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The standard model for high-energy physics (SM) describes fundamental interactions between subatomic 

particles down to a distance scale on the order of 1810− m. Despite its widespread acceptance, SM operates 

with a large number of arbitrary parameters whose physical origin is presently unknown. Our work 

suggests that the generation structure of at least some SM parameters stems from the chaotic regime of 

renormalization group flow. Invoking the universal route to chaos in systems of nonlinear differential 

equations, we argue that the hierarchical pattern of parameters amounts to a series of scaling ratios 

depending on the Feigenbaum constant. Leading order predictions are shown to agree reasonably well with 

experimental data.  
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1. Introduction   

The standard model (SM) represents a highly successful framework for the description of 

elementary particles and their interactions in an energy range bounded by the electroweak 

scale. Its predictive power rests on the regularization of divergent quantum corrections 

and the so-called renormalization group equations (RG), which characterize the 

dependence of observables on the energy scale. Despite its remarkable success, SM has 

several shortcomings. For instance, it requires about eighteen free parameters that are not 
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derived from first principles and must be put in “by hand” when performing calculations 

[Donoghue et al, 1994; Altarelli, 2005]. A large number of extensions of SM have been 

advanced over the years. As of today, a compelling and fully supported resolution of all 

open questions regarding SM has not been found [Kazakov et al, 2006]. It is generally 

expected that future experiments, slated to begin soon at the Large Hadron Collider and 

other accelerator facilities, will shed light on how to further develop the theory beyond 

SM.  

The origin of the SM parameters represents a topic of active investigation. Expanding on 

a series of recent studies centered on the contribution of nonlinear dynamics and 

complexity in field theory [Damgaard and Thorleifsson 1991; Batunin, 1995; Biro et al, 

2001; Kogan and Polyakov, 2003; Morozov and Niemi 2003; El Naschie 2006; Goldfain 

2002, 2005, 2006], our work suggests that the chaotic behavior of the RG flow is 

responsible for the generation structure of SM. We start from the Feigenbaum-

Sharkovskii-Magnitskii (FSM) scenario describing the universal path to chaos in systems 

of nonlinear dissipative differential equations [Magnitskii 2006, 2007]. Elaborating from 

this baseline, we find that the hierarchical pattern of parameters amounts to a series of 

scaling ratios depending on the Feigenbaum constant.  

The approach discussed here is intentionally left informal. We mainly target a qualitative 

understanding rather than formally rigorous results. Additional research is needed to 

validate, expand or reject our conclusions. 

The outline of the paper is as follows: section 2 presents a short overview of RG flow 

theory. The implications of the FSM scenario on the RG flow are discussed in section 3. 
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A comparison between actual data and predicted results is detailed in section 4. The last 

section is devoted to a brief summary and to a list of future challenges.  

 

2. The Renormalization Group flow  

The renormalization group (RG) flow is a key concept in quantum field theory (QFT) and 

statistical physics. In the Wilson picture, RG equations describe the trajectories of 

operators towards or away from a functional attractor set. According to this model, the 

flow of masses, gauge couplings, fields and mixing angles is given by the corresponding 

set of β -functions [Fisher 1974; Itzykson and Zuber 1980; Creswick et al, 1992; Zinn-

Justin 2002; Amit 2005; Christensen and Moloney 2005]. A standard assumption in 

perturbative QFT is that the attractors of the RG flow consist of a finite number of 

isolated fixed points [Morozov and Niemi 2003]. There is now preliminary evidence that 

the end of the RG flow is a limit cycle or an attractor with a more complex structure 

[Wilson 1971; Bernard and LeClair 2001; Glazek and Wilson 2002]. We generalize 

below this conjecture by assuming that: 

a) RG flow occurs in the presence of residual non-perturbative effects produced by high 

order quantum corrections. 

a) RG flow approaches a singular limit cycle rather than a plain set of isolated fixed 

points. 

The parameters of the Standard Model ( )σ= iσ  ; 1, 2,...,i n=  evolve according to the 

free-flow equations [Donoghue et al 1994; Amit 2005] 

                                                     ( )i i
i i

d d
d dt
σ σµ β σ
µ

= =                                                   (1) 

where 
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                                                             log( )t µ=
Λ

                                                            (2) 

Here, µ  denotes the sliding renormalization scale and Λ  the momentum cutoff. In the 

presence of noise-like perturbations ( , )i i i tλ λ σ= , these equations may be written as 

                                                      [ , ( , )]i
i i i i

d t
dt
σ β σ λ σ=                                                   (3)      

For the sake of concision and simplicity, we limit the analysis to the simplest case of 

stationary perturbations having constant amplitude 

                                                             ( , )i i tλ σ λ=                                                           (4)  

In addition, we take λ  to represent the single control parameter of system (3), which then 

assumes the form of a generic autonomous system of ordinary differential equations 

(ODE) 

                                                           ( , )i
i i

d
dt
σ β σ λ=                                                       (5)  

 

3. Transition to dynamical chaos  

This section relies entirely on arguments developed in [Magnitskii 2006, 2007] and is 

founded on the following assumptions: 

A1) (5) is a smooth family of nonlinear autonomous systems of ODE in three-

dimensional phase space M  that is dependent on the single control parameter 

λ 3( R , I R)Mσ λ∈ ⊂ ∈ ⊂ . 

A2) (5) are analytic functions of λ . 

A3) the limit cycle 0 ( , )tσ λ  of period ( )T λ  represents a solution of (5) for all Iλ ∈ .  
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A4) the limit cycle 0 ( , )tσ λ  is stable for 0λ <  and it becomes unstable at 0λ =  after a 

period-doubling bifurcation created as a result of crossing the imaginary axis by one of 

the Floquet exponents.  

According to the theorem 4.4 of [Magnitskii 2007], the first stage of the transition to 

chaos driven by the continuous variation of 0λ >  represents a Feigenbaum cascade of 

period-doubling bifurcations for 0 ( , )tσ λ . Numerous examples of this scenario 

[Magnitskii 2007 show that the sequence of critical values nλ , Nn ∈ , leading to the 

onset of super-stable orbits, satisfies the geometric progression 

                                                         
n

n Kλ λ δ
−

∞− ≈                                                          (6) 

Here, K  is a multiplicative factor and δ  a scaling constant that is, in general, different 

than the standard 4.669...δ = for quadratic maps. 

Based on A2), we expand 0 ( , )tσ λ around the critical value of λ λ∞=  that leads to fully 

developed chaos  

             
2 2

0 0
0 0 2

( , ) ( ) ( , )( , ) ( , ) ( ) ...
2

n
n n

n n

t tt t
λ λ

σ λ λ λ σ λσ λ σ λ λ λ
λ λ

∞ ∞

∞
∞ ∞

∂ − ∂= + − + +
∂ ∂

          (7)      

This yields 

                    
22

0 0
0 0 2

( , ) ( , )( )( , ) ( , ) ( ) ...
2

n
n

n
n n

t tt t
λ λ

σ λ σ λδσ λ σ λ δ
λ λ

∞ ∞

−
−

∞
∂ ∂= + + +

∂ ∂
               (8)  

For 2pn = , 1p ≥  the ratio of two consecutive terms in the series then takes the form  

                            0, 0 0
( 1)

0, 1 0 1 0

[ ]( , ) ( , )
( , ) ( , ) [ ]

n k
kn n k

n k
n n kk

c Kt t
t t c K

δσ σ λ σ λ
σ σ λ σ λ δ

−

∞
− +

+ + ∞

∆ −= =
∆ −

∑
∑

                           (9) 

Under the assumption 1 0c ≠  and ( )
n

Oδ ε
−

∝  corresponding to 1p , we obtain  



 6

                                                        
1 (2 )0,2

0,2

pp

p

σ
δ

σ
+ −∆

≈
∆

                                                     (10) 

 

4. Predictions versus experimental data 

It is apparent that (10) provides only a leading-order approximation if the iteration index 

is not large enough, that is, if (1)p O≈ . Numerical results derived from (10) are 

displayed in the table below. This table contains a side-by-side comparison of estimated 

versus actual mass ratios for charged leptons and quarks and a similar comparison of 

gauge coupling ratios. Fermion masses are reported in MeV  and evaluated at the energy 

scale set by the top quark mass. Using the most recent results issued by the Particle Data 

Group [Particle Data Group, 2005], we take 

um  = 2.12 ,    dm  = 4.22 ,   sm  = 80.9  

  cm = 630,    bm = 2847,    tm = 170,800 

Coupling strengths are evaluated at the scale set by the mass of the 0Z  boson, namely  

1
128EMα =  ,    0.0338Wα =  ,     0.123sα =   

where subscripts denote the electromagnetic, weak and strong interactions, respectively.   

Tab. 1 and Fig. 1 are based on taking 4.669δ =  whereas Tab. 2 and Fig. 2 are built using 

the best-fit numerical value for δ , that is 3.9δ = . Data on the horizontal axis is 

partitioned in ascending order according to the following representation: 

1 m
m

µ

τ
= ,   22 ( )EM

W

α
α= ,   3 d

s

m
m= ,    4 s

b

m
m=  

5 em
mµ

= ,   26 ( )EM

s

α
α= ,   7 c

t

m
m= ,    8 u

c

m
m=    
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It is interesting to note that 3.9δ =  falls close to the average value of the period-doubling 

constant corresponding to actual hydrodynamic flows [Peitgen et al, 1992]. 

 

5. Summary and conclusions 

Motivated by recent advances in the study of complex systems, our investigation has led 

to the conclusion that the pattern of particle masses and gauge couplings might emerge 

from the chaotic dynamics of RG flow equations. We have found that the observed 

hierarchies of some of the SM parameters amount to a series of scaling ratios depending 

on the Feigenbaum constant. As pointed out in section 1, the analysis presented here is 

far from being either entirely rigorous or formally complete. Although leading-order 

predictions match reasonably well the existing experimental database, follow-up efforts 

are required to provide all the necessary clarifications. The list of open questions includes 

(but is not limited to) the following items: 

a) how does the Higgs mechanism of generating masses fit into the picture?  

b) can the hierarchy of mixing angles be consistently derived from this approach? 

[Wolfenstein 1983; Caso et al.1998; Goldfain 2007] 

c) is there experimental evidence for additional fermion and gauge boson states that fit 

the same pattern? [Goldfain 2007] 

 

APPENDIX A: The generation structure of SM parameters 

Quark and lepton masses exhibit the following generation structure [Kielanowski 2000] 

                            4u c

c t

m m
m m

ζ≈                  4em
mµ

ζ≈                3

t

m
m

τ ζ≈                         (A1)                
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                                  2d s b

s b t

m m m
m m m

ζ≈                        2m
m

µ

τ

ζ≈                                 (A2)                   

where 0.22ζ ≈  is numerically close to the so-called Cabibbo angle [Donoghue et al, 

1994]. A similar structure shows up in the composition of the CKM matrix that describes 

the pattern of quark mixing angles [Wolfenstein 1983; Donoghue et al, 1994; Caso et al, 

1998] 

                                    

2
3

2
2

3 2

1 ( )
2

1
2

(1 ) 1

A i

A

A i A

ζ ζ ζ ρ η

ζζ ζ

ζ ρ η ζ

 
− − 

 
 − − 
 

− − − 
  

                                   (A3)    
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Fig 1: Actual versus predicted scaling ratios ( 4.669δ = ) (abs. log. scale) 
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Fig 2: Actual versus predicted scaling ratios ( 3.9δ = ) (abs. log. scale) 
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Tab. 1: Actual versus predicted scaling ratios for 4.669δ =  

 
Parameter ratio

 
Behavior

 
Actual 

 
Predicted 

u

c

m
m  

 

4
δ

−
 33.365 10−× 32.104 10−×   

c

t

m
m  4

δ
−

 33.689 10−× 32.104 10−×  

d

s

m
m  2

δ
−

 0.052  0.046 

s

b

m
m  2

δ
−

 0.028  0.046 

em
mµ

 4
δ

−
 34.745 10−× 32.104 10−×  

m
m

µ

τ
 2

δ
−

 0.061 0.046 

2( )EM

W

α
α  2

δ
−

 0.053  0.046 

2( )EM

s

α
α  4

δ
−

 34.034 10−× 32.104 10−×  
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Tab. 2: Actual versus predicted scaling ratios for 3.9δ =  
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