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ABSTRACT: In this paper we review some results of our previous papers involving Riemann 
Hypothesis in the sense of Operator theory (Hilbert-Polya approach) and the application of the 

negative values of the Zeta function (1 )s  to the divergent integrals 1

0

sx dx


 and to the 

problem of defining a consistent product of distributions of the form ( ) ( )m nD x D x  , in this 
paper we present new results of how the sums over the non-trivial zeros of the zeta function 

( )h


 can be related to the Mangoldt function 0 ( )x assuming Riemann 

Hypothesis.Throughout the paper we will use the notation ( ) ( )R s s  meaning that we use 

the zeta regularization for the divergent series  
0

s

n

n



 s>0 or s=0

 Keywords:Zeta regularization,  Urysohn equation , exponential nonlinearity , Riemann 
Hypothesis Hilbert-Polya operator, divergent integral

1.Spectral Zeta function ( )H s and Riemann Hypothesis :

In case Riemann Hypothesis (RH) is true, in a previous paper [6] we give the physical 
equivalence between the explicit formula for the Chebyshev function 0( )x and the 

formula for the trace of the Unitary operator 
ˆˆ iuHU e , where H is the Hamiltonian 

operator 
1 ˆ 0
2 niH    

 
, that is H is precisely the Hilbert-Polya operator solution to 

Riemann Hypothesis , let be the integral representation
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Letting ux e , and differentitating with respect to ‘u’ we find the (trace) identity

 
/ 2

ˆ/ 2 / 2 0
3

( ) ˆn

u u
iuEu u iuH

u u
n

d e e
e e e Tr U e

du e e







    

  u >0 (1.2)

Using the semiclassical representation for the trace niuE

n

e



 in terms of an integral over 

Phase Space , we have that the potential V(x) inside Hamiltonian H can not be arbitrary 
but must satisfy a kind of nonlinear Urysohn integral equation ( r > 1)

( ) / 40
1 3

log( ) ( ) 1
1iV x ir d r

r dx e
r dr r r











      ur e (1.3)

The derivative of the Chebyshev function is defined as 0

,

( ) 1
( )

log( ) p p

d x
x p

dx x 


 

(sum taken over prime and prime powers ) .However (1.3) is too complex to have a 
known analytic solution, a good method to solve would be to suppose that the Operator 
proposed by Berry and Keating [2]  plus an interaction is the correct Hilbert-Polya 
operator, in that case ( )bH xp W x  and we can linearize (1.3) at first order in the 

coupling constant  ‘ ’ as

   ˆ 2 ˆ ( ),
| |

iuHTr e iu dpF W x u
u

 



    ˆ ( ), ( )iuxpF W x u dxe W x




  (1.4)

Also, if we introduce the function   ( ( ) )iu V x x
uZ dxe 






  , with continuos partial 

derivatives ( )k
uZ  , then solving (1.3) is equivalent to finding a solution to the initial-

value problem

0

( )
( ) ( ) 0

( )

k
u

u k uk k
k

Z k
Z iu d Z

iu

  
 





  
     


(1.5)

/ 2
/ 2 / 2 0 4

3

( )
(0)

u u iu u
uu u

d e e u
e e e Z

du e e




 

    

Expression (1.8) tells us that proving RH is equivalent to show that the ODE given in 

(1.5) with   kd R and 0

1 ( )

!

k

k xk

d V x
d

k dx  , 
0

( ) k
k

k

V x d x




 using (1.5) together with 

a finite power expansion for V(x) , using (1.5) we could obtain the constants  kd R
to get an approximate solution for the potential V(x).
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If RH is true and 
1

0
2 niE    

 
, with n nE E  being the eigenvalues of a certain 

operator 2 ( )H p V x  , using expression (1.2) and the functional equation 

(1 ) 2(2 ) ( ) ( )
2

s s
s Cos s s

       
 

  ,then for 0n  we can define an spectral Zeta 

function , involving the nontrivial zeros of Zeta and primes and prime powers

   ˆ / 2 10
30

0 0

1 ( ) ( ) 12 2 1
2 ( ) (1 )

t
sitH t t s

s t t
n n

s
Sec

s d e
dtTr e dte e t

E s s dx e e






    



 
           

     

(1.6)

The value 
(0)

0

d

ds
n

n

E e
 



 would be the regularized product of all the positive 

‘Eigenvalues’ nE this expression can also be used to obtain a Dirac measure for the 

nE , let us introduce

1

0 00

1 1s s
n

n n n n

E dt t t
E E


 

 

 

  
      

  1
0

0

( )
( )

(1 )
ss

dtK t t
s







  (1.7)

Using the properties of the Mellin transform applied to solve linear integral operators 

0

[ ] ( ) ( )I f dtR xt f t


  , if we combine (1.6) and (1.7) we get the result

1/ 2 1/ 1/ 2
1/ 2 0

0 2 3/ 1/
0 0

1 1 ( )
( ) (2 )

t t t
t

t t
n n n

dt e d e e
x x K xt e

E E t t dt e e
 

 



   
          

  (1.8)

If we took the Mellin transform 1

0

sdxx


 inside (1.8) together with the change of 

variable xt=z we would recover equation (1.6) , note that the Mellin transform of the

Kernel 0(2 )K xt does not depend on the nontrivial zeros 
1

2
it   .

Using test functions  
1 1

2

i
h

x x
  
 

inside (1.8) obtained from our Trace formula for 

 ˆiuHTr e we can relate the convergent sum ( )h


 to a sum over primes and prime 

powers  



4

 1 1/ 2 1/ 1/ 2
1/ 20 0

2 3/ 1/
0 0

21 ( )
. ( )

2

t t t
t

t t

K xti e d e e
dxh dt e c c h

x xt t dt e e 




             
 

(1.9)

Formula (1.9) and its result can be compared with sums 
a

  (explicit formula for 

Chebyshev function) and 
1

( )
n

Z n
 

 n N , that can be calculated exactly.

o The Trace  ˆiuHTr e and the sum ( )h




Even though we can not solve equation (1.3) we can use the Trace expression (1.2) to 
find stimates for sums ( )h



 . First we define a couple of function g(x) and h(x) with 

the following properties

 Both g(x)=g(-x) and h(x)=h(-x) are even functions


0

( )
lim
x

g x

x
exists and it is finite

 The functions h(x) and g(x) are related by a Fourier Cosine transorm 

0

1
( ) ( ) ( )dxh x Cos x g 






 The function h(x) can be defined by analytic continuation to the  region of 

complex plane defined by Re (s) =0 , in particular ( / 2)h i 1 i 

If RH (Riemann Hypothesis) is true, then the Trace (1.3) is just a sum of cosines 

0

2cos( )u




 , then if we take g(u) as a test function 

 ˆ / 2
2

1 00 0

( / 2) ( / 2) ( ) ( )
( ) (log ) 2 ( )

2 1
iuH u

u
n

h i h i n g u
dug u Tr e g n due h

en 


 



 

  
   

       

                                                                                                                                 (1.10)

In order to obtain (1.10) we have used the representation in terms of Dirac deltas of the 

derivative of Chebyshev function to get / 2 0

10

( ) ( )
( ) (log )

u
u

n

d e n
dug u e g n

du n

 




 
 , and 

the Euler formula for cosine to represent the integral / 2

0

( ) udug u e


 as the sum 

 1
( / 2) ( / 2)

2
h i h i  . An special case is whenever we choose 

 ( ) ( ) ( )
2

h x s x s x
      and         ( ) cos( )g u u (1.11)
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Then we can use the functions in  (1.11) and the formula (1.10) to get

  2 2 2
0

1 '(1/ 2 ) '(1/ 2 ) 2 (2 1/ 2)
( )

2 (1/ 2 ) (1/ 2 ) 1 4 2 1/ 2n

is is n
s

is is s n s

  
 





   
          

 

(1.12)

(1.12) is the ‘density of states’ in QM , and can be used to know how many zeros of the 

form ½+is are with imaginary part less that a given ‘T’ since 
00

( ) ( )
T

N T ds s


 


 
  

 


A formal derivation of (1.12) can be obtained considering the following indentities for 
divergent series involving zeta regularization or analytic continuation

0

1

1
an

a
n

e
e






   (linearity)            

1/ 2
1

( ) '(1/ 2 )

(1/ 2 )is
n

n is

n is









 
 

 (1.13)

1 1 1

( ) 1 ( ) ( )
cos( log )

2
is is

n n n

n n n
s n n n

n n n

  


  

   
  

 
       (1.14)

And the Laplace transform of Cosine 2 2 1

0

cos( ) ( )stdte at s s a


   .The poles inside 

(1.14) are of three kinds ns  from the Non-trivial zeros of Zeta function , 

/ 2s i  due to the divergent value (1) and  1/ 2 2   s i n n N     form the trivial 

zeros of zeta function -2,-4,-6,..........

o Riemann-Weyl formula and a solution for the inverse of potential V(x):

A similar formula to (1.10) had been previously introduced by Weyl in 1972 [9] 

1

( ) 1 ' 1
( ) ( / 2) ( / 2) (0) log 2 (log ) ( )

2 4 2n

n ir
h h i h i g g n h r dr

n

 




 

            
  
                                                                                                                                  (1.15)

Weyl summation formula can be used to solve equation (1.10) if we make inside this 
integral equation the change of variable 1( )x V  , then (1.10) is simply proportional 

to the inverse  Fourier transform of  
/ 4iu i iue

u

  



  

 on the interval  0, which is just 

proportional to another sum 
1

  
 involving the imaginary parts of the Riemann 

zeta zeros , to get rid off the sum we ca use (1.15) to express the inverse of potential
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1

2

1/ 2 1/ 2 1/ 2
1

( ) ( ) ( / 4)
1 4

( ) cos( log / 4) 1 1 1
.

4 2logn

A
V f BCos c D

n n ir
E Fp v dr

n n r r

   


 
 





 

     


                    
 

    

                                                                                                                                    (1.16)

Where , , , , ,A B c D E F R are real parameters that define the potential , from formula 
(1.16) the Hamiltonian would be self adjoint and its energies (imaginary part of zeros) 
would be real numbers. (If the new limits of integration after taking the change of 
variable 1( )x V r were not  but real numbers c,d then we could multiply the left 

side of equation by ( ) ( ) ( )d
cW x H x c H x d    ,  , ( )c d V  )

The sum involving ( )n can be treated using fractional calculus and zeta regularization 

1/ 2 1/ 2

1/ 2 1/ 2 1/ 2
1

( ) cos( log / 4) '(1/ 2 ) '(1/ 2 )
2

(1/ 2 ) (1/ 2 )logn

n n d i d i
i i

i id dn n

     
    

 

 


      
          


                                                                                                                                    (1.17)

At the points   the inverse of potential becomes  , as we  can expect from 
1/ 2 1/ 2 1/ 2

0 0  

       

 

               (1.18)

Although we have investigated the trace involving the Chebyshev function 

0 ( ) ( )
n x

x n


   ,  with some changes it can also be applied to find a Trace involving 

the Mertens function 
+1

( ) ( )       x Z
2

0 ( )    ( ) ( )
M x x

M x otherwise
n x

M x n



 




  


 , if there are no multiple zeros  

of Riemann zeta function so '( ) 0   , then we can find an expression for Mertens 
function involving a sum over Zeta zeros as

21

0
1

( 1) 2
( ) 2

'( ) (2 )! (2 1)

nn

n

x
M x

n n n x






  





        
  x >0    (1.19)

Since the Mertens function is just an step function its first derivative it will be a set of 
Dirac delta function so 

/ 2 0

10

( ) ( )
( ) (log )

u
u

n

dM e n
due g u g n

du n

 




     (1.20)

Where 

0  if n is not square-free.    

( ) 1    n=1

( 1) if n is square-free with k- distinct prime factor k

n

 
 

is Mobius function
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Then differentiating respect to ‘x’ and setting ux e , assuming RH is true so all the 
non-trivial zeros are of the form 1/ 2 ,it   (with ‘t’ real )  and choosing two even test 

functions (g, h) related by a Fourier transform   
0

1
( ) ( ) cos( )g x h u ux du





  one gets 

2
(2 1/ 2)

1 1

( ) ( ) 2(2 ) ( 1)
(log ) ( )

1 (2 )! (2 1)'
2

n n
n u

n n

n h
g n dug u e

n nn i

  
 

 
 

  


 

  
 

        (1.21)

(1.21) is a similar expression to Riemann-Weyl explicit formula for  the sum relating 

primes and Riemann Zeta zeros. As an example let be 
  when x > 0

( )
0    when x < 0

xe
g x


 


with 

' ' a real and positive number, if 1/ 2  one should have the Prime Number theorem , 

so 
1

( )
0

n

n

n





 , an even stronger conclusion is that if RH is true then 
1/ 2

1

( )

n

n

n 





 must be 

convergent for every positive 0  and equal to

 
2

1/ 2
1 1

( ) 1 1 4(2 ) ( 1) 1
.

' 1/ 2 (2 )! (2 1) 4 1 2

n n

n n

n

n i i n n n


 
     

 


 


 

                  (1.22)

2. Zeta regularization for divergent integrals:

Given the function ( ) mf x x , we can use the Euler-Maclaurin summation formula to 

obtain a recurrence relation between an integral of the form 
0

( , ) mI m p dp


   m Z

with 1

0

m mm x dx


   and the series 
1

0

m

i

i



 , 0m     ref [7]

1

0

2

1

( , ) ( / 2) ( 1, ) ( 2 1) ( 2 , )
(2 )!

m

i

r
mr

r

i
B

I m m I m a m r I m r
r








               

(2.1)

1 22

10 0 0

!( 2 1)
( )

2 (2 )!( 2 1)!
m m m rr

r

B m m rm
x dx x dx m x dx

r m r


  
 



 
   

           

The coefficients 
( 1)

( 2 2)mr
m

a
m r
 

  
vanish when 2 2m r  , hence the sum inside 

(2.1) is finite if m is an integer , in the physical limit the cutoff  , this makes the 
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series 
1

0

m

i

i



 to be divergent for 1m   , in this case we should use the Functional 

equation for the Zeta function to obtain the (Regularized) value

1

1

lim 1 2 3 ... ( ) ( )m
R

n

m m mn m m 





         (2.2)

(2.2) is the Zeta-regularized value for the divergent sum envolved in (2.1) , using this 
method we can compute the divergent integrals ( , )    I m   , for m=1,2,3 

 

0

0

22
21

0

32
21 2 31

0

(0, ) (0) 1/ 2

(0, )
(1, ) ( 1)

2

1
(2, ) (0, ) ( 1) (0, )

2 2

3 1
(3, ) (0, ) ( 1) (0, ) ( 3) (0, )

2 2 2

I dx

I
I xdx

B
I I a I x dx

B
I I a I B a I x dx







 









    


    

         
 

             
 









(2.3)

The case m=0 is just equal to the divergent series 1+1+1+1+1+1+1+1+1+... taking the 
regularized value -1/2  evaluated from (0)

For an arbitrary function f(x) so its integral would diverge as a power of the cutoff 1N
we could expand f(x) into a Laurent series convergent for |x| <1 and |x| >1 so we find

 1 1
1

0 0 20

( ) ( , ) ( , 1, ) ( )
aN N

i j
r i j

r i ja

dxf x c I r c I a O dx c x c a
 

  
 

  

            (2.4)

 ic � , taking  , and using (2.1) (2.2) (2.3) to regularize the divergent 

integrals ( , )I m  we could obtain a regularized (finite) value for the integral 
0

( )dxf x


 , 

however the logarithmic divergent integral ( , 1, )
a

dx
I a

x



    can not regularized by our 

formulae, the solution would be to use the Euler-Maclaurin summation to approximate 
the divergent integral by a divergent Harmonic sum that can be attached a ‘Ramanujan 

sum’ 
1

1a

n n




   ( =Euler-Mascheroni constant)
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o Zeta regularized product of distributions:

Formulae (2.1-2.3) can be used to compute divergent integrals of the form 1

0

sx dx


 , but 

also could give an answer to the problem of multiplication of two distributions 
involving Dirac delta and its derivatives ( )mD x , if we tried to define the product of 
distributions involving delta functions we could use the ‘convolution theorem’ applied 
to the Fourier transform ( A=normalization constant) :

   2(2 ) ( ) ( ) ( )m n m n m n m ni D D F x x AF dtt x t     



    (2.5)

Unfortunately (2.5) makes no sense , the integral is divergent for every real or complex 
value of ‘x’ , if m and n are positive integers using the Binomial expansion

[ ]

0

( ) ( ) = ( )( 1) (0)
n

m n m n m k n k k n k m k R

k

n
i D D i AD i D

k
          



 
 

 
 (2.6)

 
0 0

( ) ( ) = ( )( 1) ( 1) 1
n

m n m n n k k n k m k m k

k

n
i D D AD i x dx

k
     


    



 
   

 
    (2.7)

‘R’ stands for regularization (regularized value) , the divergent integrals come now 
from the dirac delta and its derivatives evaluated at x=0 , which are proportional to 

kx dx



 for k=2r+1 (Odd) the integral considered in Principal Value is 0 , for k=2r

(even integer) the integral can be written as 2 2 (0) 2 (2 , )    r ri D I r   

, 2

0

(2, ) rI r x dx


  (r=integer) and can be evaluated using (2.1) and (2.2) .

The expression (2.7) is real ,this is what one would expect since the product of two 
distributions taking only real values must be real , however (2.6 ) is not still invariant 
under the change m n and n m (this is a mistake we made in paper [7] ) so we 
should take a more symmetrical product of distributions defined by  

   1
( ) ( ) ( ) ( ) ( )

2
m n m n n m

R
D D D D D D             (2.8)

The simplest case is m=n=0 so   ( ) ( )
R

A      

For the case of ‘m’ and ‘n’ not being an integer or we have a shifted dirac delta 
( )kD x a  , we could use the identies for the k-th power of ‘x’ or the traslation 

operator  De   and 
d

D
dx

 in the form



10

0

( ) ( 1) ( ) ( )
!

j
aD r j r j

j

a
e D x D x x a

j
  


 



     
0

1
kr

k

r
D D

k





 
  

 
 (2.9)

In case of integrals on    dR   ( )
dR

dkF k


, if the function F , is invariant under Lorentz 

transformations, then making a Wick rotation to imaginary time  it t ,the metric 
becomes  2 2 2 2 2ds dx dy dz dt    which is invariant under rotations, taking 4-

dimensional polar coordinates our integral can be evaluated as 
/ 2

1

0

( )
( / 2)

d
ddrf r r

d

 


  , if 

not we could replace the integral over the cross section (angles) d by a discrete sum 

1

0

( , ) d
i

i

drf r r


 , with ‘d’ equal to the dimension of space-time

 Example: 
2

1a

x
dx

x



 with  in this case the integral has a power-law 

(quadratic) divergence  2 , a >1 and integer (this is not relevant since the 
integral diverges only for big ‘x’ ) , the Laurent series for |x| bigger than 1 is 

1 1

3

1 ( 1) j j

j

x x x


 



    , if we approximate the logarithmic divergent integral 

of 1/x by the divergent series
0

1

n n a



  (after a change of variable x=t+a) then, 

the approximate  ‘Zeta regularized’ value of the integral would be

2 2
2

3

(0) '( ) ( 1)
( 1)

1 2 ( ) 2 2

j
j

ja R

x a a
dx a a

x a j

 
 





    
          

 (2.10)

Another example without a logarithmic divergence , would be 
4

2(1 )a

x
dx

x



 in this case 

the regularized finite value is just 3 2

2

( 1)
(0)

2 3

n
n

n

n
a a

n








 

 , the logarithmic derivative 

of Gamma function inside (2.10) is just the Ramanujan resummation of the Hurwitz 
series (1, )H a avoiding the pole at s=1

Another method to evaluate these kind of divergent integrals is, substract a sum of the 

form 
1

N
i

i
i

c x

 , so the integral defined by 

10

( )
N

i
i

i

dx f x c x dx




 
 

 
 exists in the Riemann 

sense , in case we had a Fourier transform, we would add and substract terms in the 

form 
1

N
i iux

i
i

c x e

 which are proportional to the derivatives of ( )u .
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Example 
3 3 3 3

4 2
1

2 ( 2)

x
dx dx dx dx

x x x x

   

  
     the first integral on the right of = is 

convergent , the logarithmic integral can be (approximately) regularized by means of 

Ramanujan sumation to the finite value 
'(3)

2
(3)




and the other integral is just the 

regulariez value (0) 3  .

On kR simply use the k-dimensional polar coordinates and try using substraction to 

obtain an integral of the form    
10

( ,
N

i
i

i

dr f r r U




   , the idea here is isolate the 

divergent integrals of the form 
0

mr dr




Conclusions and final remark

In this paper we have used the method of Zeta regularization of series applied to the 

problem of finding finite results for divergent integrals 
0

mx dx


 and to give an adequate 

Hilbert-Polya operator in order to solve Riemann Hypothesis.

On the first part of the paper we show that if RH is true then the Chebyshev function 
evaluated at x=exp(u) is just the trace of the exponential of  a Hamiltonian 

2 ( )H p V x  whose eigenvalues are precisely the imaginary part of the nontrivial 

zeros, we extend this idea and define the distribution 
0

( ) 2 cos( )miu
m

m m

Z u e u 
 

 

  
which can be calculated for every ‘u’ bigger than 0 and whose value is related to the 

derivative of Chebyshev function 0 ( )ud e

du


. We also discuss the applications of this 

trace formula for ( ) miu

m

Z u e 




  and how can be used to obtain the values of the 

sum ( )f


 in a similar way to Riemann-Weyl explicit formula, we also obtain a 

method to calculate 
 Im

1 ( )
T

N T
 

 , using zeta regularization we obtain an exact 

expression for the oscillating term in N(T) as 
1 1

arg
2

iT


    
  

which comes from 

integratin the regularized value of the series 
1

cos( log )
( )

n

s n
n

n







It may seem at first sight that there is no relation between Rieman-Weyl formula for the 
sum 

0

( )f




 and the one we obtained in (1.10) , however we can prove the following 

identity (in the sense of distributions) 
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/ 2
/ 2

2
20

sin( ) 1 ( )
sin( log )

1 2 2 log

u
u

u
n

e ux n
du e x n

e u n n

  



  
    


1 1 1

Im log log log
2 4 2 2

ix
ix x               

    
                (2.11)

This formula can be inmediatly obtained from the definition of the function that gives 
us the number of zeros with imaginary part less than a given ‘x’ N(x) ,the property of 
the Chebyshev function  0 ( )ue and the properties of Fourier inverse sine and cosine 

transforms for our Trace 
0

( ) 2 cos( )Z u u





    with 
0

( ) 2 ( )sin( )Z u u dxN x ux


  and

1 1 1 1
( ) Im log log log 1

2 4 2 2

ix
N x ix x 

 
              

    
(2.12)

Taking the inverse sine transform and the  definition of Z(u) for u >0 we recover the 
above formula relating a Fourier sine inverse transform and the imaginary parts of the 

logarithm of 
1

2
ix   

 
and 

1

4 2

ix   
 

, if we differentiate respect to ‘x’ and use even 

test functions g(x) and h(x) with 
1

( ) ( )
2

irxdrh r e g x






 ,and taking into account that 

we can expand the Real part of 
' 1

2
is



  
 

into the divergent (but regularized) sum 

1

( )
s( log )

n

n
co s n

n





 , then the oscillating part of the N(x) gives us the term 

proportional to  
1

( )
(log )

n

n
g n

n





 , integrating over ‘x’ on (2.11) the right terms on the 

derivative of (2.11) is precisely the Riemann-Weyl contribution to the sum 
0

( )h






' 1
( ) (0) log

2 4 2

dx ix
h x g 







       the term on the left would be 
/ 2

2
0

( )

1

u

u

g u e
du

e

 

 , which 

is just the expression for the sum 
0

( )h




 obtained from our trace Z(u) , remember that 

for u <0 from the definition of Chebyshev functions in terms of the explicit formula, 
there is a factor ‘2’ since the Fourier cosine and Fourier exponential transforms for even 
functions are related by    2 ( ) ( )c eF g x F g x

On the second part of the paper, we use the Euler-Maclaurin sum formula together with 
the analytic continuation of the Zeta function ( )s to negative values , note that E-M 

(Euler Maclaurin) formula is correct for integrals of the form 
1

dx

x



 whenever 1 



13

since the series 
2

( ) 1
n

n   






  is convergent, the idea of our method is to use Euler-

Maclaurin formula and then perform an analytic continuation to values with 1  , in 

order to calculate the integral 
0

  0x dx 


 , so  
0

( )
n

n  




  and we can define a 

recurrence equation for every integral such as formula (2.1) being the initial term in the 

recurrence 
00

1 (0)
n

dx 
 



  , this kind of zeta regularization of series would allow to 

calculate divergent integrals and to define a regularized product of distributions 
( ) ( )m nD D    by applying Convolution theorem to the weird function  

( )m ndtt x t



  ,m n Z which can not be defined for any ‘x’ unless we know how to 

calculate divergent integrals. Although we can not use (1.7) in order to regularize 

0

dx

x a



 we can approximate this divergent integral by the Hurwitz series (1, )H a

which is still divergent but can be assigned a finite value in the sense of ‘Ramanujan 

resummation’ 
'( )

( )

a

a





another alternative would be differentiating respecto to ‘a’ to get 

a convergent integral so we have the result log( )a C with ‘C’ an infinite constant.

Appendix A: an integral Trace for the Green function

A formula for the sum 
0

( )n
n

E E




 in terms of the Trace of the ‘Resolvent’ (green 

function ) of a Quantum Hamiltonian ˆ
n n nH E  can be defined as:

  4

4

0

( , ', ) ( , , ) ( )nR
n

Tr G x x E d xG x x E E E 




      
1

( , ', )
ˆ

G x x E
E i H


 

¨ (A.1)

One of the easiest method to prove this , is to consider that given a convergent series 

with sum S and its Borel transform B(s) defined by 
00

( , )
!

n tn
n

n

a
B S a dt x e

n

 




 
  

 
 then 

S=B(S) , 
0

n
n

S a




 in this case if we take the series  

1
ˆ1 (1 )

0 0

1 ( 1) ( )
( ) !1

n n n
t i H

n
n

E i H x
E dte

i HE i H E n
E




 
   



  
      

  (A.2)

Where  is an small number so 0  , then using the formula for the Principal value
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1 1
. ( )PV i x

x x i



      

, in this case taking the trace of the operator inside (A.2) we 

can give a proof to (A.1) using the technique of Borel resummation.

Another example of the method of Borel resummation , let be 
0

( ) ( 1) ( )n n

n

P x n x




 
the generating function of the coefficients ( )n , let be the function f(t) defined by 

1

0

( 1) ( ) ss dtf t t


   then using again the Borel-generalized resummation

0 00

( ) ( 1) ( ) ( ) ( 1) ( )n n n n

n n

P x dt xt f t n x
  

 

     
 
  or  

0

( )
( )

1

f t
P x dt

xt




 (A.3)

If we took the Mellin transform on both sides 1

0

sdxx


 one would find 

ˆ ˆ ˆ( ) ( ) (1 )P s K s F s  , or in terms of improper integrals

00

( )
( )( )

sin( )
n

n

s
dt n x

s




 



   
 
     since  

0

( ) ( )sdtf t t s


   (A.5)

This last formula is known as ‘Ramanujan Master theorem’ , note that we have proved 
this only using the fact that for a convergent series its sums and Borel transform must be 
equal S=B(S). According to tihs formula our K function defined previously on (1.7) 

would be equal to 0
0

sin( ) ( )
( ) . ( )

( 1)
n

n

n n
K x x

n

 
 






  



Appendix B: A Riemann-Weyl summation formula

Riemann-Weyl formula, is a good tool to calculate sums over the imaginary parts of the 
Riemann zeros ( )f



 , using Zeta regularization and the main property of Dirac delta 

distribution ( ) ( ) ( )dx x a g x g a




  together with the Hadamard product 

representation 
/ 22 1

( ) . 1 .
( 1) ( / 2)

z z
z

z z z




 
    

 we can give a proof of it , we will 

also need the following formulae

0

1 1
lim ( )i x P

x i x




       
  and      log( )

1/ 2
1

'(1/ 2 ) ( )
.

(1/ 2 )
is n

i
n

i is n
e

i is n 

 
 






  
 

      (B.1)

The first is Sokhotsky’s formula for delta distribution and the second is just the usual 
zeta regularization procedure for the Dirichlet sum associated to Mangoldt function , 
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taking logarithms inside the Hadamard product and differntiating at the point 
1

2
z is    , where epsilon is an small quantity so we can ignore cuadratic terms 

2 0  , we can now obtain the following formula

2

' 1 1 1 2 1 ' 1 1
log( ) ( ) . .

12 2 2 4 2 2
4

is s i
is s i iPV

ss 

   
 

                        
                                                                                                                         

(B.2)

To obtain (B.2) we have used both formulae in (B.1) so 
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can be calculated using Zeta regularization in terms of a sum involving 

the Mangoldt function ( )n so (B.3) reads now
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             (B.3)

If we use inside (B.3)  the test functions g(x) and h(x) related by a Fourier transform so 

( ) ( )
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  with g(x) and h(x) being even functions satisfying certain 

properties, in Cauchy’s principal value ( )
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and if h(x) can be continued analytically to the critical strip we find
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        (B.4)

In order to change the order of integration inside (B.4) , we assume h(x) and g(x) are 
regular enough and apply Fubini’s theorem . 

Appendix C: Generalization of Urysohn Non-linear equation

The problem with integral equation (1.3) is the fact that this implies solving an integral 

equation with a distribution 0 ( )ud e

du


, ths kind of integral equation can be generalized 

to include test functions (g,h) with the following properties
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
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  for a real parameter ‘r’ with g and h being even 

functions on the variable ‘x’ ( , ) ( , )g r x g r x 


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is finite in the limit 0x 

 The integral of / 2( , ) x iurg r x e  on  ,x   , and the sum 
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   , and the same holds for g(r,x) so the nonlinear Kernel 

are on 2L
 ( , )g r x and ( , )h r x are regular enough so we can use Fubini’s theorem to 

interchange the order of integration

Then introducing this tests functions on (1.3) and taking the integral over ‘u’ 

interchanging the order of integration and using ( ) / 4( , ) ( , ) iuV x ih r x dug r u e 






  we have 

the Urysohn integral equation (depending on the choose of g )
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(C.1) is the generalization of (1.3) with the advantage that we are dealing with functions 
instead of distributions , V(x) depends on Mangoldt function ( )n this is not casual 
since the primes and Riemann Zeta zeros are related . We have used the semiclassical 

approximation for the series (in the sense of distribution) ( )  , niuE
n

m

Z u e E R




  (if 

RH correct) , this Z(u) will depend on the derivative of Chebyshev function 0 ( )ud e

du



In a similar manner we can use the properties of the Laplace transform of 
sin( )at

t
and 

use the analytic continuation to express (2.11)
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(C.2)

As pointed before , taking derivatives on both sides of (C.2) we could assign a finite 

value to the divergent sum 
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x n
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 , using a test function we could compute 
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the singular integral 
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dx ix
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 with Poles being the non-trivial zeros 

over the line Re(s)=1/2 , is related to series 
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