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 Abstract 
The most important tool for the study of the gravitational field in Einstein’s theory of 
gravity is his field equations. In this short paper, we demonstrate the derivation of 
Einstein field equations for the Freedman cosmological model using the Robertson-
Walker metric, and furthermore Harrison’s formula for the Ricci tensor. The difference is 
that Harrison’s formula is an actually shorter way of obtaining the field equations. The 
advantage is that the Cristoffel symbols do not have to be directly calculated one by one. 
This can actually be a very useful demonstration for somebody who would like to 
understand a slightly different but faster way of deriving the field equations, something 
that is actually rarely seen in many of undergraduate and even graduate textbooks. 
________________________________________________________________________ 
 
1 Introduction 
In 1915 Einstein put the finishing touches to the General Theory of Relativity. The 
famous Schwarzschild solution was the first physically significant solution of the Field 
Equations of General Relativity. It had showed how space-time is curved around a 
spherically symmetric distribution of matter. This problem was solved by Schwarzschild 
and is actually a local problem, in the sense that the distortions of space-time geometry 
from the Minkowski geometry of Special Relativity gradually diminish to zero as we 
move further and further away from the gravitating sphere. In general, any space-time 
geometry generated by such a local distribution of matter is expected to have the same 
property. It is also known that Newtonian gravity produces an analogous result. 
 
2 The Robertson-Walker metric and the Einstein equations 
The Robertson-Walker metric or line element is fundamental in the standard models of 
cosmology.  The mathematical framework in which the Robertson-Walker metric occurs 
is that of general relativity and takes the form: 
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which can  be further written as:[1] 
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where: x0= ct, x1 = r, x2 = θ, x3 = φ, and R(t) is the scale factor of the universe often called 
the expansion factor and has the dimensions of length, k can have the values of k = 0, -1, 
1 corresponding to the three different kind of metrics. One of the most important 
quantities that they have to be calculated in general relativity is the Ricci tensor which is 
defined below: 
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where: Γ’s are the so called Cristoffel symbols of the second kind, which are defined as: 
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If we denote the determinant of gµν as a matrix g then the Ricci tensor can be written as 
follows: 
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But our metric gµν contains only diagonal elements ( µ = ν ) (5) it can be futher written 
as: 
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As a final step we write the Rµµ components in terms of the appropriateΓ’s and 
the determinant g with our indices running the values 0,1,2,3.  So we have: [2] [3] 
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           (6a) 
After obtaining the components Rµν the scalar curvature invariant can also be 
determined: 
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Finally the Einstein tensor can be formed:[4],[5] 
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where: δµµ is the Cronecker delta, Tµ
µ = T0

0, T1
1 , T2

2 , T3
3 are the diagonal elements of 

the energy momentum tensor, and Rµ
µ will be defined later.  In the case of vacuum Tµν ≠ 

0. 
 
3 Harrison’s Formula 
In Landau and Lifshitz it is given that for a metric in which gµν = 0 for µ ≠ ν which we 
can represent the elements as follows: 

1    and  1, −=== lee  eeg µ2F
µµµ o and  l =1, 2, 3.    (9) 

Harrison’s formula now gives the components of the Ricci tensor Rµµ in the following 
relation: [6] 
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and A ( )l  is given by: [6] 
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subscripts preceded by a comma are denoting ordinary differentiation with respect to the 
corresponding coordinate. 
 
4. Applying Harisson’s Formula 
Let us first define the components of the metric tensor appearing in (2): 
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Then from (9) we also have that: 
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The R00 component of the Ricci tensor can be written as: 
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The A ( )l  coefficients becomes: 
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Taking the appropriate derivatives, as symbolized, we can write: 
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Symbolizing the derivatives we obtain: 
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and (17), becomes: 
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and simplifying we obtain: 
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It should be noted that R stands for R(t) everywhere in our calculations.  Similarly the R11 
component of the Ricci tensor becomes: 
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Similarly as before the A ( )l  coefficients become: 
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Furthermore: 
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Taking the derivatives as indicated and multiplying by the A(0) found above we obtain: 
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which takes the form of: 
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In the same way we can write down the two remaining components of the Ricci tensor: 
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Finally the R22 component becomes: 
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Next the R33 component will be: 
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Similarly the A coefficients for this component are given by: 
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Therefore: 
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5 Calculation of the scalar R  

Now the scalar quantity R can be calculated: 
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6 Calculation of the Einstein Tensor Components 
The mixed components of the Einstein tensor are given by: 
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Therefore we obtain them for the four different components: 
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7 Conclusions 
By making use of Harrison’s formula the covariant components of the Ricci tensor were 
derived. Once their expressions were obtained the mixed components of the Einstein 
tensor were also calculated.  The metric used was the standard Robertson-Walker metric 
of the Freedman cosmological model.  In my opinion this method is faster and has the 
advantage of allowing for the calculation of the components of the Ricci tensor in such a 
way that calculation of every individual Cristoffel symbol is directly avoided. This 
method leaves less room for computational error in an otherwise more lengthy 
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calculation. Finally it can be said that the equations derived agree with those of standard 
cosmology. 
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