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Are Flyby Anomalies and the Pioneer Effect an ASTG Phenomenon?
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ABSTRACT
This reading expounds with expediency on the recently proposed Azimuthally Symmetric The-
ory of Gravitation (ASTG) set-up earlier. There-in, the ASTG was set up and it was demon-
strated that it is capable (amongst others solar anomalies)of explaining the precession of the
perihelion of solar planets. In the second reading, it was shown that this theory is capable –in
principle; of explaining outflows as a repulsive gravitational phenomenon. In the present, we
show that the ASTG is capable of explaining the puzzling observations of flyby anomaliesvis,
anomalous asymptotic speed increases at the perigee and thespeed changes occurring to the os-
culating hyperbolic speed excess. It is shown that these flyby anomalies are a natural occurrence
in the ASTG. We derive a modified formula of the empirical formula proposed by Andersonet
al., which up to now has no foundational basis except that experience suggest it. It is seen that
the ASTG canin principle explain the Pioneer Anomaly. To say for sure the ASTG is the reason
for the Pioneer Anomaly, there is need to obtain the completeset of the Pioneer ephemerides.
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1 INTRODUCTION

An Earth flyby anomaly is not just an unexpected increase in the
outgoing osculating hyperbolic excess speed but also an asymptotic
speed increase at the perigee during Earth flybys of spacecraft. In
general a flyby anomaly is an unexpected increase in the outgoing
osculating hyperbolic excess speed and as-well an asymptotic speed
increase at the perigee during a flyby of a spacecraft past a planet
for the purposes of gravity assist maneuver. This anomaly has been
observed for spacecrafts sent to probe the secrets of deep space as
they fly past the Earth as a shift in the ranging and Doppler data. For
these spacecrafts, along their hyperbolic trajectory on their incoming
path as they approach the Earth with a speedvi and when they exit
at a speed ofvo; spherically symmetric Newtonian and Einsteinian
gravitation dictates thatvi = vo. Observations give a completely dif-
ferent and surprising result that has baffled European SpaceAgency
(ESA) and the National Aeronautic Space Administration (NASA)
scientists for quite sometime now,i.e. they [observations] reveal that
vi < vo, hence the incoming kinetic energy of the spacecraft is less
than the outgoing kinetic energy of that spacecraft.

Also, as the spacecraft reach their perigee,i.e., their distance of clos-
est approach to planet Earth, it has been observed that thesespace-
crafts experience a hitherto unknown, mysterious and unexplained
asymptotic speed increase. All this has come from the telemetry re-
ceived from the spacecrafts. When the shift in the Doppler and the

⋆ E-mail: gadzirai@gmail.com

ranging data is interpreted, flyby anomalies are a very smallalbeit
very significant unaccounted speed increase of up to13.46 mm/s
at perigee. The first flyby anomaly was noticed during a very care-
ful inspection of Doppler data shortly after the Earth flyby of the
Galileo spacecraft on8 December1990. While the Doppler residu-
als (observed minus computed data) were expected to remain flat, the
analysis revealed an unexpected66 mHz shift, which corresponds to
a speed increase of3.92 mm/s at perigee. An investigation of this
effect at the Jet Propulsion Laboratory (JPL), the Goddard Space
Flight Center (GSFC) and the Universityof Texas has not yielded
a satisfactory explanation. It should be noted that no anomaly was
detected after the second Earth flyby of the Galileo spacecraft in
December1992, because any possible velocity increase is believed
to have been masked by atmospheric drag of the lower altitudeof
303 km.

On 23 January 1998 the Near Earth Asteroid Rendezvous
(NEAR) spacecraft experienced an anomalous speed increaseof
13.46 mm s−1 after its Earth encounter. Cassini-Huygens gained
about0.11 mm s−1 in August 1999 and Rosetta1.82 mm s−1 af-
ter its Earth flyby in March2005. An analysis of the MESSENGER
spacecraft (studying Mercury) did not reveal any significant unex-
pected velocity increase. The last Earth flyby was that by Rosetta in
2009. As she (Rosetta) bed farewell to humanity on her third and
final Earth encounter at08 : 45 in the European morning of the
13th of November2009, on her trajectory to rendezvous with Comet
67P/Churyumov-Gerasimenko on2014−May−22, the ESA space-
craft approached the Earth before entering the depths of space in
which event she left her highly expectant “onlookers” disappointed.
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While her “onlookers” watched her in the operation center, she ap-
proached and passed closest to Earth over the south of the island of
Java, in Indonesia, at a speed of13.34 km/s relative to the Earth,
and at a height of2481 km above its surface. In the operation center
i.e., the European Space Operation Center from ESA in Darmstadt
(Germany), nothing special happened at that key moment. No ap-
plauses nor hugs from the pregnant engineers,i.e., pregnant with
expectations because everything had been planned to the minute and
the millimeter weeks in advance and Rosseta did not yield anysig-
nificant flyby anomaly as highly expected!

Researchers Andersonet al. (2008) had earlier deduced an empiri-
cal relationship from which they predicted a flyby anomaly ofup to
about1 mm/s for the13 − Nov − 2009 Rosseta Earth encounter.
This did not happen. What was measured is something to the tune of
0.004±0.044 mm/s which for all practical purposes is a null result.
The empirical relationship that Andersonet al. (2008) found is:

∆v

v
= κA (cos δi − cos δo) , (1)

whereκA = 2R⊕ω⊕/c = 3.10 × 10−6 whereω⊕ = 7.29 ×
10−5 rad/s (seee.g. Stacey1992, in Andersonet al. 2008) is the an-
gular frequency of the Earth,R⊕ = 6.40 × 106 m (seee.g. Stacey
1992, in Andersonet al. 2008) is the radius of the Earth, andδi

andδo are the incoming and outgoing osculating asymptotic veloc-
ity vectors. The Anderson formula (1) has up to now no substantial
physical basics in that an acceptable/accepted physical theory is yet
to furnish its very foundations.

The Andersonet al. (2008) relationship came about after realizing
that the MESSENGER spacecraft had both approached and departed
the Earth symmetrically about the equator (i.e. it approached at lat-
itude 31 degrees north and; departed at latitude32 degrees south).
This was taken as a strong suggestion that the anomaly might be re-
lated to the Earth’s rotation and this incoming and outgoingvelocity
vectors. As already shown above, this lead Andersonet al. (2008) to
successfully seek an empirical relationship involving theincoming
and outgoing declination angles of the orbit of the spacecrafts.

This empirical relationship of Andersonet al. (2008), as already
said, suffers from the setback that it has no physical explanation.
This reading seeks (and hopes) not only to give the Andersonet
al. (2008) empirical relationship a foundational basics but togive
a physical explanation of these seeming puzzling observations. It
shall be demonstrated that flyby anomalies emerge naturallyin the
Azimuthally Symmetric Theoryof Gravitation (ASTG) (Nyambuya
2010a).

It is known not whether this phenomenon of flyby anomalies may
be related to the Pioneer Anomaly. Bona-fide; there is a significant
number of researchers who (strongly) feel and suspect that these two
phenomenon may very well be related. We shall deduce here-inthat
the component of the gravitational force responsible for the flyby
anomalies produces both a radially repulsive and attractive compo-
nent of the gravitational force. Whether this force is attractive or
repulsive depends on the side of the spin equator. If this is to explain
the Pioneer effect, we know that the Pioneer Anomaly is a radial at-
tractive force. This means the Pioneers must be on side of thespin
equator where this force is attractive. As shall be seen, that the force
responsible for the flyby anomalies does produce a radially repul-
sive force does not entail one can explain the Pioneer Effect. One

will need the complete set the Pioneer ephemerides to make this
conclusion.

2 REVISITING THE ASTG

The ASTG as formulated in Nyambuya (2010a) is unable to explain
the asymptotic change in the speed of the spacecraft that occurs at
the perigee and also it will fail to explain the resultant change in the
speed of the spacecraft as it move away to infinity. However, with a
closer look, we realize that for a different set of boundary conditions
determining theAℓ’s an Bℓ’s in Nyambuya (2010a), one will be
able to add an extra term in to the gravitational potential and this
new addition does the explanation of the flyby anomalies.

In the formulation of the ASTG in Nyambuya (2010a), the Poisson
equation for empty space:∇2Φ = 0, was solved by means of sep-
aration of variables,i.e. by setting:Φ(r, θ) = Φ(r)Φ(θ) and then
inserting this into the Poisson equation where-after some basic alge-
braic operations one would naturally arrive at:

1

Φ(r)

∂

∂r

(

r2 ∂Φ(r)

∂r

)

+
1

Φ(θ)

1

sin θ

∂

∂θ
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sin θ
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∂θ

)

= 0. (2)

The radial and the angular portions of this equation must equal some
constant since they are independent of each other and following tra-
dition, one must set:

1

Φ(r)

∂

∂r

(

r2 ∂Φ(r)

∂r

)

= ℓ(ℓ + 1), (3)

and the solution to this is:Φℓ(r) = Aℓr
ℓ + Bℓr

−(ℓ+1), where
Aℓ andBℓ are constants andℓ = 0, 1, 2, 3, ...,∞. At his point in
the reading Nyambuya (2010a), the boundary conditions; (Φℓ(r =
∞) = 0, thenAℓ = 0 for all ℓ) where set and their justification
is found therein. The revision that we make herein is to shiftthe
boundary conditions to:dΦℓ(r)/dr must be measurable atr = ∞.
By measurable, we mean the value ofdΦℓ(r)/dr at r = ∞ must
be finite. The quantitydΦℓ(r)/dr is actually a measure of the force
and requiring that it be finite at infinity means the gravitational force
at infinity must be equal to zero or some finite number at least.

The new boundary conditions mean thatAℓ = 0 for all ℓ > 2 and
for ℓ = 0, 1, we will not haveA0,1 = 0. However, whetherA0 zero
or a constant it does not matter at all as this quantity will noappear in
the equations of motion. For this reason we shall forget it bysetting
A0 = 0 and leavingA1 6= 0. Lets us setA1 = −a∗ where this is a
space independent parameter/constant. This parameter/constant may
well vary with time. Certainly we have no business in the present
hour to investigate possible time variation of this. Also, this param-
eter/constant may very well be specific to the body in question, in
which case it is not universal constant.

Now, at this point, if one where to go through the same steps asin
the reading Nyambuya (2010a), then, it should be difficult to deduce
that the resultant gravitational potential will be:

Φ(r, θ) = −
∞
∑

ℓ=0

[

λℓc
2

(

GM
rc2

)ℓ+1

Pl(cos θ)

]

− a∗r cos θ. (4)

From this potential, we shall show that flyby anomalies can beex-
plained.
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3 SOLUTION FROM THE ASTG

As argued in Nyambuya (2010b), the ASTG must be taken only up to
its second order approximation because third and higher order terms
are practically equal to zero. With the new addition ofa∗r cos θ,
the second order approximation of the gravitational potential will be
given by:

Φ(r, θ) = −GM

r

[

1 + λ1GM cos θ
c2r

+ λ2

(

GM

rc2

)2 3 cos2 θ−1
2

]

−a∗r cos θ,
(5)

where the symbols have the same meaning as in Nyambuya (2010a).
We shall takeλ⊕

1 = 10 and justification for this shall come in lat-
ter during this reading. With this, it is seen that the terms involving
the λ’s are for the Earth so small we can neglect them. One can
check that the term,λ1GM cos θ/c2r: (0 6 λ1GM cos θ/c2r 6

9.33 × 10−12), which for practical purposes is small enough to
be neglected. If this term is this small, clearly that involving λ2

is even much smaller. Clearly. we can neglect these terms without
harm. Now, having dropped these terms, the emergent azimuthally
symmetric gravitational field intensity is:~a(r, θ) = ar(r, θ)r̂ +
aθ(r, θ)θ̂, where:

ar(r, θ) = −GM
r2

+ a∗ cos θ, (6)

aθ(r, θ) = −a∗ sin θ. (7)

Now, applying the above formulae to the trajectory of the space-
crafts, we know that for the incoming orbit (r = ri, θ = θi =
180◦ + δi), thus we will have:ar(ri, θi) = −GM/r2

i − a∗ cos δi

and aθ(ri, θi) = a∗ sin δi, and for the outgoing orbit (r = ro,
θ = θo = 270◦ + δo) and this leads to:ar(ro, θo) = −GM/r2

o +
a∗ sin δo andaθ(ro, θo) = −a∗ cos δo. From these equations, one
sees that there will be a change in the asymptotic gravitational ac-
celeration at infinity (a∞) both in the radial and azimuthal directions
and these are given by:
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From this we see that the forces acting on the spacecrafts at infinity
pre-and-post perigee are not the same. This points to the fact that the
kinetic energies will exhibit the same behavior. In order todeduce
this, we shall have to look at the equation for the orbit.

3.1 Anomalous Speed Changes of Spacecraft at Infinity

In the circumstances as in the present where an additional radial
force per unit massa∗ cos θ is present, the Newtonian equation of
motion describing orbits around a massive body as the Earth (whose
mass isM⊕) is given by:

d2u

dϕ2
+ u +

GM⊕

J2
=

(

a∗ cos θ

J2

)

u−2, (9)

whereJ =
√

GM⊙l is the specific angular momentum,i.e., it is
the angular momentum per unit mass of a test body orbiting the
massive body, andu = 1/r, wherer is the radial distance from
the centre of the massive body andϕ is the azimuthal angle. For
a nearly Newtonian orbitu = (1 + ǫN cos ϕ)/l whereǫN is the
Newtonian eccentricity of the orbit. To first order approximation:
u−2 ≃ (1−2ǫ cos ϕ+...+...)/l2 . As argued in Nyambuya (2010a),
this kind of approximation holds good for nearly Newtonian orbits
as those of the spacecrafts making their Earth swing-bys. Effective
this into (9) reduces this equation to:
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1
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The general solution to this equation is:

l

r
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)
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cos ϕ. (11)

Dividing by the term[1−a∗ cos θ/(GM⊙/l2)], the above equation
is to first order approximation given by:

(
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r
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)
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)

+ ǫN cos ϕ. (12)

The eccentricity of an Earth Newtonian hyperbolic orbit is given by:

ǫN =

(

v2
∞

GM⊕/Rmin

)

, (13)

whereRmin is the distance of closest approach. Now for the pre-
perigee encounter, whenr = ∞, ϕ = 180◦−Ψ/2 andθ = 90−δi,
this means:

0 = 1 −
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Likewise, for the post-perigee encounter, whenr = ∞, ϕ =
−(180◦ − Ψ/2) andθ = 90 − δi, this means:

0 = 1 −
(

2a∗ sin δo

GM⊕/l2

)

−
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Now subtracting (15) from (14) and thereafter performing some ba-
sic algebraic operations, one arrives at:

(

∆v∞
v∞

)

=

(

a∗Rmin

v2
∞ cos(Ψ/2)

)

(sin δi − sin δo) , (16)

where clearly,Ψ : (0 ≪ Ψ < 180◦). In the above we have made
use ofv2

i,∞ − v2
o,∞ = ∆K∞/m = 2v∞∆v∞ whereK andm are

the kinetic energy at infinity and mass of the spacecraft respectively.

There is one unknowna∗ in equation (16) thus we can calculated this
givenδi, δo,Rmin, andΨ. These values are given in table (I). Less
the value for Galileo I, the rest of the values for other spacecrafts of
a∗ are positive and lay in a reasonable narrow range(0.14−3.23)×
10−5 ms−2. The error margins in the values ofa∗ come from the
error values of∆vobs

∞ . The obtained average of all the values ofa∗

is a∗ = (1.02 ± 0.02) × 10−5 ms−2. We are of the view that this
value is acceptable and that this result strongly points to the ASTG
as containing in it, a grain of truth to do with the flyby anomalies.

c© 2009 RAS, MNRAS000, 1–5



4 G. G. Nyambuya

Table (I ). Earth flyby parameters at the asymptotes of their orbits for Galileo, NEAR, Cassini, Rosetta, and MESSENGER spacecraft.Columns1, 2 & 3 gives
the name of the spacecraft, the date it made its gravity assist maneuver and the Agency responsible for this spacecraft respectively. Columns4, 5, 6, 7 & 8 gives
the inclination of the spacecraft’s orbit relative to the Earth’s equator, the incoming and outgoing Right Ascension, the incoming and outgoing Declination angle
respectively. Columns9, 10 & 11 is the osculating hyperbolic excess velocity, the altitudeis referenced to an Earth geoid plus the radius of the Earth, and the
change in osculating hyperbolic excess velocity. The data in this table except for that in column13, is adapted from Andersonet al. (2008).

Spacecraft Date Agency Ψ αi αo δi δo v∞ Rmin ∆vobs
∞ a∗

(1◦) (1◦) (1◦) (1◦) (1◦) (km/s) (km) (mm/s) (10−5m/s2)

Galileo I 08/12/1990 NASA 47.7 266.76 219.97 12.52 34.15 8.949 7356 3.92 ± 0.08 −1.27 ± 0.03
Galileo II 12/12/1992 NASA 51.1 219.35 174.35 −34.26 −4.87 8.877 6703 −4.60 ± 1.00 3.23 ± 0.06
NEAR 23/01/1998 NASA 66.9 261.17 183.49 −20.76 −71.96 6.851 6939 13.46 ± 0.13 1.77 ± 0.04
Cassini 18/08/1999 NASA 19.7 334.31 352.54 −12.92 −4.99 1.601 7571 −2.00 ± 1.00 1.94 ± 0.04
Rosseta I 04/03/2005 ESA 99.3 346.12 246.51 −2.81 −34.29 3.863 8354 1.80 ± 0.05 0.31 ± 0.01
M”NGER 02/08/2005 Private 94.7 292.61 227.17 31.44 −31.92 4.056 8736 0.02 ± 0.01 0.14 ± 0.00
Rosseta II 13/11/2007 ESA – – – – – 3.863 11722 ∼ 0 –
Rosseta III 13/11/2009 ESA – – – – – 3.863 8883 ∼ 0 –

Mean 1.02 ± 0.02

Figure (1). Schematic diagram showing the geometry of the orbit of a space-
craft making a planetary flyby.

3.2 Asymptotic Speed Changes at Perigee

How are we to explain the asymptotic speed changes that occurat
the perigee? If this asymptotic change is a phenomenon explainable
from the confines of the ASTG, then, this surely points to a compo-
nent in the equations of motion that must change asymptotically. To
answer this question, let us go to figure (3.2). When the spacecraft
reaches the perigee, it encounters two different values forϕ, i.e.:
ϕ = (0◦, 360◦). The functions (sin ϕ, cos ϕ) do not have a problem
with this apparent asymptotic change in theϕ-value, thats is from
0◦ 7−→ 360◦ (or 360◦ 7−→ 0◦, this depends on the direction from
which the spacecraft approaches the perigee).

A function like ekϕ will have a problem, because it would have to
jump from1 7−→ e2πk. At this point we are taken aback, to Nyam-
buya (2010a) where the ASTG was first laid down. We did show
there-in that the eccentricity of a orbit has an additional term ekϕ

such thatǫ = ǫNekϕ where for the Earth:

Table (II ). Earth flyby parameters at closest approach for Galileo, NEAR,
Cassini, Rosetta, and MESSENGER spacecraft. Columns1 gives the name
of the spacecraft. Columns2 gives the inclination of the spacecraft’s orbit
relative to the Earth’s equator. Columns3&4 the velocity the perigee and
the altitude is referenced to an Earth geoid plus the radius of the Earth, and
column5 gives asymptotic change in velocity at the perigee while column
6 gives the value of change in velocity at the perigee from the ASTG. The
data in this table except for that in column6, is adapted from Andersonet al.
(2008).

Spacecraft ϑ vprg Rmin ∆vobs
prg λ⊕

1

(1◦) (km/s) (km) (mm/s)

Galileo I 142.9 13.740 7356 2.560 ± 0.050 7.20 ± 0.10
Galileo II 138.9 − 6703 − –
NEAR 108.0 12.739 6939 7.210 ± 0.070 20.0 ± 2.00
Cassini 25.4 19.026 7571 −1.700 ± 0.900 7.00 ± 4.00
Rosseta I 144.9 10.517 8354 0.670 ± 0.020 7.0 ± 4.00
M”NGER 133.1 10.389 8736 0.008 ± 0.004 8.00 ± 2.00
Rosseta II – 12.49 11722 ∼ 0 –
Rosseta III – 13.34 8883 −0.004 ± 0.044 –

Mean 10.00 ± 2.00

k⊕ =
λ⊕

1

2

(

GM⊕

c2l

)

sin θ (17)

If ǫ = ǫNekϕ is the eccentricity predicted from the ASTG, the reader
may ask why then did we not include this in our earlier calculation
(11)? The reason is that to first order approximation, its inclusion
would have resulted in the important termkϕ emerging as a second
order term. To see this; to first order approximationǫ ≃ ǫN (1 +
kϕ + ... + ...) and clearly the termǫNkϕ would have dropped out,
the meaning of which is it would have not been necessary to include
this in (11). In the present, the term involvingkϕ emerges as a first
order approximation.

Now if the spacecraft approaches the perigee as shown in figure
(3.2), it starts of from infinity with aϑ-value ofϑ = 90◦ + δi and
this decreases as it approaches the pre-perigee where upon is arrives
at the perigee with aϕ-value of 0◦ = 0rad, and the correspond-
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Figure (2). An illustration showing the equatorial view of spacecraft flyby
orbits

ing eccentricity would beǫ1 = ǫN ; this same spacecraft enters its
post perigee journey with aϕ-value of360◦ = 2πrad and the cor-
responding eccentricity would beǫ2 = ǫN(1 + 2πk) this will de-
crease as the spacecraft approaches infinity unit it reaches90◦ + δo.
Now (∆vprg/vprg) = (ǫ2 − ǫ1)/2ǫ1 where∆vprg is the asymp-
totic change in the speed at the perigee andvprg is the speed at the
perigee. From this, it follows that:

(

∆vprg

vprg

)

=
λ⊕

1

4

(

GM⊕

c2Rmin

)

cos ϑ. (18)

All the values in the above are known less forλ⊕
1 . As before, we

have in table (II ) calculated this from the known and available data.
If these ideas are something worthwhile, the values ofλ⊕

1 from each
of the five data points available, must not vary widely from the mean
value. The error values calculated inλ⊕

1 come from the error values
in ∆vobs

prg. The final average value ofλ⊕
1 obtained isλ⊕

1 = 10.00 ±
2.00. While the rest of the values are in the range(7 − 8), that of
NEAR is far off at20. This means4/5 of these seem to strongly
point to a correlation.

We see that depending on the direction from which the spacecraft ap-
proaches the perigee, there will either be a positive or negative jump
in speed at the perigee. With respect to hyperbolic speed changes,
whether the change in the speed at infinity is either positiveor neg-
ative depends on the declination angles. From what we have pre-
sented, it appears that, if one is supplied with the data of the pre-
perigee orbit, one will be able to make verifiable predictions of the
anomalies.

4 DISCUSSION AND CONCLUSION

The fact that the unknown values ofa∗ andλ⊕
1 coming from the

theory when-after it is weighed against experience, seem tolie in a
narrow range strongly suggests that the ASTG has in it some ele-
ment of truth to do with flyby anomalies. Clearly there is needfor
researchers to look into the ASTG as this theory flows from a natu-
ral solution of the well known Poisson equation. That we understand
the Poisson equation is something almost taken for granted.Surely
and clearly, we have made not any modification(s) to the Poisson

equation but merely took its natural azimuthal solution andapplied
it to the scenario of a gravitational field of a spinning body.

Given the radial component of the gravitational field in equation (6),
there is a regionr = Rcrit around a spinning body where the net
gravitational acceleration cancels off,i.e. ar = 0. This occurs at:
Rcrit = (GM/a∗ cos θ)1/2 . Curiously enough – for the calculated
value ofa∗ – one finds for the Sun that at the spin equatoral plane
whereθ = 90◦, Rcrit = 19.00 ± 2.00AU which is the distance
where the Pioneer Anomaly begins to profusely manifest (Anderson
et al. 1998). From the value ofa∗ = (1.72 ± 0.30) × 10−5ms−2

obtained, assuming it where universal, the meaning of whichis that
it applies to the Sun and all the gravitating bodies in the Universe,
it would mean that the Pioneer’s, given their anomalous accelera-
tion of ap

⊙ = (8.74 ± 1.34) × 10−10ms−2 (Andersonet al. 1998);
are moving on the spin equator of the Sun, because their inclination
should be0.0050 ± 0.0006◦. This data can be interpreted as saying
when the Pioneers reached about5AU, they made an ascent off the
solar spin equator until at20AU where the spacecrafts where about
0.0018± 0.0002AU above this plane and they traveled at a constant
inclination of 0.005 ± 0.0006◦ above the solar spin equator until
at 70AU where they had ascended a distance0.0061 ± 0.0008AU.
For this reason, there is a need to obtain the complete set (ifat all
possible) of the Pioneer ephemerides.

In closing, allow us to say the following, that; the formula we ob-
tained for predicting the anomalous increase in hyperbolicexcess
speed is similar and not congruent to that of Andersonet al. (2008).
Additionally, prior to the present reading,i.e. from Andersonet al.
(2008), only two parameters appeared to matter in as far as predict-
ing the observed anomalous speed increase of the spacecraftat infin-
ity and these are the incoming hyperbolic excess speed and the decli-
nation angle (incoming and outgoing). In the present, we have added
two more and these are the deflection angle (ϑ) and the perigee dis-
tance (Rmin) from the center. We have submitted all these data to
the theory and from it we obtained what strongly appears to bea
well behaved and related set of physical parameters. It appears to
us highly unlikely that these parameters behave so well by chance,
against this probability, we strongly believe we herein have a theory
that strongly appears to contain in it, an element of truth. Given also
that it has been suggested that the ASTG may have something todo
with outflows (see Nyambuya2010b). Perhaps, researchers should
excogitate on the possibility that the gravitational field of a spinning
body is not Newtonian, but azimuthally symmetric as laid down in
Nyambuya (2010a) and in the present.
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