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Abstract 
We propose a derivation of the empirical Weinberg relation for the mass of an elementary 
particle and in an inflationary type of universe.  Our derivation produces the standard 
well known Weinberg relation for the mass of an elementary particle, along with an extra 
term which depends on the inflationary potential, as well as Hubble’s constant.  The 
derivation is based on Zeldovich’s result for the cosmological constant Λ, in the context 
of quantum field theory.  The extra term can be understood as a small correction to the 
mass of the elementary particle due to inflation.  This term also enables us to calculate, 
the initial value of the field φO for two kinds of potentials chosen, which makes 
Weinberg’s relation possible.  Closed and flat and open universes give the mass of the 
particles close to the mass of a pion, 140 MeV/c2 or as the one also predicted by 
Weinberg’s relation. 
Keywords: inflationary cosmology, quantum field theory, elementary particle, mass of 
the pion, cosmological constant. 
 
1.Introduction 
It is a well known result that the mass of an elementary particle m can be 
obtained as a combination of the fundamental constants of physics namely c, G, H0 and 
h . [1] namely: 
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This is known as the Weinberg’s formula and it is purely empirical.  In this paper we first 
offer a simple derivation for it using Einstein’s field equations, and in a inflationary 
model universe with the help of Zeldovich’s definition of the cosmological constant Λ.  
The assumption for using Zeldovich’s definition is that there might be a possible relation 
between the same constants and the definition of the cosmological constant, in the 
context of quantum field theory, satisfying also the general theory of relativity, and 
probably implying a relation between microcosm and macrocosm. 
 
2.Theoretical Background 
In an inflationary universe, the law of expansion of its radius resembles that of the De-
Sitter universe.  The Friedmann equation in the vacuum dominated case has as its first 
solution the equation given by the relation below: [2] 
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where R(t) is the radius of the universe at any time t, and Ro is some initial radius, and 
finally H is not the Hubble’s parameter at arbitrary time unless k = 0.  For the purpose of 
our calculation, Ho was taken to be constant.  In the concept of the an inflationary 
cosmological senario H is a function of the inflationary field φ, which itself is a function 
of time.  Therefore we have that :[3] 
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where V(φ) is the inflationary potential function of the inflationary field, mP is the Planck 
mass, when natural units are used.  For the above field, the modified equations in the 
cosmological sense take the form given below when the energy density εo and the 
pressure po of the cosmic fluid can be replaced εo with εo+ε and po with po+p and p and ε 
can be defined as follows: [4] 
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with ε’ and p’ are respectively the energy density and pressure due to inflationary field.  
Using (4) the field equations can be now written as follows: 
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It is convenient now to to write the equations above in terms of Hubble’s parameter H.  
Therefore we caan also have: 
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3. Analysis 
Before continuing our analysis, it would be good to elaborate on our assumptions in the 
context of general relativity theory used in writing down these equations.  First, it is 
assumed that we are dealing with a region which is within the horizon distance at the time 
under consideration.  This region then undergoes rapid expansion, being more or less 
independent from the rest of the universe.  The metric used for this region is a Robertson-
Walker type under homogeneous and isotropic space.  We also ignore the spatial 
variation of the field φ, which becomes uniform in value all over this region.  The value 
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of curvature k = 0 has been used in the line element which of course implies a flat spatial 
geometry.  For simplicity, we let εo = po = 0.  Using (2) we can now subtract (6), (5) and 
the new values of ε and p we obtain equation: 
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Using (2) we substitute in (9) for 
•••
R ,R  we finally obtain: 
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which implies that: 
  ( ) .const oφtφ ==        (11) 

Next from (8) upon substitution of the derivatives 
•••
R ,R  we obtain: 
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Solving fot the cosmological constant Λ we have: 

 ( ) ( )
2

2 83
c
φGVπφHΛ o

o −=        (13) 

 
4 Using Zeldovich’s relation 
As a next step, we will make use of Zeldovich’s result [5], where he obtains an 
expression for the cosmological constant Λ from the energy tensor of a polarized vacuum 
in the quantized theory of fields.  Zeldovich gives the following expression: 
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Substituting in equation (14) in (13) and solving for the mass of the elementary particle m 
we have: 
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Observing (14) we see that the first part of the RHS equation is the well known 
Weinberg’s relation modified during inflation by an extra term which involves the 
inflationary potential V(φo) and Hubble’s parameter H(φo), both of them calculated a the 
initial value φo of the scalar field φ.  Somebody can retrieve Weinberg’s relation if the 
second parenthesis in the RHS becomes one.  This is possible when the scalar field φ 
takes initial values φo which can be calculated for the choice of different potentials V(φ).  
There woul also be a value of the Hubble parameter given by (16) for the value  
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which the original Weinberg relation can be retrieved. 
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5 Examine Weinberg’s relation for two different inflationary potentials 
Next we will examine Weinberg’s relation for two different kinds of inflationary 
potentials, namely a massive scalar field and also a self-interacting scalar field given 
by:[6] 
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where λ is dimensionless constant and m has the dimensions of mass.  From equation 
(10) we can now use the fact that φ(t) = φo some initial value of the field.  So using(15) 
and (10) along with (13) we have after substitution in (13) that: 
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We can now see that the mass of the elementary particle depends on the initial value of 
the inflationary potential φo and the Hubble parameter H(φo).  If the second square 
bracket on the RHS becomes equal to one then somebody exactly tetrieves the 
unmodified or original definition by Weinberg of an elementary particle’s mass.  This 
occurs when: 
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for the first and second potential respectivelly. 
 
6. The case of k = 1 or closed universe 
The k = 1 case corresponds to a closed Friedman vacuum dominated universe which 
evolves according to the law.  Therefore the field equations can be written as follows: 
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Substituting in (21) and (22) as before the expressions for ε and p and subtracting (21) 
from (22) we obtain the following equation: 
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In the k = 1 case the radius of the universe evolves according to the law:[7] [8] 
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If we now substitute (24) into (23) we again obtain that: 
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Using (23) and substituting into (23) we obtain after simplifying that: 

 ( ) ( )[ ][ ] ( )ooo φV
c

GπtφHφHΛ
2

22 8cosh3 −+= −      (26) 

But in any cosmological model Ht = 1, and therefore (26) finally becomes: 
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Using next Zeldovich’s definition of the cosmological constant we obtain: 
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which interms of the two potentials become: 
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Again as before we can retrieve Weinberg’s original relation if for example: 
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7. The case of k = -1 or open universe 
This case corresponds to an open Friedman vacuum dominated universe which evolves 
according to the law: [9] 
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following the same steps as before we obtain the following equation for the mass of the 
elementary particle: 
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and again: 
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As before Weinberg’s relation for the mass of the elementary particle can be retrived if: 
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8 Numerical calculations for all cases 
To get an estimate for the mass of an elementary particle in different universes and in 
conjunction with Zeldovich’s relation we will use relation (15) for each model universe.  
For that we choose Ho = 1/to = 1/10-35 sec-1.  First assume that the potential energy 
density V(0) of the field to be equal the quantum density of matter 
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, and also as a second value  

ρcritical = V(0) = 10-29 g/cm-3 when Ho = 1/to =10-17 sec-1.  That can be based on a 
conjecture that is recently proposed that the current expansion of the universe is merely a 
decayed state of inflation .  Therefore we obtain: 

Case k = 0  
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 Case k =1 
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 Case k = -1 
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Here we must note that the mass of the pion is 140 MeV/c2 = 2.492×10-25g where the one 
calculated using Weinberg’s relation and for Ho = 1017 sec-1 is 60 Mev/c2 = 7.120×10-26 g 
[10].  From (39), (40), (41) we can also see that during the inflationary period (15) 
predicts a mass of the order of 10-3mPlanck and also a mass  which is close to the mass of 
the pion observed today and shown above.  Particles can be created when the field φ 
starts oscillating near the minimum of V(φ), its energy its transferred to the particles as a 
result of these oscillations.  The particles then created collide with one another, and 
approach a state of thermodynamic equilibrium. 
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Conclusions 
In our paper, an expression of Weinberg’s empirical relation for the mass an elementary 
particle has been derived using Einstein’s field equations in an vacuum dominated 
inflationary universe with a nonzero cosmological constant.  For that, Zeldovich’s 
definition of the cosmological constant in the theory of quantized vacuum was used.  The 
fact that Weinberg’s relation can now be proven via Einstein’s field equations makes the 
result not an empirical one.  So Zeldovich’s definition of the cosmological constant could 
point to a possible relation between microcosm and macrocosm and in a more fudamental 
way.  The expression derived for the mass of the elementary particle is now modified, by 
an extra term which further depends on the inflationary potential V(φo) calculated at an 
initial value of the inflationary field φ. 

Two well known inflationary potentials were used, namely a masive scalar field, 
and a self interacting scalar field.  Expressions for the masses were calculated at the 
initial value of the field φo.  For both fields, expressions for the values φo were given such 
that the original and unmodified Weinberg relation can be retrieved.  All calculations 
were done in a flat, k = 0, closed, k = 1, and open k= -1, universe. 

Finally estimates for the masses of the elementary particles were given for the 
three possible model universes during the era when inflation takes place, and also at the 
present era where the expansion of the universe can be thought as a decayed state of 
inflation. 
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