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Abstract

In a new theory gravity called the dynamic theory, which is derived from
thermodymical principles in a five dimensional space, the deflection of a light signal is
calculated and compared to that of general relativity. This is achieved by using the dynamic
gravity line element which is the usual four dimesional space-time element of Newtonian
gravity modified by a negative inverse radial exponetial term. The dynamic theory of gravity
predicts this modification of the original Newtonian potential by this exponential term.
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1 Introduction
There is a new theory called the Dynamic Theory of Gravity [DTG]. It is based on
classical thermodynamics and requires that Einstein’s postulate of the constancy of the speed
of light holds. [1]. Given the validity of the postulate Einstein’s theory of special relativity
follows right away [2]. The dynamic theory of gravity (DTG) through Weyl’s quantum principle
also leads to a non-singular electrostatic potential of the form:
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where K and A are constants defined by the theory. The DTG describes physical phenomena
in terms of five dimensions: space, time and mass. [3] By conservation of the fifth dimension
we obtain equations which are identical to Einstein’s field equations and desribe the
gravitational field in the theory of general relativity which are given below:
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Now T*? is the surface energy-momentum tensor which may be found within the space tensor
and is given by:
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and T,"" is the space energy-momentum tensor for matter under the influence of the gauge
fields is also given by:[4]
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which further can be written in terms of the surface metric as follows:[4]
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since:
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is the statement required by the conservation of the fifth dimension, and the surface indices v,

o,$=0,1,2,3 and space index i, i k, | = 0,1,2,3,4, and
gap = aijyay& =agp +heg =agp +2aa4y§ +a44yiyg and where the surface field

tensor will be given by:
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As it was shown by Weyl the gauge fields may be derived from these gauge potentials and the
componets of the 5-dimensional field tensor F; given by the 5x5 matrix given by (8). [4]

Now the determination of the fifth dimension may be seen, for the only physically real property
that could give Einstein’s equations is the gravitating mass or it's equivalent, mass [5]. Finally
the dynamic theory of gravity further argues that the gravitational field is a gauge field linked
to to the electromagnetic field in a 5-dimensional manifold of space-time and mass, but,
when conservation of mass is imposed, it may be described by the geometry of the 4-



dimensional hypersyrface of space-time, embedded into the 5-dimensional manifold by the
conservation of mass. The 5 dimensional field tensor can have only one nonzero component
Vo, which must be related to the graviational field and the fifth gauge potential must be related
to the gravitational potential.  In the dynamic theory, one obtains the non singular
gravitational potential by differentiating the electrostatic potential with respect to the mass.
This is required by the inductive coupling intfroduced by the unity scale factor. Therefore, the
gravitaional potential retains the same non-singular form as the electrostatic potential and is
given below:
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The theory makes its predictions for redshifts by working in the five dimensional
geometry of space, time, and mass, and determines the unit of action in the atomic states in a
way that can be calculated with the help of quantum Poisson brackets when covariant

differentiation is used: [4]
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In (8) the vector curvature is contained in the Christoffel symbols of the second kind and the
gauge function @ is a multiplicative factor in the metric tensor g*?, where the indices take the
values v, = 0,1,2,3,4. In the commutator, x* and p* are the space and momentum
variables respectively, and finally & ,, is the Cronecker delta. In DTG the momentum
ascribed, as a variable canonically conjugated to the mass is the rate at which mass may be
converted info energy. The canonical momentum is defined as follows:
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where the velocity in the fifth dimension is given by:
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and gamma dot is a time derivative and gamma has units of mass density ( kg/m®) and a, is a
density gradient with units of kg/m*. In the absence of curvature (8) becomes:

[x*.p* o =insv M (13)

2 The line element of the dynamic theory of gravity
In the DTG the metric is not different than that of general relativity except an
exponential term with an 1/r dependence, and A is a constant. Therefore we can write for the
line element:
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3. The diagram of the deflection of light
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Fig 1: The trajectory of the light ray in the vicinity of a massive body. The light ray path is
nearly a straight line y = y,, z = 0 and r, = is the distance of the closest approach to the

center of the star.

4 Deflection of light analysis
First of all let us write the line element in (14) in the following form:
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and taking info account the transformations between rectangular and polar coordinates
namely r = (x*+y?)"? and cos® = y/ ( x*+y?)"? from which it follows that (dr/dx)? = x*/r* and
(d6/dx)? = y?/r*. Next rewrite (15) as follows:
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substituting their equal in (16) we finally obtain:
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Next making use that the coordinate velocity of light in the x direction which is given

by:
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to first order in M we obtain that:
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Sinc & < r we can expanding the exponential term to first order. Then the angular
deflection rate is given by: [7]
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and therefore the total deflection can be obtained integrating from -0 to 40 and taking info
account that y does not differ very much from r, in the region where significant deflection
occurs. Finally have omitting the second terms in square brackets from the denominators for
being much smaller than one the expression can be simplified to:
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Using the substitution x = r, tan® and dx = r, sec?0 dO, r = r/cos® (21) becomes and
integrates to:
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and therefore the final expression for the light deflection in the dynamic theory of gravity
become:
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Since A = G M /c? is a constat of the dynamic theory of gravity equation (23) can be written:
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5 Numerical calculations
To numerically calculate the deflection of the light in the dynamical theory of gravity
let us first assume an 1 M,,,. Using (23) we have:
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For a neutron star of mass M,.;,, = 0.0925 M., and Ry, = r, 164 Km [8] we have that:

Opyn = Oper + 0 =689.76" +0.226 = 0.192° +6.286 x 10" (26)
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Finally for a neutron star with M = 1.46 M, and Ry, = r, = 3.1x10% cm = 0.004 R, [9]
we obtain:

Opyn = Ore1 +0 = 637.66" +0.193 =0.177" +5.373x 107 27)
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6. Conclusions

In the dynamic theory of gravity an analytical expression for the deflection of light has
been derived and evaluated numerically. First as the main body a star having the mass and
the radius of the sun was used in calculating the light deflection and next two neutron stars of
different masses and radii were also used Since neutron stars are stars of great gravity it
should be only logical to expect that light would be more deflected in their vicinity by analogy
of general relativity to dynamic gravity as well.

This is a standard calculation that somebody can performed as a test of a new
gravitational theory, namely to investigate the behaviour of light close to a massive spherical
body where gravity can be described by the appropriate potential, in this case the non-
singular dynamic potential, and compare this with the established theory of general relativity.



We can now see that the final expression obtained for the deflection of light to a first
order approximation for the exponential term which characterizes the dynamic potential is
composed by the original relativistic term plus two more terms, which can be thought as
corrections to the original general relativistic expression. For the sun and the two neutron
stars it seems that the possible correction due to the dynamic gravity seems to be within our
instrumental reach, in case that somebody wants to really investigate for this kind of gravity.
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