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Abstract: What is measurement and what can it tell us about the quantity measured? Can we know a 
quantity by measuring it? We mathematically demonstrate that the answer is no! We show how a 
continuous quantity E(t) that grows exponentially can in our measurements of it be seen as discrete and 
growing linearly. And if we further consider the practical limitations that render measurements as 
'approximations' only, then the quantity E(t) that we measure can be any integrable function yet our 
measurements of it will still depict it as discrete and linear. Furthermore, and most surprising, the 
'interaction of measurement' will be described by Planck's Law, whether E(t) is exponential or just 
integrable. Thus, we cannot know what the hidden quantity E(t) is as a function of time by the 
measurements of it. 

Introduction: Measurement is the essence of Science. Observation and Understanding are forms of 
Measurement. We 'size up' what we 'observe' with what we 'know' – whether in relationships , Politics or 
Physics. Direct measurement involves an interaction between the 'observer' and the 'observed', the 'sensor' 
and the 'source'. The 'value' of the interaction is attained when an interaction equilibrium is reached 
between the two (when there is balance and stability) and a calibrated standard is used to quantify this 
value. What often is measured, however, are 'changes' E∆  and 'averages' E  of a physical quantity E , but 

not the instantaneous value 0( )E t  of the physical quantity. Quantum Physics has raised many physical 
and philosophical questions and voluminous discussions. All stemming, in my view, from such aberrations 
of measurement and observation. Many of these counterintuitive phenomena and strained explanations 
hinge on QM's 'uncertainty principle' and the broader realization that the 'observation of an entity' molds 
the 'entity observed'. 

We do not dispute or wish to debate any of the mathematical formalism or philosophical speculations of 
Quantum Physics. Rather, in this short note we consider a well defined simple question: Are the 
measurements of a quantity ( )E t  equate to  the quantity itself? If we were to plot the measurements of 

( )E t over time, will this be the same as the graph of ( )E t ? We mathematically demonstrate that the 
answer is no!

Notation:
 ( )E t is the value at time t  of a quantity we  measure

0

( )E t dt
τ

η = ∫  is the 'accumulation' over a time interval τ of this quantity

avE η
τ

=  is the average value over a time interval τ  of this quantity 

( ) (0)E E Eτ∆ = − is the incremental change over a time interval τ  of this quantity

The Interaction of Measurement:  For a (direct) measurement of a physical quantity to occur we must 
have the following,

1. A physical interaction between the 'source' of the physical quantity ( )E t  measured and the 
'sensor' that measures the quantity.

2. An interval of time 0t t tτ = ∆ = −   for the interaction of measurement to occur.
3. An interaction equilibrium between the 'source' and the 'sensor', when the 'average energy at the 

source' equals the 'average energy from the sensor' during an interaction cycle.
4. An amount 0( ) ( )E E t E t∆ = − absorbed (sampled) by the 'sensor' when equilibrium is attained.
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The Interaction of Measurement is a functional relationship between the value of 0( )E t , the actual 
instantaneous value of the physical quantity, the amount E∆  absorbed by the 'sensor' and the  average 

avE  at the 'sensor' at each interaction cycle.

   

figure 1

Above,  figure 1 shows the quantity ( )E t  at time t at the 'sensor', the time interval τ , the 'accumulation' 
η  of the quantity E  during that time interval, the incremental change E∆  over that time interval and the 
average quantity avE  at the 'sensor' over that time interval. The 'sensor' in physical interaction with the 
'source' will absorb ('sample') an amount E∆  when the 'source' and the 'sensor' attain equilibrium. When 
this amount is absorbed by the 'sensor' the quantity at the sensor is reduced by that amount and so the 
function ( )E t 'collapses' to its initial value. The 'accumulation' of E will start anew until another 
interaction equilibrium is reached. This process stops once the 'sensor' reaches a saturation point and a 
calibrated reading is made. In figure 2 and 3 we see graphically this process.

                                        
                                               figure 2                                                                         figure 3

Clearly in this formulation as shown in figure 2, ( )E t  can be any integrable function of time. And 
according to the above discussion, when the interaction of measurement reaches equilibrium, a pulse of 
time τ will have lapsed while an discrete amount of energy E∆  will be absorbed by the 'sensor'. The 
function ( )E t  will 'collapse' and a new interaction cycle will begin. The accumulation η  during each 
such cycle will be the same.  In figure 3 we see the 'sensor' absorbs discrete fixed amounts E∆  over fixed 
time intervals τ . The experimental graph  E vs t produced will be a linear step function. This is what we 
see as our measurements of ( )E t . But this will be the same (linear step function) for any function ( )E t . 
Clearly from the graph of figure 3 we cannot possibly know the function that describes the quantity ( )E t  
we are measuring. 
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We have proven elsewhere the following mathematical results,

Theorem 1: 0( ) tE t E eν=  if and only if  0 1
E

eη ν κ

η ν=
−T          (1)

where E(t) is integrable, 
0

( )E u du
τ

η = ∫ , 
1 η
κ τ

 =   
T  and κ  is a scalar constant.

Corollary: 0( ) tE t E eν=  if and only if  0 1avE E
EE

e∆

∆=
−

         (2)

where ( )E t  is integrable, ( ) (0)E E Eτ∆ = − and avE η
τ

=

Theorem 2: 0( ) tE t E eν=  if and only if  E η ν∆ =          (3)

Theorem 3: For any integrable function E(t),  00
lim

1
E

eη ν κτ

η ν
→

=
−T  , i.e.  0 1

E
eη ν κ

η ν≈
−T          (4)

Corollary: For any integrable function E(t),    00
lim

1avE E
E E

eτ ∆→

∆ =
−

, i.e.  0 1avE E
EE

e∆

∆≈
−

Thus, from the above, whether we assume an exponential representation of the quantity ( )E t we are 
measuring or simply assume that this quantity can be represented by some integrable function, we can 
describe the Interaction of Measurement by

0 1 1avE E
EE

e eη ν κ

η ν
∆

∆= =
− −T            (if  ( )E t  is exponential)          (5)

or,

0 1 1avE E
EE

e eη ν κ

η ν
∆

∆≈ =
− −T            (if  ( )E t  is just integrable)                              (6)

Planck's Law can be written as    0 1h kT
hE

e ν

ν=
−

                        (7)

The mathematical comparison between Planck's Law (7) and the Interaction of Measurement (5) above is 
striking. Planck's constant h and the 'accumulation' η  have the same units and play the same role in these 
equations. And so does temperature T and the quantity T  we defined above. Furthermore, the 
Quantization of Energy E hν∆ =  is likewise reflected in Theorem 2 above. The following conclusion is 
inescapable:

Planck's Law is a Mathematical Identity that describes the interaction of measurement.
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