance in case the market goes down. This 

strategy is known in derivatives parlance as a protective put.  The strategy effectively 

puts a floor on the downside deviations without cutting off the upside by too much. From 

the expected changes in investor’s equity we can computationally derive his or her utility 

curves under the strategies A1 and A2 in each of the three probability spaces D, N and U. 
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The following hypothetical data have been assumed to calculate the simulated put price: 

S = $50.00 (purchase price of the underlying security) 

X = $55.00 (put strike price) 

(T – t) = 1 (single period investment horizon) 

Risk-free rate = 5% 

 

The put option pay-offs have been valued by Monte Carlo simulation of a trinomial tree 

using a customized MS-Excel spreadsheet for one hundred independent replications in 

each case. 

 

Event space: D Strategy: A1 (Long underlying asset) 

 

               Instance (i):  (–)∆S = $5.00, (+)∆S = $15.00 

 

               Table 1 

                

 

 

 

 

 

 

 

 To see how the expected change in investor’s equity goes up with an increased upside 

potential we will double the possible up movement at each of the next two stages while 

keeping the down movement unaltered. This should enable us to account for any possible 

loss of investor utility by way of the cost of using a portfolio insurance strategy. 

                                             

               Instance (ii):  (+) ∆S = $30.00 

 

              

Price movement Probability Expected ∆ Equity 

Up (+ $15.00) 0.1 $1.50 

Neutral  ($0.00) 0.3 $0.00 

Down (– $5.00) 0.6 ($3.00) 

  Σ = ($1.50) 
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              Table 2 

 

                

 

 

 

 

 

 

 

 

               Instance (iii):  (+)∆S = $60.00 

 

              Table 3 

 

 

                

 

 

 

 

              Event space: D Strategy: A2 (Long underlying asset + long put) 

 

                Instance (i): (−)∆S = $5.00, (+)∆S = $15.00 

 

 

 

 

Price movement Probability Expected ∆ Equity 

Up (+ $30.00) 0.1 $3.00 

Neutral ($0.00) 0.3 $0.00 

Down (– $5.00) 0.6 ($3.00) 

  Σ = $0.00 

Price movement Probability Expected ∆ Equity 

Up (+ $60.00) 0.1 $6.00 

Neutral ($0.00) 0.3 $0.00 

Down (– $5.00) 0.6 ($3.00) 

  Σ = $3.00 
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               Table 4 

 

 

 

 

 

 

 

Table 5 

 

 

 

           

                Instance (ii): (+)∆S = $30.00 

 

               Table 6 

Simulated put price $6.75 

Variance $13.33 

Simulated asset value $52.15 

Variance $164.78 

 

 

 

 

 

Simulated put price $6.99 

Variance $11.63 

Simulated asset value $48.95 

Variance $43.58 

Price movement Probability Expected ∆ Equity  Expected excess equity Utility index 

Up (+ $8.01) 0.1 $0.801 

Neutral (– $1.99) 0.3 ($0.597) 

Down (– $1.99) 0.6  ($1.194) 

  

  Σ = (–$0.99) $0.51  ≈ 0.333 
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Table 7 

 

 

 

 

               Instance (iii): (+)∆S = $60.00 

 

               Table 8 

Simulated put price $6.71 

Variance $12.38 

Simulated asset value $56.20 

Variance $520.77 

 

 

 

 

Table 9 

 

 

Price movement Probability Expected ∆ Equity Expected excess equity Utility index 

Up (+ $23.25) 0.1 $2.325 

Neutral (– $1.75) 0.3 ($0.525) 

Down (– $1.75) 0.6 ($1.05) 

  

  Σ = $0.75 $0.75  ≈ 0.666 

Price movement Probability Expected ∆ Equity  Expected excess equity Utility index 

Up (+ $53.29) 0.1 $5.329 

Neutral (– $1.71) 0.3 ($0.513) 

Down (– $1.71) 0.6 ($1.026) 

  

  Σ = $3.79 $0.79  ≈ 0.999 
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Figure 1 

 

The utility function as obtained above is convex in probability space D, which indicates 

that the protective strategy can make the investor risk-loving even when the market is 

expected to move in an adverse direction, as the expected payoff from the put option 

largely neutralizes the likely erosion of security value at an affordable insurance cost! 

This seems in line with intuitive behavioral reasoning, as investors with a viable 

downside protection will become more aggressive in their approach than they would be 

without it implying markedly lowered risk averseness for the investors with insurance. 

 

 

Event space: N Strategy: A1 (Long underlying asset) 

 

                           Instance (i):  (–)∆S = $5.00, (+)∆S = $15.00 

 

 

 

 

 

 

 

 

Utility Index Function (Event Space D) y = 24.777x2 - 29.831x + 9.1025

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

Expected excess equity
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                           Table 10 

 

 

 

 

 

 

 

 

                           Instance (ii):  (+)∆S = $30.00 

 

 

 

 

 

                           Table 11 

 

                

 

 

 

 

 

                           

 

 

 

 

 

                           Instance (iii):  (+)∆S = $60.00 

 

Price movement Probability Expected ∆ Equity 

Up (+ $15.00) 0.2 $3.00 

Neutral  ($0.00) 0.6 $0.00 

Down (– $5.00) 0.2 ($1.00) 

  Σ = $2.00 

Price movement Probability Expected ∆ Equity 

Up (+ $30.00) 0.2 $6.00 

Neutral ($0.00) 0.6 $0.00 

Down (– $5.00) 0.2 ($1.00) 

  Σ = $5.00 
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                           Table 12 

 

                

 

 

 

 

 

Event space: N Strategy: A2 (Long underlying asset + long put) 

 

                Instance (i): (−)∆S = $5.00, (+)∆S = $15.00 

 

              

              Table 13 

 

 

 

 

 

 

Table 14 

 

 

 

               Instance (ii): (+)∆S = $30.00 

 

Price movement Probability Expected ∆ Equity 

Up (+ $60.00) 0.2 $12.00 

Neutral ($0.00) 0.6 $0.00 

Down (– $5) 0.2 ($1.00) 

  Σ = $11.00 

Simulated put price $4.85 

Variance $9.59 

Simulated asset value $51.90 

Variance $47.36 

Price movement Probability Expected ∆ Equity  Expected excess equity Utility index 

Up (+ $11.15) 0.2 $2.23 

Neutral (+ $0.15) 0.6 $0.09 

Down (+ $0.15) 0.2 $0.03 

  

  Σ = $2.35 $0.35  ≈ 0.999 
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              Table 15 

 

 

 

 

 

 

Table 16 

               Instance (iii): (+)∆S = $60.00 

 

                

 

              Table 17 

 

 

 

 

 

 

Table 18 

Simulated put price $4.80 

Variance $9.82 

Simulated asset value $55.20 

Variance $169.15 

Price movement Probability Expected ∆ Equity  Expected excess equity Utility index 

Up (+ $25.20) 0.2 $5.04 

Neutral (+ $0.20) 0.6 $0.12 

Down (+ $0.20) 0.2 $0.04 

  

  Σ = $5.20 $0.20  ≈ 0.333 

Simulated put price $4.76 

Variance $8.68 

Simulated asset value $60.45 

Variance $585.40 

Price movement Probability Expected ∆ Equity Expected excess equity Utility index 

Up (+ $55.24) 0.2 $11.048 

Neutral (+ $0.24) 0.6 $0.144 

Down (+ $0.24) 0.2 $0.048 

  

  Σ = $11.24 $0.24  ≈ 0.666 
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Figure 2 

 

The utility function as obtained above is concave in probability space N, which indicates 

that the insurance provided by the protective strategy can no longer make the investor 

risk-loving as the expected value of the insurance is offset by the cost of buying the put! 

This is again in line with intuitive behavioral reasoning because if the market is equally 

likely to move up or down and more likely to stay unmoved the investor would deem 

himself or herself better off not buying the insurance because in order to have the 

insurance i.e. the put option it is necessary to pay an out-of-pocket cost, which may not 

be offset by the expected payoff from the put option under the prevalent market scenario. 

 

Event space: U Strategy: A1 (Long underlying asset) 

 

                          Instance (i):  (–)∆S = $5.00, (+)∆S = $15.00 

 

 

                            

                          Table 19 

 

 

 

 

 

 

 

Price movement Probability Expected ∆ Equity 

Up (+ $15.00) 0.6 $9.00 

Neutral  ($0.00) 0.3 $0.00 

Down (– $5.00) 0.1 ($0.50) 

  Σ = $8.50 

Utility Index Function (Event Space N)
y = -35.318x2 + 23.865x - 3.0273

0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400

Expected excess equity
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                          Instance (ii):  (+)∆S = $30.00 

 

 

                          Table 20 

 

 

 

 

 

 

 

 

 

                           Instance (iii):  (+) ∆S = $60.00 

 

                           

                          Table 21 

 

                

 

 

 

 

 

 

 

Event space: U Strategy: A2 (Long underlying asset + long put) 

              

 

   Instance (i): (−)∆S = $5.00, (+)∆S = $15.00 

 

Price movement Probability Expected ∆ Equity 

Up (+ $30.00) 0.6 $18.00 

Neutral ($0.00) 0.3 $0.00 

Down (– $5.00) 0.1 ($0.50) 

  Σ = $17.50 

Price movement Probability Expected ∆ Equity 

Up (+ $60.00) 0.6 $36.00 

Neutral ($0.00) 0.3 $0.00 

Down (– $5) 0.1 ($0.50) 

  Σ = $35.50 
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                   Table 22 

 

 

 

 

 

 

 

 

Table 23 

             Instance (ii): (+)∆S = $30.00 

 

 

            Table 24 

 

 

 

 

 

 

Simulated put price $2.28 

Variance $9.36 

Simulated asset value $58.60 

Variance $63.68 

Price movement Probability Expected ∆ Equity Expected excess equity Utility index 

Up (+ $12.72) 0.6 $7.632 

Neutral (+ $2.72) 0.3 $0.816 

Down (+ $2.72) 0.1 $0.272 

  

  Σ = $8.72 $0.22  ≈ 0.333 

Simulated put price $2.14 

Variance $10.23 

Simulated asset value $69.00 

Variance $228.79 
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Table 25 

 

 

 

 

               Instance (iii): (+)∆S = $60.00 

 

 

              Table 26 

Simulated put price $2.09 

Variance $9.74 

Simulated asset value $88.55 

Variance $864.80 

 

 

Table 27 

 

 

 

Price movement Probability Expected ∆ Equity Expected excess equity Utility index 

Up (+ $27.86) 0.6 $16.716 

Neutral (+ $2.86) 0.3 $0.858 

Down (+ $2.86) 0.1 $0.286 

  

  Σ = $17.86 $0.36  ≈ 0.666 

Price movement Probability Expected ∆ Equity Expected excess equity Utility index 

Up (+ $57.91) 0.6 $34.746 

Neutral (+ $2.91) 0.3 $0.873 

Down (+ $2.91) 0.1 $0.291 

  

  Σ = $35.91 $0.41  ≈ 0.999 
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Figure 3 

 

In accordance with intuitive, behavioral reasoning the utility function is again seen to be 

convex in the probability space U, which is probably attributable to the fact that while the 

market is expected to move in a favourable direction the put option nevertheless keeps 

the downside protected while costing less than the expected payoff on exercise thereby 

fostering a risk-loving attitude in the investor as he gets to enjoy the best of both worlds. 

 

Note: Particular values assigned to the utility indices won’t affect the essential 

mathematical structure of the utility curve – but only cause a scale shift in the parameters. 

For example, the indices could easily have been taken as (0.111, 0.555, 0.999) - these 

assigned values should not have any computational significance as long as all they all lie 

within the conventional interval (0, 1]. Repeated simulations have shown that the investor 

would be considered extremely unlucky to get an excess return less than the minimum 

excess return obtained or extremely lucky to get an excess return more than the maximum 

excess return obtained under each of the event spaces. Hence, the maximum and 

minimum expected excess equity within a particular event space should correspond to the 

lowest and highest utility indices and the utility derived from the median excess equity 

should then naturally occupy the middle position. As long as this is the case, there will be 

no alteration in the fundamental mathematical structure of the investor’s utility functions 

no matter what index values are assigned to his or her utility from expected excess equity.  

 

Utility Index Function (Event Space U)
y = 22.534x2 - 10.691x + 1.5944

0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450

Expected excess equity
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Extrapolating the ranges of investor’s risk aversion within each probability space: 

 

For a continuous, twice-differentiable utility function u (x), the Arrow-Pratt measure of 

absolute risk aversion (ARA) is given as follows: 

 

                                        λ (x) = -[d2u (x)/dx2][du (x)/dx]-1                                                     … (viii) 

 

 λ (x) > 0 if u is monotonically increasing and strictly concave as in case of a risk-averse 

investor having u’’ (x) < 0. Obviously, λ (x) = 0 for the risk-neutral investor with a linear 

utility function having u’’ (x) = 0 while λ (x) < 0 for the risk-loving investor with a 

strictly convex utility function having u’’ (x) > 0.  

Case I: Probability Space D:  

u (x) = 24.777x2 – 29.831x + 9.1025, u’ (x) = 49.554x – 29.831 and u’’(x) = 49.554. 

Thus λ (x) = – 49.554/(49.554x – 29.831). Therefore, given the convex utility function, 

the defining range is λ (x) < 0 i.e. (49.554x – 29.831) < 0 or x < 0.60199.  
 

Case II: Probability Space N:  

u (x) = -35.318 x2 + 23.865x – 3.0273, u’ (x) = -70.636x + 23.865 and u’’(x) = –70.636.        

Thus, λ (x) = – [–70.636 /(–70.636x + 23.865)] = 70.636/(–70.636x + 23.865). Therefore, 

given the concave utility function, the defining range is λ (x) > 0, i.e. we have the 

denominator (-70.636x + 23.865) > 0 or x > 0.33786.  

 

Case III: Probability Space U:  

u (x) = 22.534x2 – 10.691x + 1.5944, u’ (x) = 45.068x – 10.691 and u’’(x) = 45.068. 

Thus λ (x) = – 45.068/(45.068x – 10.691). Therefore, given the convex utility function, 

the defining range is λ (x) < 0 i.e. (45.068x – 10.691) < 0 or x < 0.23722. 

 These defining ranges as evaluated above will however depend on the parameters of the 

utility function and will therefore be different for different investors according to the 

values assigned to his or her utility indices corresponding to the expected excess equity. 
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 In general, if we have a parabolic utility function u (x) = a + bx – cx2, where c > 0 

ensures concavity, then we have u’ (x) = b – 2cx and u’’ (x) = -2c. The Arrow-Pratt 

measure is given by λ (x) = 2c /(b–2cx). Therefore, for λ (x) ≥ 0, we need b > 2cx, thus it 

can only apply for a limited range of x. Notice that λ’ (x) > 0 up to where x = b/2c. 

Beyond that, marginal utility is negative - i.e. beyond this level of equity, utility declines. 

One more implication is that there is an increasing apparent unwillingness to take risk as 

their equity increases, i.e. with larger excess equity investors are less willing to take risks 

as concave, parabolic utility functions exhibit increasing absolute risk aversion (IARA).  

 

 People sometimes use a past outcome as a critical factor in evaluating the likely outcome 

from a risky decision to be taken in the present. Also it has been experimentally 

demonstrated that decisions can be taken in violation of conditional preference relations. 

This has been the crux of a whole body of behavioral utility theory developed on the 

basis of what has come to be known as non-expected utility following the famous work in 

prospect theory (Kahneman and Tversky, 1979). It has been empirically demonstrated 

that people are willing to take more risks immediately following gains and take less risks 

immediately following losses with the probability distribution of the payoffs remaining 

unchanged. Also decisions are affected more by instantaneous utility resulting from 

immediate gains than by disutility resulting from the cumulative magnitude of likely 

losses as in the assessment of health risks from addictive alcohol consumption. It has also 

been seen in experimental psychology studies that generated explanations cause a greater 

degree of belief persistence than provided explanations. This is due to a psychological 

miscalibration whereby people tend to be guided by outcomes in their most recent 

memory. In the face of all these challenges to the expected utility paradigm, it must 

however be noted that the utility structures underlying the behavior of investors with loss 

insurance in the three different market scenarios as derived above are independent of any 

psychological miscalibration on the part of the individual based on prior history of 

positive or negative payoffs but rather are a direct statistical consequence of the portfolio 

insurance strategy itself and the expected payoffs likely to follow from such a strategy. 
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Extending the classical computational model to a Neutrosophical computational 

model: 

 

Neutrosophy forms the philosophical foundation of a relatively new branch of 

mathematical logic that relates to the cause, structure and scope of neutralities as well as 

their interactions with different ideational spectra.  In formal terms, neutrosophic logic is 

a generalization of fuzzy logic – whereas fuzzy logic deals with the imprecision 

regarding membership of a set X and its compliment Xc, neutrosophic logic recognizes 

and studies a non-standard, neutral subset of X and Xc.  

 

 If T, I, F are standard or non-standard real subsets of -] 0, 1 [+, then T, I, F are referred to 

as neutrosophic components which represent truth value, indeterminacy value and falsity 

value of a proposition respectively. The governing principle of Neutrosophy is that if a 

set X exists to which there is a compliment Xc, then there exists a continuum-power 

spectrum of neutralities NX. Then x ∈ X by t%, x ∈ NX by i% and x ∈ Xc by f%, where 

we have (t, i, f) ⊂ (T, I, F).  

 

 The practical applicability of such a logical framework in the context of an option-based 

portfolio insurance strategy becomes immediately apparent when we consider imperfect 

markets and asymmetric flow of market information. Imprecision arises in financial 

markets, as it does in any other setting, out of incomplete information, inherent 

randomness of information source (stochasticity) and incorrect interpretation of 

subjective information. The neutrosophic components T, I, F, viewed dynamically as set-

valued vector functions, can be said to depend at each instance on multiple parameters 
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which may be spatial, temporal or even psychological. For example, the proposition “The 

market will break the resistance tomorrow” may be 50% true, 75% indeterminate and 

40% false as of today at the close of trading but with new information coming overnight 

it might change to 80% true, 40% indeterminate and 15% false which may subsequently 

again change to 100% true, 0% indeterminate and 0% false when the trading starts the 

next day and the market really rises through the roof. Moreover, the evaluations may be 

different for different market analysts according to their inconsistent (or even conflicting) 

information sources and/or non-corresponding interpretations. For example, according to 

one analyst the proposition could be 50% true 75% indeterminate and 40% false while 

according to another (with more recent and/or more accurate information) it may be 80% 

true, 40% indeterminate and 15% false. However, as the trading starts the next day and 

the market actually breaks the resistance, all the individual assessments will ultimately 

converge to 100% true, 0% indeterminate and 0% false. How fast this convergence takes 

place will be dependent on the level of market efficiency. This is perhaps the closest 

representation of the human thought process. It characterizes the imprecision of 

knowledge due to asymmetric dissemination of information, acquisition errors, 

stochasticity and interpretational vagueness due to lack of clear contours of the defining 

subsets. The superior and inferior limits of these defining subsets have to be pre-specified 

in order to set up a workable computational model of a neutrosophic problem.  

 

 The simulation model we have employed here to explore the utility structures underlying 

a simple option-based portfolio insurance strategy can now be further extended in the 

light of neutrosophic reasoning. Instead of running the simulations individually under 



 48 

each of the probability spaces U, N and D, one can define a neutrosophic probability 

space where the market has u% chance of being up, n% chance of being neither up nor 

down and d% chance of being down. These probability assessments could of course be in 

the nature of set-valued vector functions defined over specific spatio-temporal domains 

so as to leave only stochasticity and interpretational variations as the major sources of 

change in the assessments. Then these two parameters may be separately simulated 

according to some suitable probability distributions and the results fed into the option-

payoff simulation to yield a dynamic scenario whereby the neutrosophic components 

change according to changes in the parameters and the resulting effect on utility structure 

can be numerically explored.  

 

Conclusion: 

 

 In this paper we have computationally examined the implications on investor’s utility of 

a simple option strategy of portfolio insurance under alternative market scenarios, which 

we believe is novel both in content as well as context. We have found that such insurance 

strategies can indeed have quite interesting governing utility structures underlying them. 

The expected excess payoffs from an insurance strategy can make the investor risk-loving 

when it is known with a relatively high prior probability that the market will either move 

in an adverse direction or in a favourable direction. The investor seems to display risk-

averseness only when the market is equally likely to move in either direction and has a 

relatively high prior probability of staying unmoved. We have further outlined a 

suggested computational methodology to apply neutrosophic reasoning to the problem of 



 49 

portfolio insurance. However, we leave the actual computational modeling of investor 

utility on a neutrosophic event space to a subsequent research endeavor. The door is now 

open for further research along these lines going deep into the governing utility structures 

that may underlie more complex derivative trading strategies, portfolio insurance 

schemes and structured financial products. 

 

******* 
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Abstract: 

In this paper we propose a classification scheme to isolate truly benign tumors from those 

that initially start off as benign but subsequently show metastases. A non-parametric 

artificial neural network methodology has been chosen because of the analytical 

difficulties associated with extraction of closed-form stochastic-likelihood parameters 

given the extremely complicated and possibly non-linear behavior of the state variables. 

This is intended as the first of a three-part research output. In this paper, we have 

proposed and justified the computational schema. In the second part we shall set up a 

working model of our schema and pilot-test it with clinical data while in the concluding 

part we shall give an in-depth analysis of the numerical output and model findings and 

compare it to existing methods of tumor growth modeling and malignancy prediction. 

 

Key words:  Cell cycle, oncogenes, tumor suppressors, tumor metastases, Lebowitz-

Rubinow models of continuous-time tumor growth, non-linear dynamics and chaos, 

multi-layer perceptrons 
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Introduction - mechanics of the mammalian cell cycle: 

 

 The mammalian cell division cycle passes through four distinct phases with specific 

drivers, functions and critical checkpoints for each phase 

 

Phase Main drivers Functions Checkpoints 

G1 (gap 1) Cell size, protein 

content, nutrient 

level 

Preparatory 

biochemical 

metamorphosis 

Tumor-suppressor gene 

p53 

S (synthesization) Replicator elements New DNA 

synthesization  

ATM gene (related to the 

MEC1 yeast gene) 

G2 (gap 2) Cyclin B 

accumulation 

Pre-mitosis 

preparatory 

changes 

Levels of cyclin B/cdk1 – 

increased radiosensitivity 

M (mitosis) Mitosis Promoting 

Factor (MPF) – 

complex of cyclin 

B and cdk1 

Entry to mitosis; 

metaphase-

anaphase 

transition; exit 

Mitotic spindle – control 

of metaphase-anaphase 

transition 

 

 The steady-state number of cells in a tissue is a function of the relative amount of cell 

proliferation and cell death. The principal determinant of cell proliferation is the residual 

effect of the interaction between oncogenes and tumor-suppressor genes. Cell death is 

determined by the residual effect of the interaction of proapoptotic and antiapoptotic 

genes.  Therefore, the number of cells may increase due to either increased oncogenes 

activity or antiapoptotic genes activity or by decreased activity of the tumor-suppressor 

genes or the proapoptotic genes. This relationship may be shown as follows: 

 

  Cn = f (O, S, P, AP), such that {Cn’ (O), Cn’ (AP)} > 0 and {Cn’ (S), Cn’ (P)} < 0 … (i) 

 

 Here Cn is the steady-state number of cells, O is oncogenes activity, S is tumor-

suppressor genes activity, P is proapoptotic genes activity and AP is antiapoptotic genes 
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activity. The abnormal growth of tumor cells result from a combined effect of too few 

cell-cycle decelerators (tumor-suppressors) and too many cell-cycle accelerators 

(oncogenes). The most commonly mutated gene in human cancers is p53, which the 

cancerous tumors bring about either by overexpression of the p53 binding protein mdm2 

or through pathogens like the human papilloma virus (HPV). Though not the objective of 

this paper, it could be an interesting and potentially rewarding epidemiological exercise 

to isolate the proportion of p53 mutation principally brought about by the overexpression 

of mdm2 and the proportion of such mutation principally brought about by viral infection. 

 

Brief review of some existing mathematical models of cell population growth: 

 

 Though the exact mechanism by which cancer kills a living body is not known till date, 

it nevertheless seems appropriate to link the severity of cancerous growth to the steady- 

state number of cells present, which again is a function of the number of oncogenes and 

tumor-suppressor genes.  A number of mathematical models have been constructed 

studying tumor growth with respect to Cn, the simplest of which express Cn as a function 

of time without any cell classification scheme based on histological differences. An 

inherited cycle length model was implemented by Lebowitz and Rubinow (1974) as an 

alternative to the simpler age-structured models in which variation in cell cycle times is 

attributed to occurrence of a chance event. In the LR model, variation in cell-cycle times 

is attributed to a distribution in inherited generation traits and the determination of the 

cell cycle length is therefore endogenous to the model. The population density function in 

the LR model is of the form Cn (a, t; τ) where τ is the inherited cycle length. The 

boundary condition for the model is given as follows: 

 

                              Cn (0, t; τ) = 20∫∞ K (τ,τ’) Cn (τ’, t; τ’) dτ’                                   … (ii) 

 

 In the above equation, the kernel K (τ,τ’) is referred to as the transition probability 

function and gives the probability that a parent cell of cycle length τ’ produces a daughter 

cell of cycle length τ. It is the assumption that every dividing parent cell produces two 

daughters that yields the multiplier 2. The degree of correlation between the parent and 
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daughter cells is ultimately decided by the choice of the kernel K.  The LR model was 

further extended by Webb (1986) who chose to impose sufficiency conditions on the 

kernel K in order to ensure that the solutions asymptotically converge to a state of 

balanced exponential growth. He actually showed that the well-defined collection of 

mappings {S (t): t ≥ 0} from the Banach space B into itself forms a strongly continuous 

semi-group of bounded linear operators.  Thus, for t ≥ 0, S (t) is the operator that 

transforms an initial distribution φ (a, τ) into the corresponding solution Cn (a, t; τ) of the 

LR model at time t. Initially the model only allowed for a positive parent-daughter 

correlation in cycle times but keeping in tune with experimental evidence for such 

correlation possibly also being negative, a later; more general version of the Webb model 

has been developed which considers the sign of the correlation and allows for both cases.  

 

 There are also models that take Cn as a function of both time as well as some 

physiological structure variables. Rubinow (1968) suggested one such scheme where the 

age variable “a” is replaced by a structure variable “µ” representing some physiological 

measure of cell maturity with a varying rate of change over time v = dµ/dt. If it is given 

that Cn (µ, t) represents the cell population density at time t with respect to the structure 

variable µ, then the population balance model of Rubinow takes the following form: 

 

                                                    ∂Cn/∂t + ∂(vCn)/∂µ = -λCn                                                       … (iii) 

 

Here λ (µ) is the maturity-dependent proportion of cells lost per unit of time due to non-

mitotic causes.  Either v depends on µ or on additional parameters like culture conditions. 

 

Purpose of the present paper: 

 Growth in cell biology indicates changes in the size of a cell mass due to several 

interrelated causes the main ones among which are proliferation, differentiation and 

death. In a normal tissue, cell number remains constant because of a balance between 

proliferation, death and differentiation. In abnormal situations, increased steady-state cell 

number is attributable to either inhibited differentiation/death or increased proliferation 
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with the other two properties remaining unchanged. Cancer can form along either route. 

Contrary to popular belief, cancer cells do not necessarily proliferate faster than the 

normal ones. Proliferation rates observed in well-differentiated tumors are not 

significantly higher from those seen in progenitor normal cells. Many normal cells 

hyperproliferate on occasions but otherwise retain their normal histological behavior. 

This is known as hyperplasia.  In this paper, we propose a non-parametric approach 

based on an artificial neural network classifier to detect whether a hyperplasic cell 

proliferation could eventually become carcinogenic. That is, our model proposes to 

determine whether a tumor stays benign or subsequently undergoes metastases and 

becomes malignant as is rather prone to occur in certain forms of cancer.  

 

Benign versus malignant tumors: 

 

 A benign tumor grows at a relatively slow rate, does not metastasize, bears histological 

resemblance to the cells of normal tissue, and tends to form a clearly defined mass. A 

malignant tumor consists of cancer cells that are highly irregular, grow at a much faster 

rate, and have a tendency to metastasize. Though benign tumors are usually not directly 

life threatening, some of the benign types do have the capability of becoming malignant.  

Therefore, viewed a stochastic process, a purely benign growth should approach some 

critical steady-state mass whereas any growth that subsequently becomes cancerous 

would fail to approach such a steady-state mass. One of the underlying premises of our 

model then is that cell population growth takes place according to the basic Markov chain 

rule such that the observed tumor mass in time tj+1 is dependent on the mass in time tj.  

 

Non-linear cellular biorhythms and chaos:  

 

 A major drawback of using a parametric stochastic-likelihood modeling approach is that 

often closed-form solutions become analytically impossible to obtain. The axiomatic 

approach involves deriving analytical solutions of stiff stochastic differential-difference 

equation systems. But these are often hard to extract especially if the governing system is 

decidedly non-linear like Rubinow’s suggested physiological structure model with 
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velocity v depending on the population density Cn. The best course to take in such cases 

is one using a non-parametric approach like that of artificial neural networks.  

 The idea of chaos and non-linearity in biochemical processes is not new. Perhaps the 

most widely referred study in this respect is the Belousov-Zhabotinsky (BZ) reaction. 

This chemical reaction is named after B. P. Belousov who discovered it for the first time 

and A. M. Zhabotinsky who continued Belousov´s early work. R. J. Field, Endre Körös, 

and R. M. Noyes published the mechanism of this oscillating reaction in 1972. Their 

work opened an entire new research area of nonlinear chemical dynamics. 

 Classically the BZ reaction consist of a one-electron redox catalyst, an organic substrate 

that can be easily brominated and oxidized, and sodium or potassium bromate ion in form 

of NaBrO3 or KBrO3 all dissolved in sulfuric or nitric acid and mostly using Ce (III)/Ce 

(IV) salts and Mn (II) salts as catalysts. Also Ruthenium complexes are now extensively 

studied, because of the reaction’s extreme photosensitivity. There is no reason why the 

highly intricate intracellular biochemical processes, which are inherently of a much 

higher order of complexity in terms of molecular kinetics compared to the BZ reaction, 

could not be better viewed in this light. In fact, experimental studies investigating the 

physiological clock (of yeast) due to oscillating enzymatic breakdown of sugar, have 

revealed that the coupling to membrane transport could, under certain conditions, result 

in chaotic biorhythms. The yeast does provide a useful experimental model for 

histologists studying cancerous cell growth because the ATM gene, believed to be a 

critical checkpoint in the S stage of the cell cycle, is related to the MEC1 yeast gene. 

Zaguskin has further conjectured that all biorhythms have a discrete fractal structure. 

The almost ubiquitous growth function used to model population dynamics has the 

following well-known difference equation form: 

                                                 Xt+1 = rXt (1 – Xt/k)                                                   … (iv) 

 Such models exhibit period-doubling and subsequently chaotic behavior for certain 

critical parameter values of r and k. The limit set becomes a fractal at the point where the 

model degenerates into pure chaos. We can easily deduce in a discrete form that the 
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original Rubinow model is a linear one in the sense that Cnt+1 is linearly dependent on 

Cnt:  

       ∆Cn/∆t + ∆(vCnt)/∆µ = -λCnt, that is 

                         (∆Cn/∆t)  + (∆v/∆µ) Cnt + (∆Cnt /∆µ) v = -λCnt 

                         ∆Cn = - Cnt (λ + ∆v/∆µ) / (2/∆t) … as v = ∆µ/∆t 

                                        Putting k = – [(2/∆t) –1 – (λ + ∆v/∆µ)]-1 and r = (2/∆t)-1 we get; 

                                             Cnt +1 = rCnt (1 – 1/k)                                                      … (v) 

Now this may be oversimplifying things and the true equation could indeed be analogous 

to the non-linear population growth model having a more recognizable form as follows: 

                                           Cnt +1 = rCnt (1 – Cnt/k)                                                    … (vi) 

 Therefore, we take the conjectural position that very similar period-doubling limit cycles 

degenerating into chaos could explain some of the sudden “jumps” in cell population 

observed in malignancy when the standard linear models become drastically inadequate.  

 No linear classifier can identify a chaotic attractor if one is indeed operating as we 

surmise in the biochemical molecular dynamics of cell population growth. A non-linear 

and preferably non-parametric classifier is called for and for this very reason we have 

proposed artificial neural networks as a fundamental methodological building block here. 

Similar approach has paid off reasonably impressively in the case of complex systems 

modeling, especially with respect to weather forecasting and financial distress prediction.  

 

Artificial neural networks primer:  

  

 Any artificial neural network is characterized by specifications on its neurodynamics and 

architecture. While neurodynamics refers to the input combinations, output generation, 

type of mapping function used and weighting schemes, architecture refers to the network 

configuration i.e. type and number of neuron interconnectivity and number of layers.  
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 The input layer of an artificial neural network actually acts as a buffer for the inputs, as 

numeric data are transferred to the next layer. The output layer functions similarly except 

for the fact that the direction of dataflow is reversed. The transfer activation function is 

one that determines the output from the weighted inputs of a neuron by mapping the input 

data onto a suitable solution space. The output of neuron j after the summation of its 

weighted inputs from neuron 1 to i has been mapped by the transfer function f can be 

shown to be as follows: 

 

                                                        Oj = fj (Σwijxi)                                                    … (vii) 

 

 A transfer function maps any real numbers into a domain normally bounded by 0 to 1 or 

–1 to 1. The most commonly used transfer functions are sigmoid, hypertan, and Gaussian. 

 

 A network is considered fully connected if the output from a neuron is connected to 

every other neuron in the next layer. A network may be forward propagating or 

backward propagating depending on whether outputs from one layer are passed 

unidirectionally to the succeeding or the preceding layer respectively. Networks working 

in closed loops are termed recurrent networks but the term is sometimes used 

interchangeably with backward propagating networks. Fully connected feed-forward 

networks are also called multi-layer perceptrons (MLPs) and as of now they are the most 

commonly used artificial neural network configuration. Our proposed artificial neural 

network classifier may also be conceptualized as a recursive combination of such MLPs.  

 

 Neural networks also come with something known as a hidden layer containing hidden 

neurons to deal with very complex, non-linear problems that cannot be resolved by 

merely the neurons in the input and output layers. There is no definite formula to 

determine the number of hidden layers required in a neural network set up. A useful 

heuristic approach would be to start with a small number of hidden layers with the 

numbers being allowed to increase gradually only if the learning is deemed inadequate. 

This should theoretically also address the regression problem of over-fitting i.e. the 
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network performing very well with the training set data but poorly with the test set data. 

A neural network having no hidden layers at all basically becomes a linear classifier and 

is therefore statistically indistinguishable from the general linear regression model. 

 

Model premises: 

 

(1) The function governing the biochemical dynamics of cell population growth is 

inherently non-linear  

 

(2) The sudden and rapid degeneration of a benign cell growth to a malignant one may 

be attributed to an underlying chaotic attractor  

 

(3) Given adequate training data, a non-linear binary classification technique such as 

that of Artificial Neural Networks can learn to detect this underlying chaotic 

attractor and thereby prove useful in predicting whether a benign cell growth may 

subsequently turn cancerous  

 

Model structure: 

 

 We propose a nested approach where we treat the output generated by an earlier phase as 

an input in a latter phase. This will ensure that the artificial neural network virtually acts 

as a knowledge-based system as it takes its own predictions in the preceding phases into 

consideration as input data and tries to generate further predictions in succeeding phases.  

 This means that for a k-phase model, our set up will actually consist of k recursive 

networks having k phases such that the jth phase will have input function Ij = f {O (p’j-1), 

I (pj-1), pj}, where the terms O (p’j-1) and I (pj-1) are the output and input functions of the 

previous phase and pj is the vector of additional inputs for the jth stage. The said recursive 

approach will have the following schema for a nested artificial neural network model 

with k = 3:  
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               Belief Updation 

 

 

                                                                 Belief Updation 

 

 

 

 

 

Phase I – target class variable: benign primary tumor mass 

Phase II – target class variable: primary tumor mass at point of detection of malignancy 

Phase III – target class variable: metastases (M) → 1, no metastases (B) → 0 

 

 As is apparent from the above schema, the model is intended to act as a sort of a 

knowledge bank that continuously keeps updating prior beliefs about tumor growth rate. 

The critical input variables are taken as concentration of p53 binding protein and 

observed tumor mass. The first one indicates the activity of the oncogenes vis-à-vis the 

tumor suppressors while the second one considers the extent of hyperplasia.  

 

Phase I: Raw Data Inputs 

 
Concentration of p53 binding protein, initial
primary tumor mass and primary tumor 
growth rate (hypothesized from prior belief) 

1 

Phase II: Augmented Inputs 
 
Steady-state primary tumor mass (Phase I output), 
maximum observed primary tumor mass before onset of 
metastases and other Phase I inputs 
 

2 

Phase III: Augmented Inputs 

 
Critical primary tumor mass (Phase II output) and other Phase
II inputs  
(Steady-state mass ≤ critical mass ≤ maximum mass) 

3 

Model output 
 

Tumor stays benign (0) or 
undergoes metastases (1) 
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 The model is proposed to be trained in phase I with histopathological data on 

concentration of p53 binding protein along with clinically observed data on tumor mass. 

The inputs and output of Phase I is proposed to be fed as input to Phase II along with 

additional clinical data on maximum tumor mass. The output and inputs of Phase 2 is 

finally to be fed into Phase III to generate the model output – a binary variable M|B that 

takes value of 1 if the tumor is predicted to metastasize or 0 otherwise. The recursive 

structure of the model is intended to pick up any underlying chaotic attractor that might 

be at work at the point where benign hyperplasia starts to degenerate into cancer. Issues 

regarding network configuration, learning rate, weighting scheme and mapping function 

are left open to experimentation. It is logical to start with a small number of hidden 

neurons and subsequently increase the number if the system shows inadequate learning.  

 

Addressing the problem of training data unavailability: 

 

 While training a neural network, if no target class data is available, the complimentary 

class must be inferred by default.  Training a network only on one class of inputs, with no 

counter-examples, causes the network to classify everything as the only class it has been 

shown. However, by training the network on randomly selected counter-examples during 

training can make it behave as a novelty detector in the test set. It will then pick up any 

deviation from the norm as an abnormality.   For example, in our proposed model, if the 

clinical data for initially benign tumors subsequently turning malignant is unavailable, the 

network can be trained with the benign cases with random inputs of the malignant type so 

that it automatically picks up any deviation from the norm as a possible malignant case.  

 

 A mathematical justification for synthesizing unavailable training data with random 

numbers can be derived from the fact that network training seeks to minimize the sum 

squared of errors over the training set. In a binary classification scheme like the one we 

are interested in, where a single input k produces an output f (k), the desired outputs are 0 

if the input is a benign tumor that has stayed benign (B) and 1 if the input is a benign 

tumor that has subsequently turned malignant (M). If the prior probability of any piece of 

data being a member of class B is PB and that of class M is PM; and if the probability 
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distribution functions of the two classes expressed as functions of input k are pB (k) and 

pM (k), then the sum squared error, ε, over the entire training set will be given as follows: 

 

                                    ε = –∞∫∞ PBpB (k)[f (k) – 0] 2 + PMpM (k)[f (k) –1] 2 dk       … (viii) 

 

 Differentiating this equation with respect to the function f and equating to zero we get: 

 

∂ε/∂f = 2pB (k) PB f (k) + 2pM (k) PM f (k) – 2pM (k) PM = 0 i.e. 

                                      f (k)* = [pM (k) PM] / [pB (k) PB + pM (k) PM]                    … (ix) 

 

 The above optimal value of f (k) is exactly the same as the probability of the correct 

classification being M given that the input was k. This shows that by training for 

minimization of sum squared error; and using as targets 0 for class B and 1 for class M, 

the output from the network converges to an identical value as the probability of class M. 

 

Gazing upon the road ahead:  

 

 The main objective of our proposed model is to isolate truly benign tumors from those 

that initially start off as benign but subsequently show metastases. The non-parametric 

artificial neural network methodology has been chosen because of the analytical 

difficulties associated with extraction of closed-form stochastic likelihood parameters 

given the extremely complicated and possibly non-linear behavior of the state variables. 

This computational approach is proposed as a methodological alternative to the stochastic 

calculus techniques of tumor growth modeling commonly used in mathematical biology. 

Though how the approach actually performs with numerical data remains to be 

extensively tested, the proposed schema has been made as flexible as possible to suit 

most designed experiments to test its performance effectiveness and efficiency.  In this 

paper we have just outlined a research approach – we shall test it out in a subsequent one.  

 

 

 



 63 

References 

 

Atchara Sirimungkala, Horst-Dieter Försterling, and Richard J. Field, “Bromination 

Reactions Important in the Mechanism of the Belousov-Zhabotinsky Reaction”, Journal 

of Physical Chemistry, 1999, pp1038-1043 

 

Choi, S.C., Muizelaar, J.P., Barnes, T.Y., et al., “Prediction Tree for severely head-

injured patients”, Journal of Neurosurgery, 1991, pp251-255 

 

DeVita, Vincent T., Hellman, Samuel, Rosenberg, Steven A., “Cancer – Principles & 

Practice of Oncology”, Lippincott Williams & Wilkins, Philadelphia, 6th Ed., pp91-134 

 

Dodd, Nigel, “Patient Monitoring Using an Artificial Neural Network”, collected papers 

“Artificial Neural Network in Biomedicine”, Lisboa, Paulo J. G., Ifeachor, Emmanuel C. 

and Szczepaniak, Piotr S. (Eds.), pp120-125 

 

Goldman, L., Cook, F. Johnson, P., Brand, D., Rouan, G and Lee, T. “Prediction of the 

need for intensive care in patients who come to emergency departments with acute chest 

pain”, The New England Journal of Medicine, 1996, pp498-504 

 

Goldman, L., Weinberg, M., Olsen, R.A., Cook, F., Sargent, R, et al. “A computer 

protocol to predict myocardial infarction in emergency department patients with chest 

pain”, The New England Journal of Medicine, 1982, pp515-533 

 

King, Roger J. B., “Cancer Biology”, Pearson Education Limited, Essex, 2nd Ed., pp1-37 

 

Lebowitz, J. L. and Rubinow, S. I., “A mathematical model of the acute myeloblastic 

leukemic state in man”, Biophysics Journal, 1976, pp897-910 

 

Levy, D.E., Caronna, J.J., Singer, B.H., et al. “Predicting outcome from hypoxic-

ischemic coma.”, Journal of American Medical Association, 1985, pp1420-1426 



 64 

 

Rubinow, S. I., “A maturity-time representation for cell populations”, Biophysics 

Journal, 1968, pp1055-1073 

 

Tan, Clarence N. W., “Artificial Neural Networks – Applications in Financial Distress 

Prediction & Foreign Exchange Trading”, Wilberto Publishing, Gold Coast, 1st Ed., 2001, 

pp25-42 

 

Tucker, Susan L. “Cell Population Models with Continuous Structure Variables”, 

collected papers “Cancer Modelling”, Thompson, James R., Brown, Barry W. (Eds.), 

Marcel Dekker Inc., N.Y.C., vol. 83, pp181-210 

 

Webb, G. F., “A model of proliferating cell populations with inherited cycle length”, 

Journal of Mathematical Biology, 1986, pp269-282  

 

Zaguskin, S. L., "Fractal Nature of Biorhythms and Bio-controlled 

Chronophysiotherapy", Russian Interdisciplinary Temporology Seminar, Abstracts of 

reports, Time in the Open and Nonlinear World, autumn semester topic 1998 



 65 

Utility of Choice: Information Theoretic Approach to Investment Decision-Making 

 

M. Khoshnevisan 

Griffith University 

Gold Coast, Queensland Australia 

 

Sukanto Bhattacharya 

Bond University 

Gold Coast, Queensland Australia 

 

Florentin Smarandache 

University of New Mexico - Gallup, USA 

 

Abstract:   
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Introduction: 

 In early nineteenth century most economists conceptualized utility as a psychic reality – 

cardinally measurable in terms of utils like distance in kilometers or temperature in 

degrees centigrade. In the later part of nineteenth century Vilfredo Pareto discovered that 

all the important aspects of demand theory could be analyzed ordinally using geometric 

devices, which later came to be known as “indifference curves”. The indifference curve 

approach effectively did away with the notion of a cardinally measurable utility and went 

on to form the methodological cornerstone of modern microeconomic theory.  

 

 An indifference curve for a two-commodity model is mathematically defined as the 

locus of all such points in E2 where different combinations of the two commodities give 

the same level of satisfaction to the consumer so as the consumer is indifferent to any 

particular combination. Such indifference curves are always convex to the origin because 

of the operation of the law of substitution. This law states that the scarcer a commodity 

becomes, the greater becomes its relative substitution value so that its marginal utility 

rises relative to the marginal utility of the other commodity that has become 

comparatively plentiful. 

 

 In terms of the indifference curves approach, the problem of utility maximization for an 

individual consumer may be expressed as a constrained non-linear programming problem 

that may be written in its general form for an n-commodity model as follows: 

 

Maximize U = U (C1, C2 … Cn) 

                                              Subject to Σ CjPj ≤ B 

                                             and Cj ≥ 0, for j = 1, 2 … n                                                (1) 

 

 If the above problem is formulated with a strict equality constraint i.e. if the consumer is 

allowed to use up the entire budget on the n commodities, then the utility maximizing 

condition of consumer’s equilibrium is derived as the following first-order condition: 
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∂U/∂Cj = (∂U/∂Cj) - λPj = 0 i.e. 

                                           (∂U/∂Cj)/Pj = λ* = constant, for j = 1, 2 … n                      (2) 

 

 This pertains to the classical economic theory that in order to maximize utility, 

individual consumers necessarily must allocate their budget so as to equalize the ratio of 

marginal utility to price for every commodity under consideration, with this ratio being 

found equal to the optimal value of the Lagrangian multiplier λ*. 

 

 However a rather necessary pre-condition for the above indifference curve approach to 

work is (UC1, UC2 … UCn) > 0 i.e. the marginal utilities derived by the consumer from 

each of the n commodities must be positive. Otherwise of course the problem 

degenerates. To prevent this from happening one needs to strictly adhere to the law of 

substitution under all circumstances. This however, at times, could become an untenable 

proposition if measure of utility is strictly restricted to an intrinsic one. This is because, 

for the required condition to hold, each of the n commodities necessarily must always 

have a positive intrinsic utility for the consumer. However, this would invariably lead to 

anomalous reasoning like the intrinsic utility of a woolen jacket being independent of the 

temperature or the intrinsic utility of an umbrella being independent of rainfall.  

 

 Choice among alternative courses of action consist of trade-offs that confound subjective 

probabilities and marginal utilities and are almost always too coarse to allow for a 

meaningful separation of the two. From the viewpoint of a classical statistical decision 

theory like that of Bayesian inference for example, failure to obtain a correct 

representation of the underlying behavioral basis would be considered a major pitfall in 

the aforementioned analytical framework. 

 

 Choices among alternative courses of action are largely determined by the relative 

degrees of belief an individual attaches to the prevailing uncertainties. Following Vroom 

(Vroom; 1964), the motivational strength Sn of choice cn among N alternative available 

choices from the choice set C = {c1, c2 …cN} may be ranked with respect to the 

multiplicative product of the relative reward r (cn) that the individual attaches to the 
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consequences resulting from the choice cn, the likelihood that the choice set under 

consideration will yield a positive intrinsic utility and the respective probabilities p{r 

(cn)} associated with r (cn) such that: 

 

                 Smax = Max 
n [r (cn) x p (Ur(C) > 0) x p{r (cn)}], n = 1, 2 … N                       (3) 

                                      

 Assuming for the time-being that the individual is calibrated with perfect certainty with 

respect to the intrinsic utility resulting from a choice set such that we have the condition 

p (Ur(C)  > 0) = {0, 1}, the above model can be reduced as follows: 

 

                   Smax = Max k [r (ck) x p{r (ck)}], k = 1, 2 … K such that K < N                  (4) 

                                      

 

 Therefore, choice A, which entails a large reward with a low probability of the reward 

being actualized could theoretically yield the same motivational strength as choice B, 

which entails a smaller reward with a higher probability of the reward being actualized.  

 

 However, we recognize the fact that the information conveyed to the decision-maker by 

the outcomes would be quite different for A and B though their values may have the same 

mathematical expectation. Therefore, whereas intrinsic utility could explain the ranking 

with respect to expected value of the outcomes, there really has to be another dimension 

to utility whereby the expected information is considered – that of extrinsic utility. So, 

though there is a very low probability of having an unusually cold day in summer, the 

information conveyed to the likely buyer of a woolen jacket by occurrence of such an 

aberration in the weather pattern would be quite substantial, thereby validating a 

extended substitution law based on an expected information measure of utility.  The 

specific objective of this paper is to formulate a mathematically sound theoretical edifice 

for the formal induction of extrinsic utility into the folds of statistical decision theory. 
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A few essential working definitions 

 Object: Something with respect to which an individual may perform a specific goal-

oriented behavior 

 Object set: The set O of a number of different objects available to an individual at any 

particular point in space and time with respect to achieving a goal where n {O} = K 

Choice: A path towards the sought goal emanating from a particular course of action - for 

a single available object within the individual’s object set, there are two available choices 

- either the individual takes that object or he or she does not take that object. Therefore, 

generalizing for an object set with K alternative objects, there can be 2K alternative 

courses of action for the individual 

Choice set: The set C of all available choices where C = P O, n {C} = 2K 

Outcome: The relative reward resulting from making a particular choice 

 Decision-making is nothing but goal-oriented behavior. According to the celebrated 

theory of reasoned action (Fishbain; 1979), the immediate determinant of human 

behavior is the intention to perform (or not to perform) the behavior. For example, the 

simplest way to determine whether an individual will invest in Acme Inc. equity shares is 

to ask whether he or she intends to do so. This does not necessarily mean that there will 

always be a perfect relationship between intension and behavior. However, there is no 

denying the fact that people usually tend to act in accordance with their intensions.  

 

 However, though intention may be shaped by a positive intrinsic utility expected to be 

derived from the outcome of a decision, the ability of the individual to actually act 

according to his or her intention also needs to be considered. For example, if an investor 

truly intends to buy a call option on the equity stock of Acme Inc. even then his or her 

intention cannot get translated into behavior if there is no exchange-traded call option 

available on that equity stock.  Thus we may view the additional element of choice as a 

measure of extrinsic utility. Utility is not only to be measured by the intrinsic want-

satisfying capacity of a commodity for an intending individual but also by the 

availability of the particular commodity at that point in space and time to enable that 

individual to act according to his or her intension.  Going back to our woolen jacket 

example, though the intrinsic utility of such a garment in summer is practically zero, the 
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extrinsic utility afforded by its mere availability can nevertheless suffice to uphold the 

law of substitution. 

 

Utility and thermodynamics 

 In our present paper we have attempted to extend the classical utility theory applying the 

entropy measure of information (Shannon, 1948), which by itself bears a direct 

constructional analogy to the Boltzmann equation in thermodynamics. There is some 

uniformity in views among economists as well as physicists that a functional 

correspondence exists between the formalisms of economic theory and classical 

thermodynamics. The laws of thermodynamics can be intuitively interpreted in an 

economic context and the correspondences do show that thermodynamic entropy and 

economic utility are related concepts sharing the same formal framework. Utility is said 

to arise from that component of thermodynamic entropy whose change is due to 

irreversible transformations. This is the standard Carnot entropy given by dS = δQ/T 

where S is the entropy measure, Q is the thermal energy of state transformation 

(irreversible) and T is the absolute temperature. In this paper however we will keep to the 

information theoretic definition of entropy rather than the purely thermodynamic one. 

 

Underlying premises of our extrinsic utility model 

 

1. Utility derived from making a choice can be distinctly categorized into two forms: 

 

(a) Intrinsic utility (Ur(C)) – the intrinsic, non-quantifiable capacity of the 

potential outcome from a particular choice set to satisfy a particular 

human want under given circumstances; in terms of expected utility theory 

Ur (C) = Σ r (cj) p{r (cj)}, where j = 1, 2 … K and 

 

(b) Extrinsic utility (UX) – the additional possible choices afforded by the 

mere availability of a specific object within the object set of the individual 
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2. An choice set with n (C) = 1 (i.e. when K = 0) with respect to a particular 

individual corresponds to lowest (zero) extrinsic utility; so UX cannot be negative 

 

3. The law of diminishing marginal utility tends to hold in case of UX when an 

individual repeatedly keeps making the same choice to the exclusion of other 

available choices within his or her choice set 

 

 Expressing the frequency of alternative choices in terms of the probability of getting an 

outcome rj by making a choice cj, the generalized extrinsic utility function can be framed 

as a modified version of Shannon’s entropy function as follows: 

 

                                UX = - K Σj p {r (cj)} log2 p {r (cj)}, j = 1, 2 … 2K                                       (5) 

 

 The multiplier -K = -n (O) is a scale factor somewhat analogous to the Boltzmann 

constant in classical thermodynamics with a reversed sign. Therefore general extrinsic 

utility maximization reduces to the following non-linear programming problem: 

 

                                           Maximize UX = - K Σj p {r (cj)} log2 p {r (cj)} 

           Subject to Σ p {r (cj)} = 1, 

                                                        p {r (cj)} ≥ 0; and 

                                                        j = 1, 2 … 2K                                                             (6) 

 

 Putting the objective function into the usual Lagrangian multiplier form, we get 

 

                                  Z = - K Σ p {r (cj)} log2 p {r (cj)} + λ (Σ p {r (cj)} – 1)                (7) 

 

 Now, as per the first-order condition for maximization, we have 

 

                                    ∂Z/∂ p {r (cj)} = - K (log2 p {r (cj)} + 1) + λ = 0 i.e. 

 

                                     log2 p {r (cj)} = λ/K – 1                                                              (8) 
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 Therefore; for a pre-defined K; p {r (cj)} is independent of j, i.e. all the probabilities are 

necessarily equalized to the constant value p {r (cj)}*= 2-K at the point of maximum UX. 

 

  It is also intuitively obvious that when p {r (cj)}= 2-K for j = 1, 2, … 2K, the individual 

has the maximum element of choice in terms of the available objects within his or her 

object set. For a choice set with a single available choice, the extrinsic utility function 

will be simply given as UX = – p{r (c)} log2 p{r (c)} – (1 – p{r (c)}) log2 (1 – p{r (c)}). 

Then the slope of the marginal extrinsic utility curve will as usual be given by d2UX/dp{r 

(c)} 2 < 0, and this can additionally serve as an alternative basis for intuitively deriving 

the generalized, downward-sloping demand curve and is thus a valuable theoretical spin-

off!  

 

 Therefore, though the mathematical expectation of a reward resulting from two mutually 

exclusive choices may be the same thereby giving them equal rank in terms of the 

intrinsic utility of the expected reward, the expected information content of the outcome 

from the two choices will be quite different given different probabilities of getting the 

relative rewards. The following vector will then give a composite measure of total 

expected utility from the object set: 

 

  U = [Ur, UX] = [Σr (cj) p{r (cj)}, - K Σj p {r (cj)} log2 p {r (cj)}], j = 1, 2 … 2K                (9) 

 

 Now, having established the essential premise of formulating an extrinsic utility 

measure, we can proceed to let go of the assumption that an individual is calibrated with 

perfect certainty about the intrinsic utility resulting from the given choice set so that we 

now look at the full Vroom model rather than the reduced version. If we remove the 

restraining condition that p (Ur (C) > 0) = {0, 1} and instead we have the more general case 

of 0 ≤ p (Ur(C) > 0) ≤ 1, then we introduce another probabilistic dimension to our choice 

set whereby the individual is no longer certain about the nature of the impact the 

outcomes emanating from a specific choice will have on his intrinsic utility.  This can be 

intuitively interpreted in terms of the likely opportunity cost of making a choice from 
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within a given choice set to the exclusion of all other possible choice sets. For the 

particular choice set C, if the likely opportunity cost is less than the potential reward 

obtainable, then Ur (c) > 0, if opportunity cost is equal to the potential reward obtainable, 

then Ur(C)  = 0, else if the opportunity cost is greater than the potential reward obtainable 

then Ur (C) < 0.  

 Writing Ur(C) = Σj r (cj) p{r (cj)}, j = 1, 2 … N, the total expected utility vector now 

becomes: 

 
[Ur(C), UX] = [Σj r (cj) p{r (cj)}, - K Σ p {r (cj)| Ur(C) > 0} log2 p {r (cj)| Ur(C) > 0}], j = 1, 2 … N             (10) 

 

Here p {r (cj)| Ur(C) > 0} may be estimated by the standard Bayes criterion as under: 

 

     p {r (cj)| Ur(c) >0} = [p {(Ur(C) ≥0|r (cj)} p {(r (cj)}][Σj p {(Ur(C) >0|r (cj)} p {(r (cj)}]-1          (11) 

 

 

A practical application in the realms of Behavioral Finance - Evaluating an 

investor’s extrinsic utility from capital-guaranteed, structured financial products 

 

 Let a structured financial product be made up of a basket of n different assets such that 

the investor has the right to claim the return on the best-performing asset out of that 

basket after a stipulated holding period. Then, if one of the n assets in the basket is the 

risk-free asset then the investor gets assured of a minimum return equal to the risk-free 

rate i on his invested capital at the termination of the stipulated holding period.  This 

effectively means that his or her investment becomes endogenously capital-guaranteed as 

the terminal wealth, even at its worst, cannot be lower in value to the initial wealth plus 

the return earned on the risk-free asset minus a finite cost of portfolio insurance.  

 

 Therefore, with respect to each risky asset, we can have a binary response from the 

investor in terms of his or her funds-allocation decision whereby the investor either takes 

funds out of an asset or puts funds into an asset. Since the overall portfolio has to be self-

financing in order to pertain to a Black-Scholes kind of pricing model, funds added to 
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one asset will also mean same amount of funds removed from one or more of the other 

assets in that basket. If the basket consists of a single risky asset s (and of course cash as 

the risk-free asset) then, if ηs is the amount of re-allocation effected each time with 

respect to the risky asset s, the two alternative, mutually exclusive choices open to the 

investor with respect to the risky asset s are as follows:  

 

(1) C (ηs ≥ 0) (funds left in asset s), with associated outcome r (ηs ≥ 0); and  

 

(2) C (ηs < 0) (funds removed from asset s), with associated outcome r (ηs < 0) 

 

 Therefore what the different assets are giving to the investor apart from their intrinsic 

utility in the form of higher expected terminal reward is some extrinsic utility in the form 

of available re-allocation options. Then the expected present value of the final return is 

given as follows: 

 

                        E (r) = Max [w, Max j {e-it E (rj) t}], j = 1, 2 … 2n-1                                            (12) 

 

In the above equation i is the rate of return on the risk-free asset and t is the length of the 

investment horizon in continuous time and w is the initial wealth invested i.e. ignoring 

insurance cost, if the risk-free asset outperforms all other assets E (r) = weit/eit = w.  

 

 Now what is the probability of each of the (n – 1) risky assets performing worse than the 

risk-free asset? Even if we assume that there are some cross-correlations present among 

the (n – 1) risky assets, given the statistical nature of the risk-return trade-off the joint 

probability of these assets performing worse than the risk-free asset will be very low over 

moderately long investment horizons.  And this probability will keep going down with 

every additional risky asset added to the basket. Thus each additional asset will empower 

the investor with additional choices with regards to re-allocating his or her funds among 

the different assets according to their observed performances.  

 Intuitively we can make out that the extrinsic utility to the investor is indeed maximized 

when there is an equal positive probability of actualizing each outcome rj resulting from 
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ηj given that the intrinsic utility Ur(C) is greater than zero. By a purely economic 

rationale, each additional asset introduced into the basket will be so introduced if and 

only if it significantly raises the expected monetary value of the potential terminal 

reward. As already demonstrated, the extrinsic utility maximizing criterion will be given 

as under: 

 

                                  p (rj | Ur(C) > 0)* = 2-(n-1) for j = 1, 2 …2n-1                                                  (13) 

 

 The composite utility vector from the multi-asset structured product will be as follows: 

 

[Ur(C), UX] = [E ( r ), - (n – 1)Σ p {rj | Ur(C) > 0} log2 p {rj | Ur(C) > 0}], j = 1, 2 … 2n-1        (14) 

 

Choice set with a structured product having two risky assets (and cash): 

 

0 0 

1 0 

0 1 

1 1 

 

 That is, the investor can remove all funds from the two risky assets and convert it to cash 

(the risk-free asset), or the investor can take funds out of asset 2 and put it in asset 1, or 

the investor can take funds out of asset 1 and put it in asset 2, or the investor can convert 

some cash into funds and put it in both the risky assets. Thus there are 4 alternative 

choices for the investor when it comes to re-balancing his portfolio. 

 

Choice set with a structured product having three risky assets (and cash): 

 

0 0 0 

0 0 1 

0 1 0 
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0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

 That is, the investor can remove all funds from the three risky assets and convert it into 

cash (the risk-free asset), or the investor can take funds out of asset 1 and asset 2 and put 

it in asset 3, or the investor can take funds out from asset 1 and asset 3 and put it in asset 

2, or the investor can take funds out from asset 2 and asset 3 and put it in asset 1, or the 

investor can take funds out from asset 1 and put it in asset 2 and asset 3, or the investor 

can take funds out of asset 2 and put it in asset 1 and asset 3, or the investor can take 

funds out of asset 3 and put it in asset 1 and asset 2, or the investor can convert some cash 

into funds and put it in all three of the assets. Thus there are 8 alternative choices for the 

investor when it comes to re-balancing his portfolio. 

 Of course, according to the Black-Scholes hedging principle, the re-balancing needs to 

be done each time by setting the optimal proportion of funds to be invested in each asset 

equal to the partial derivatives of the option valuation formula w.r.t. each of these assets. 

However, the total number of alternative choices available to the investor increases with 

every new risky asset that is added to the basket thereby contributing to the extrinsic 

utility in terms of the expected information content of the total portfolio. 

 

Coding of product information about multi-asset, structured financial portfolios 

 

 Extending the entropy measure of extrinsic utility, we may conceptualize the interaction 

between the buyer and the vendor as a two-way communication flow whereby the vendor 

informs the buyer about the expected utility derivable from the product on offer and the 

buyer informs the seller about his or her individual expected utility criteria. An economic 

transaction goes through if the two sets of information are compatible. Of course, the 

greater expected information content of the vendor’s communication, the higher is the 

extrinsic utility of the buyer. Intuitively, the expected information content of the vendor’s 
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communication will increase with increase in the variety of the product on offer, as that 

will increase the likelihood of matching the buyer’s expected utility criteria.  

 

 The product information from vendor to potential buyer may be transferred through 

some medium e.g. the vendor’s website on the Internet, a targeted e-mail or a telephonic 

promotion scheme.  But such transmission of information is subject to noise and 

distractions brought about by environmental as well as psycho-cognitive factors.  While a 

distraction is prima facie predictable, (e.g. the pop-up windows that keep on opening 

when some commercial websites are accessed), noise involves unpredictable 

perturbations (e.g. conflicting product information received from any competing sources).  

 

 Transmission of information calls for some kind of coding. Coding may be defined as a 

mapping of words from a source alphabet A to a code alphabet B. A discrete, finite 

memory-less channel with finite inputs and output alphabets is defined by a set of 

transition probabilities pi (j), i = 1, 2 … a and j = 1,2 … b with Σj pi (j) = 1 and pi (j) ≥ 0. 

Here pi (j) is the probability that for an input letter i output letter j will be received.  

 

 A code word of length n is defined as a sequence of n input letters which are actually n 

integers chosen from 1,2 … a. A block code of length n having M words is a mapping of 

the message integers from 1 to M into a set of code words each having a fixed length n.  

Thus for a structured product with N component assets, a block code of length n having 

N words would be used to map message integers from 1 to N, corresponding to each of 

the N assets, into a set of a fixed-length code words. Then there would be a total number 

of C = 2N possible combinations such that log2 C = N binary-state devises (flip-flops) 

would be needed.   

 

 A decoding system for a block code is the inverse mapping of all output words of length 

n into the original message integers from 1 to M. Assuming all message integers are used 

with same probability 1/M, the probability of error Pe for a code and decoding system 

ensemble is defined as the probability of an integer being transmitted and received as a 
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word which is mapped into another integer i.e. Pe is the probability of wrongly decoding 

a message.  

 

 Therefore, in terms of our structured product set up, Pe might be construed as the 

probability of misclassifying the best performing asset. Say within a structured product 

consisting of three risky assets  - a blue-chip equity portfolio, a market-neutral hedge 

fund and a commodity future (and cash as the risk-free asset), while the original 

transmitted information indicates the hedge fund to be the best performer, due to 

erroneous decoding of the encoded message, the equity portfolio is interpreted as the best 

performer. Such erroneous decoding could result in investment funds being allocated to 

the wrong asset at the wrong time.  

 

 The relevance of Shannon-Fano coding to product information transmission 

 

 By the well-known Kraft’s inequality we have K = Σn 2 –li ≤ 1, where li stands for some 

definite code word lengths with a radix of 2 for binary encoding. For block codes, li = l 

for i = 1, 2 … n. As per Shannon’s coding theorem, it is possible to encode all 

sequences of n message integers into sequences of binary digits in such a way that the 

average number of binary digits per message symbol is approximately equally to the 

entropy of the source, the approximation increasing in accuracy with increase in n. For 

efficient binary codes, K = 1 i.e. log2 K = 0 as it corresponds to the maximal entropy 

condition. Therefore the inequality occurs if and only if pi ≠ 2 –li. Though the Shannon-

Fano coding scheme is not strictly the most efficient, it has the advantage of directly 

deriving the code word length li from the corresponding probability pi. With source 

symbols s1, s2 … sn and their corresponding probabilities p1, p2 … pn, where for each pi 

there is an integer li, then given that we have bounds that span an unit length, we have the 

following relationship: 

 

                                           log2 (pi
-1) ≤ li < log2 (pi

-1) + 1                                            (15) 

 

Removing the logs, taking reciprocals and summing each term we therefore get, 
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Σn pi ≥ Σn 2li ≥ pi/2, that is, 

 

                                                         1 ≥ Σn 2li ≥ ½                                                         (16) 

 

 Inequality (16) gets us back to the Kraft’s inequality. This shows that there is an 

instantaneously decodable code having the Shannon-Fano lengths li. By multiplying 

inequality (15) by pi and summing we get: 

 

Σn (pi log2 pi
-1) ≤ Σn pili < Σn (pi log2 pi

-1) + 1, that is, 

 

                                                 H2 (S) ≤ L ≤ H2 (S) + 1                                                  (17) 

 

 That is, in terms of the average Shannon-Fano code length L, we have conditional 

entropy as an effective lower bound while it is also the non-integral component of the 

upper bound of L. This underlines the relevance of a Shannon-Fano form of coding to our 

structured product formulation as this implies that the average code word length used in 

this form of product information coding would be bounded by a measure of extrinsic 

utility to the potential investor of the structured financial product itself, which is 

definitely an intuitively appealing prospect. 

 

Conceptualizing product information transmission as a Markov process 

 

 The Black-Scholes option-pricing model is based on the underlying assumption that 

asset prices evolve according to the geometric diffusion process of a Brownian motion. 

The Brownian motion model has the following fundamental assumptions: 

 

(1). W0=0 

(2). Wt-Ws is a random variable that is normally distributed with mean 0 and variance t-s 

(3). Wt-Ws is independent of Wv-Wu if (s, t) and (u, v) are non-overlapping time 

intervals  
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 Property (3) implies that the Brownian motion is a Markovian process with no long-term 

memory. The switching behavior of asset prices from “high” (Bull state) to “low” (Bear 

state) and vice versa according to Markovian transition rule constitutes a well-researched 

topic in stochastic finance. It has in fact been proved that a steady-state equilibrium exists 

when the state probabilities are equalized for a stationary transition-probability matrix 

(Bhattacharya, 2001). This steady-state equilibrium corresponds to the condition of 

strong efficiency in the financial markets whereby no historical market information can 

result in arbitrage opportunities over any significant length of time.  

 

 By logical extension, considering a structured portfolio with n assets, the best performer 

may be hypothesized to be traceable by a first-order Markov process, whereby the best 

performing asset at time t+1 is dependent on the best performing asset at time t. For 

example, with n = 3, we have the following state-transition matrix: 

 

 

 

 

 Asset 1 Asset 2  Asset 3 

Asset 1  P (1 | 1) P (2 | 1) P (3 | 1) 

Asset 2 P (2 | 1) P (2 | 2) P (3 | 2) 

Asset 3 P (3 | 1) P (3 | 2) P (3 | 3) 

 

 In information theory also, a similar Markov structure is used to improve the encoding of 

a source alphabet. For each state in the Markov system, an appropriate code can be 

obtained from the corresponding transition probabilities of leaving that state. The 

efficiency gain will depend on how variable the probabilities are for each state. However, 

as the order of the Markov process is increased, the gain will tend to be less and less 

while the number of attainable states approach infinity. 
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 The strength of the Markov formulation lies in its capacity of handling correlation 

between successive states. If S1, S2 … Sm are the first m states of a stochastic variable, 

what is the probability that the next state will be Si?  This is written as the conditional 

probability p (Si | S1, S2 … Sm). Then, the Shannon measure of information from a state Si 

is given as usual as follows: 

 

                                    I (Si | S1, S2 … Sm) = log2 {p (Si | S1, S2 … Sm)}-1                                (17) 

 

The entropy of a Markov process is then derived as follows: 

 

                                    H (S) = Σ p (S1, S2 … Sm, Si) I (Si | S1, S2 … Sm)                      (18) 

                                                Sm+1 

 

Then the extrinsic utility to an investor from a structured financial product expressed in 

terms of the entropy of a Markov process governing the state-transition of the best 

performing asset over N component risky assets (and cash as the one risk-free asset) 

within the structured portfolio would be given as follows: 

 

                    Ux = H (Portfolio) = Σ p (S1, S2 … Sm, Si) I (Si | S1, S2 … Sm)                 (19) 

                                                     SN+1 

 

  However, to find the entropy of a Markov source alphabet one needs to explicitly derive 

the stationary probabilities of being in each state of the Markov process. But these state 

probabilities may be hard to derive explicitly especially if there are a large number of 

allowable states (e.g. corresponding to a large number of elementary risky assets within a 

structured financial product). Using Gibbs inequality, it can be show that the following 

limit can be imposed for bounding the entropy of the Markov process: 

 

       Σj p (Sj) H (Portfolio | Sj) ≤ H (S*), where H (S*) is termed the adjoint system   (20) 
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 The entropy of the original message symbols given by the zero memory source adjoint 

system with p (Si) = pi bound the entropy of the Markov process. The equality holds if 

and only if p (Sj, Si) = pjpi that is, in terms of the structured portfolio set up, the equality 

holds if and only if the joint probability of the best performer being the pair of assets i 

and j is equal to the product of their individual probabilities (Hamming, 1986).  Thus a 

clear analogical parallel may be drawn between Markovian structure of the coding 

process and performances of financial assets contained within a structured investment 

portfolio. 

 

Conclusion and scope for future research 

 

 In this paper we have basically outlined a novel methodological approach whereby 

expected information measure is used as a measure of utility derivable from a basket of 

commodities. We have illustrated the concepts with an applied finance perspective 

whereby we have used this methodological approach to derive a measure of investor 

utility from a structured financial portfolio consisting of many elementary risky assets 

combined with cash as the risk-free asset thereby giving the product a quasi - capital 

guarantee status. We have also borrowed concepts from mathematical information theory 

and coding to draw analogical parallels with the utility structures evolving out of multi-

asset, structured financial products. In particular, principles of Shannon-Fano coding 

have been applied to the coding of product information for transmission from vendor 

(fund manager) to the potential buyer (investor). Finally we have dwelled upon the very 

similar Markovian structure of coding process and that of asset performances. 

 

 This paper in many ways is a curtain raiser on the different ways in which tools and 

concepts from mathematical information theory can be applied in utility analysis in 

general and to analyzing investor utility preferences in particular. It seeks to extend the 

normal peripheries of utility theory to a new domain – that of information theoretic 

utility. Thus a cardinal measure of utility is proposed in the form of the Shannon-

Boltzmann entropy measure. Being a new methodological approach, the scope of future 

research is boundless especially in exploring the analogical Markovian properties of asset 
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performances and message transmission and devising an efficient coding scheme to 

represent the two-way transfer of utility information from vendor to buyer and vice versa. 

The mathematical kinship between neoclassical utility theory and classical 

thermodynamics is also worth exploring, may be aimed at establishing some higher-

dimensional, theoretical connectivity between the isotherms and the indifference curves!  
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  The purpose of this book is to apply the Artificial Intelligence and control systems to 

different real models.  It has been designed for graduate students and researchers who are 

active in the applications of Artificial Intelligence and Control Systems in modeling. In 

our future research, we will address the unique aspects of Neutrosophic Logic in 

modeling and data analysis.  
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