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Abstract
The most important tool for the study of the gravitational field in Einstein’s theory of
gravity is his field equations. In this short paper, we demonstrate the derivation of
Einstein field equations for the Freedman cosmological model using the Robertson-
Walker metric, and furthermore Harrison’s formula for the Ricci tensor. The difference is
that Harrison’s formula is an actually shorter way of obtaining the field equations. The
advantage is that the Cristoffel symbols do not have to be directly calculated one by one.
This can actually be a very useful demonstration for somebody who would like to
understand a slightly different but faster way of deriving the field equations, something
that is actually rarely seen in many of undergraduate and even graduate textbooks.

1 Introduction

In 1915 Einstein put the finishing touches to the General Theory of Relativity. The
famous Schwarzschild solution was the first physically significant solution of the Field
Equations of General Relativity. It had showed how space-time is curved around a
spherically symmetric distribution of matter. This problem was solved by Schwarzschild
and is actually a local problem, in the sense that the distortions of space-time geometry
from the Minkowski geometry of Special Relativity gradually diminish to zero as we
move further and further away from the gravitating sphere. In general, any space-time
geometry generated by such a local distribution of matter is expected to have the same
property. It is also known that Newtonian gravity produces an analogous result.

2 The Robertson-Walker metric and the Einstein equations

The Robertson-Walker metric or line element is fundamental in the standard models of
cosmology. The mathematical framework in which the Robertson-Walker metric occurs
is that of general relativity and takes the form:

ds’ = Zsl 23: g. (x)z’x “dx " = (1)
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which can be further written as:[1]
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where: x’=ct, x' = r, ¥ = o, X = @, and R(t) is the scale factor of the universe often called
the expansion factor and has the dimensions of length, k can have the values of k=0, -1,
1 corresponding to the three different kind of metrics. One of the most important
quantities that they have to be calculated in general relativity is the Ricci tensor which is
defined below:
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where: I"’s are the so called Cristoffel symbols of the second kind, which are defined as:
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If we denote the determinant of g,,, as a matrix g then the Ricci tensor can be written as
follows:

R/w = \/_Iig[]ﬂ‘”’ E]} - [ln(\/;)]w - F”‘“FA"“ (5)

But our metric g, contains only diagonal elements ( u = v ) (5) it can be futher written
as:
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As a final step we write the R,,, components in terms of the appropriatel’s and
the determinant g with our indices running the values 0,1,2,3. So we have: [2] [3]
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After obtaining the components Ry, the scalar curvature invariant can also be
determined:

R = gluvR,uv = gluﬂR,uﬂ (7)
Finally the Einstein tensor can be formed:[4],[5]
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where: ¢,/ is the Cronecker delta, 7,/ = T 00, T 11 . T 22 , T 33 are the diagonal elements of

the energy momentum tensor, and R," will be defined later. In the case of vacuum 7, #
0.

3 Harrison’s Formula
In Landau and Lifshitz it is given that for a metric in which g,, = 0 for p # v which we
can represent the elements as follows:

g,=ec "ande =1and e =-1 (=1,2,3. )

Harrison’s formula now gives the components of the Ricci tensor R, in the following
relation: [6]
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and A (ﬁ ) is given by: [6]
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subscripts preceded by a comma are denoting ordinary differentiation with respect to the
corresponding coordinate.

4. Applying Harisson’s Formula
Let us first define the components of the metric tensor appearing in (2):
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Then from (9) we also have that:

g, =—1"R(t).g,, =—R(t)’sin’ 0 (12)
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The Ryo component of the Ricci tensor can be written as:
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The 4 (é ) coefficients becomes:
A(l) = EIE)I - FZOI - Fon - F01(F21 + F31) =0
A(2)=F;2E>2 _F2°2 _Fozz _Foz(Flz +F31 =0 (15)
A(3) = F;3E)3 —Flo — F033 - Foa(F13 + F23) =0
Taking the appropriate derivatives, as symbolized, we can write:
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Symbolizing the derivatives we obtain:



omm o, (_Re | _[o,( RrRo |
R, = 3 8t{ln( —I—krzﬂ [thn( I—krzﬂ
SUA LI R
ot|ot N/
e
0

in (1)} 2l R0 )] }—moR@ﬂ

t (17)
~ % [ % e R(t))} dln (J)aln (rszanté?s ()
3 {81}1 (rsin 0 R(t))}z _ 0 [ Oln [rsin 0 R(t)]}
ot ot ot
and (17), becomes:
LU RSSO
"R | R ||R R R ||R (18)

P
R, = 3&} (19)

It should be noted that R stands for R(t) everywhere in our calculations. Similarly the Ry
component of the Ricci tensor becomes:
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Similarly as before the 4 (K ) coefficients become:
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Furthermore:
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Taking the derivatives as indicated and multiplying by the A(0) found above we obtain:
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which takes the form of:
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In the same way we can write down the two remaining components of the Ricci tensor:
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and
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Finally the Ry, component becomes:
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Next the R33 component will be:
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5 Calculation of the scalar R

Now the scalar quantity R can be calculated:

R=R =g"R =R+ R +R; +R;]
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and so we obtain:
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6 Calculation of the Einstein Tensor Components
The mixed components of the Einstein tensor are given by:

(o) 8m GT!

Therefore we obtain them for the four different components:
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7 Conclusions

By making use of Harrison'’s formula the covariant components of the Ricci tensor were
derived. Once their expressions were obtained the mixed components of the Einstein
tensor were also calculated. The metric used was the standard Robertson-Walker metric
of the Freedman cosmological model. In my opinion this method is faster and has the
advantage of allowing for the calculation of the components of the Ricci tensor in such a
way that calculation of every individual Cristoffel symbol is directly avoided. This
method leaves less room for computational error in an otherwise more lengthy



calculation. Finally it can be said that the equations derived agree with those of standard
cosmology.
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