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      ABSTRACT: In this paper we study the methods of Borel and Nachbin resummation applied 
      to the solution of integral equation with Kernels K(yx) , the resummation of divergent series 
      and the possible application to Hadamard finite-part integral and distribution theory

1. INTRODUCTION

     Divergent series are widely known and appear in many context involving Physics or 
      math, for example if we integrate by parts the error function (Laplace) :
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      Or using the ‘Saddle point mehtod’ for n! when n is big then we have:
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      But (1.1) and (1.2) are only convergent as  x  for small values of x they both 
      Diverge. Another example with ODE’s is the following for the ODE:
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      For (1.3) Euler gave the series solution:   2 3 4( ) (1!) (2!) (3!) ...y x x x x x     (1.4)

      Which converges only for x=0 !!! , A similar thing happens with the series:
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        2 3
0 1 2 3 .......a a g a g a g           g << 1   (1.5)

     That apear in QFT and Quantum Mechanics , where g is the ‘coupling constant’ , in 
     general series of the form (1.5) although divergent are used to calculate the ‘mass’ or 
    ‘charge’ (renormalized value), for a given physical theory.

      Also as a last example let be the next Taylor series around x=0 :
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      Convergent for |x| <1  However taking the limit 1x   (-1 by the left) we find 
       the amazing results  -1/2 and  -1/4 Although we know that in general, any series of 
       the form     1 2 3 ......m m   is divergent, in the last section we discuss a method to 
       deal with divegent integrals with poles on the interval. [a,b] with a and b real 
       numbers for example the integral of  2( )  on the interval  (-1,1)f x x .

       Of course this paper pretends to be only a kind of introduction to the subject for 
       further references I strongly recommend ‘Divergent series’ by G.H Hardy or ‘Zeta 
       regularization methods’ by E.Elizalde and others for historical examples involving 
      divergent series and integrals.
      
     

2. ZETA FUNCTION REGULARIZATION

     The Zeta function regularization method was used to give a meaning to clearly         
      divergent series in the form:
       
      1 2 3 ...a a   0a              (2.1)

       For any positive and real number ‘a’ , the series could be re-arranged in the form:

        ( ) ( )1 2 3 ... 1 2 3 ... ( )a s a s s a s a s a                             (2.2)

       Where in (2.2) we have used an Analytic prolongation for the Riemann Zeta             
       Function, now letting s tends to 0 we could find the ‘sum’ of the series (2.1) as the   
       Value  ( )a  which can be calculated in general (except if a=1) by the contour      
       Integral on the complex plane:
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        Or by means of ‘Riemann functional equation’ :
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        For ‘a’ being a Natural number, the calculations can be simplified, first if we 
        introduce the ‘Bernoulli Polynomials’ using the Generating function:
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        Then for integer ‘n’ we find   2 (0) 2 (1 2 )nB n n         (2.6)
         
         The value on the left of (2.5) for the 2n-th Bernoulli Polynomial at x=0 are the 
        ‘Bernoulli Numbers’ and have a vital importance in Mathematical Analysis, for 
         example the sum of the first N powers of f(x)=xr for r >0 and integer can be 
         written using the Bernoulli Polynomials in the form:
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         Although it may seem we are somhow ‘Cheating’ to get a finite value, Zeta 
         regularization has been proved frutifull, in many calculations involving theoretical 
         Physics such us the ‘Casimir effect’ where the value ( 3) 1/120    is used in 
         Calculations, or string theory whenever you need to calculate 1+2+3+4+5.+….. 

         The first person giving an ‘exact’ justification to this procedure of Zeta 
         Regularization was Leonhard Euler in XVII century, he desired to calculate (in 
         modern notation and using Operator theory):

         ( ) ( 1) ( 2) ...........f x f x f x S               (2.8)

         Then he uses the properties of the ‘traslation operator’:        

            ( ) ( )         aD d
e f x f x a D

dx
               (2.9) 

          ( The formula (2.9) can be proved making the Taylor expansion respect to ‘a’ and 
          remembering the Taylor series for the Exponential , In Modern Lie Algebra this is 
          just a classical result involving group theory).

          Applying (2.9) ot each term in (2.8) we have a geommetric series in  aDe for 
          a=0,1,2,3,…  multiplying and dividing by ‘D’ Euler found the relation (involving 
          again Bernoulli numbers):
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         If we put f(x)=x  or f(x)=x3  and use (2.10) the series is just a finite one and we 
           get the values -1/12 and -1/120 using tables.
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o Application to divergent integrals:

           A direct calculation for divergent integrals using the Zeta regularization 
           presented here, is (using the rectangle method to calculate integrals):
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            To give a finite value to the divergent integral (2.11) using the ‘Hurwitz Zeta 
            function’ (a direct generalization to Riemann zeta function) defined by:
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            With ‘beta’ a real number different from a negative integer, for other values we 
            can use the Functional equation:
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           In case m is a positive integer we can use the easier formula :
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              Hence if taking the limit 0  (2.11) has a finite value , this value could be 
              considered as the regularized ‘sum’ or ‘Area’ for the function ( ) mf x x on the 
              inteerval [0, )
               
              The main importance of divergent integrals arises in the problem of 
              ‘Renormalization’ when we are forced to give a finite meaning to clearly 
              divergent expressions such as:
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              For positive m (UV divergences) we can find a recurrent formula to obtain the 
              values of the different integrals in the form:
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              Where we have called   
0

( , ) mI m dpp


      , here the meaning of ‘Lambda’ is 

               a momentum cut-off (the maximum value of the modulus for the momentum 
               of the particle) , the Renormalization procedure involves taking the physical 
               limit    , at the end the quantities involving these divergent integrals 
               can’t depend on the value of the regulator/cut-off ‘Lambda’ introduced , where 
               we have used the ‘Euler-McLaurin sum formula’ in the form :
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               (For simplicity we have supposed that  ( ) (0) 0rf  for every r ,   For 
               negative values of m or ‘infrared divergences’then make q=1/p and apply the 
               process described above)

               the case m=-1,(logarithmic divergence) is slitghly different and involves a 
               method called ‘Ramanujan resummation’ of a series, a recurrence formula for 
               evaluating this kind of sum is :

               
[ ] [ ]

1
1 0

( ) (1) (2) (3) ....... ( 1) ( ) ( )
R R N

n n

a n a a a a N a n N dta t
 

           N>1  

                                      (2.18)

               Here the [R] stands for Ramanujan or resummation, applied to a(n)=1/n gives 

               the regularizad value   
[ ]

1

1R

n n



 .for the Harmonic series.

                The formula in (2.16) describes a method to regularize the divergent integral 
                by recursive calculations, where the divergent series associated to the 
                divergent integral is ‘summed’ by a zeta regularization method, the case m=0 
                is simply  :
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                 For more complicate analytic functions F(p) we expand them into a ‘Laurent 
                 (convergent) series’ in the next form:

                  ( ) n
n

n

F p c p




          (2.20)    and perform term by term integration

                  Depending on the region of the complex plane we are located (2.20) may 
                  include either positive or negative power series, or them both .

                  Finally another direct application of ‘Zeta regularization’ involves 
                  calculating divergent sums of primes in the form:
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                  With s >0 a real non-integer number, so the series on the right is convergent, 
                   k >0 , used to extend the domain of convergence for P(-s) .
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                 A similar method to ‘Zeta regularization’ could be stablished using the 
                 analytic prolongation of the Gamma function (and hence a similar to 
                 integrals involving Euler’s Beta function), using the functional equation :
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                 With    real number bigger than 0 and different from an integer, clearly 
                 (2.23) is a form to give a finite meaning to otherwise divergent integral due 
                 to the pole at t=0, using the analytic prolongation to negative values for the 
                 Gamma function, in both cases involving (2.1) and (2.23) we consider that 
                 The ‘sum’ or ‘Area’ for the series or integral is just the value of  
                 ( ) ,  ( )a   , this process of ‘regularization’ avoids the pole for the 
                 Gamma and Riemann zeta function at the points  0  (Gamma) and s=1 
                 (Riemann Zeta function). Also for alternating series:
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                 Appart from Euler the formalism of ‘Zeta regularization’ (but not with this 
                 name) was introduced by Ramanujan in his Notebooks using the Euler-
                 McLaurin sum formula defining the ‘constant’ of the series:
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                So for ( ) nf x x , with n integer he found the relations (R=resummation )

                2 1 2 1 2 11 2 3 ................. ( )
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3. BOREL RESUMMATION FOR SERIES AND INTEGRALS

               Let be the divergent (Numerical) series:

                  0 1 2 3 .........S a a a a                 (3.1)

                  Borel gave a very ingenious method to calculate it, first we multiply and 
                  divide each term by n! getting :
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                  Using (3.1) and (3.2) and supposing that ( ) ( )btf t O e for a real positive 
                  number b then we can writte the ‘sum’ of the series in (3.1) as:
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                As a ‘toy model’ of our Borel resummation method we have:

                   1 1 1 1 1 1 1 1 ....... 1/ 2         since  ( ) exp( )f t t        (3.4)

                   Unfortunately we can’t always know an exact expression for f(t), to give an 
                   approximate evaluation of our Borel transform, we can use the ‘Euler-Abel’ 
                   transform widely known for power series, to calculate a power series:
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                  Also we apply another known property of the ‘Laplace transform’
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                   The first expression in (3.5) is an approximate evaluation for f(x) setting x=t 
                   then the B(S) ‘Borel sum’ for our divergent series (3.1) is:
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                   With  !n na b n , only in case that the coefficients of our initial series (3.1) 
                   were of the form (-1)n n!P(n) with P(n) a Polynomial  (3.7) is exact. The 
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                   error term is given by the expression:
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                   In case (3.1) were convergent then its ‘ Borel sum’ is equivalent to the 

                    term-by-term Laplace transform at s=1, in that case if we had f(t) and g(t) 
                    analytic series near x=0 ::
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                    If we define   
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   ,since f(t) and g(t) are convergent series 

                    then we should have as a main property of Borel sums:
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                    Setting s=1/x , and using the a known property for the Laplace inverse 
                    transform of   1(1/ )g s s we find the relation:
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                    The expression (3.10) above is the ‘Zero-th order Hankell transform’ 

  evaluated at the point  2k t with 
2

0 2
0

( 1) ( / 2)
( )

( !)

i i

i

x
J x

i








o Application to divergent integrals:

                     The formalism of Borel resummation for integrals is inmediatly 
                     acomplished if we define the Riemann sum multiplying and dividing each 
                     term by a Gamma function we have:
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                     Taking the limit as  0x  the sums becomes the double-integral :              
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                      Of course in general, unless 
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( )dxf x


 is convergent  ‘Fubini’s theorem’ 

                      does not hold for (3.12) and (3.13) so:
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                      Now if we define the integral transform 
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                      If the 2 conditions on (3.16) holds then the ‘Borel integral’ is just the 
                      Laplace transform of  ( )H t t , 0 

                      But. Can a ‘Borel sum’ be the real sum of the series?, let’s take :

                      i
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                      The alternating series has the Borel transform:        
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                      Using the result for the Laplace transform of 1/(t+1) ,we find:

                                 
1

( )
1

s
iL e E s

t
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    (3.18)  

                     Setting s=1 we find that the ‘asymptotic’ expansion (3.16) can be 
                     ‘summed’ even for high values of x.

                      Also, if the integral is convergent then using the property of Laplace 

                      transform with s=1   
1

( 1)x

s
L t x


   then the definition of ‘integral’ 

                      (3.13) is the same as the usual definition for the integral in terms of 
                      convergent Riemann sums.

The relationship of this ‘Borel resummation’ for integrals can be written 
as this, using the next property for Laplace transforms:
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                     Then we can write  (3.14) in terms of Laplace transforms:
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( )

( )
( 1)( 2).....( )

f x
g x

x x x 


  

                     Valid for 0  and integer
                   
                  For   Z  ,we must apply the analytic prolongation of the Gamma  
                      function ( )z and use the definition of the differintegral   xD f .

           The method of Borel resummation can be used to calculate divergent  
                       Fourier series that don’t belong to an 2 ( , )L   , but may have a defined 

                       Fourier transform re-defined as   1

0
( ) ( )i x idxf x e i e F s i  

    . F(s) 

                       is the Laplace transform of f(x). Another deep relationship between the 
                       Borel resummation for series and for integrals can be obtained using the 
                       Euler-Mclaurin summation formula and using the property (3.20) :

2 1
2

2 1
1 10 0

( )
(ln( ))

ln( ) ! (2 )! ( 1)

x

n r
t tn r

r
n r

t
a x

a BF s t s
dt e dt e

s n s r x x

   
 


 

                              

  

(3.21)

All the derivatives 2 1r
x
 must be evaluated at x=0, with   

( )
lim 0

( 1)

x

x

a x t

x


 

4. NACHBIN  RESUMMATION AND INTEGRAL EQUATIONS

We could write a generalization to (3.3) as the integral expressions

0

( ) ( ) ( )nB a dtf t h t


 
0

( )
( 1)

nn

n

a
f t t

M n






 (4.1)

With 
0

( 1) ( ) nM n dth t t


   , in case ( ) th t e and M(n+1)=n! , expression 

(4.1) is just the Borel transform of the sequence  na , with the advantage 

that now f(t) can grow faster than bte so ( ) ( )btf t O e , we will study the 
applications of this Nachbin/Generalized Borel resummtion to solve 
integral equations and to the Riesz criterion for Riemann Hypothesis

o Applications of Nachbin resummation to integral 
equations with Kernel of the form K(st)and to the Riesz 
function Riesz(x):
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In order to apply the Borel generalized resummation to integral 
equations, let be the Fredholm equation of first kind :

0 0

ˆ( ) ( ) ( )                      ( 1) ( ) ng s s dtK st y t K n dtK t t
 

    (4.2)

Here K(st) is the Kernel of the integral equation , and g(s) has the form 
of a Z-transform involving inverse powers of ‘s’ :

131 2
0 2 3

1
( ) ........            ( )

2
n

n

cc c
g s c c dzg z z

s s s i 
       (4.3)

Since the Mellin transform for Kernel K(u) exists, we will apply Nachbin 
resummation to solve the integral equation given in (4.2)

0 00 0

( ) . ( ) ( ) ( )
ˆ ( 1)

n
n n

n n
n n

c t
g s c s dt K t s dtK st y t

sK n

  


 

 
   

 
   (4.4)

Here ‘ ’ is a closed path on the complex plane, using (4.4) we have   

                        proven that a infinite power series in the form 
0

( )
ˆ ( 1)

nn

n

c
t y t

K n








 can 

                        solve an integral equation similar to (4.2) , as an example if we consider 

                        the function  ( ) ty t e , and the Kernel   1
( ) 1tK t e


    with 

                        ˆ ( 1) ( 1) ( 1)K n n n     we have the identity for the prime counting 
                        function in terms of an infinite series as:

1

( ) 1 ln ( )
( 1) ( 1)

kk

p x k

d
x x

k k






 

 
             

1

1
ln ( )

2k k

dz
d z

i z


   (4.5)

expression (4.5) is the number of primes less than ‘x’ in terms of an 
                        infinite series of powers involving ln(x), in general this idea can be 

extended to include Dirichlet generating functions 
1

( ) n
s

n

a
H s

n





 with 

( ) n
n x

A x a


  , then A(x) satisfies an integral equation similar to (4.2) 

with K(t)=exp(-t) so we can find the Nachbin resumed solution

m 1
0

ln ( ) 1
( )                u ( )

! 2

m

n m m
n x m

x dz
A x a u H z

m i z




 

     (4.6)

For the case of the Riesz function involved in Riesz criterion, the 
                        Riemann Hypothesis can be stated as the condition
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1/ 4

1

( )
( ) ( )

( 1)! (2 )

n

n

x
Riesz x O x

k n










  

 (4.7)

We will try to give an integral equation for Riesz(x) , using Borel 
                         resummation and the Taylor expansion for the exp(-x) and the identity 

1

0

1
1

(2 )
nn

dt t
n t


 

  
 

 , the integral equation for Riesz function reads

1

1 10 0

( ) ( ) 1
1 ( )

! (2 )( 1)!

n n n
x

n n

x x t dt x
e dt Riesz t

n n n t t t

  


 

     
              

  
(4.8)

then (4.8) is a proposed integral equation for the Riesz(x) ,from the 
definition of floor function [x] when x=0 both sides on (4.8) are 0

5. HADAMARD FINITE-PART INTEGRAL

                   In sections 2 and 3 we have discussed divergent integrals when
                      ( )     as   0f x x  , but let’s suppose that for a < c < b then 
                      ( )     as   f c x c  we can define the ’Cauchy’s Principal value’ P.V 
                      of the integral in the form of a limit:

                        
0

lim ( ) ( )
c b

a c
dxf x dxf x



 




         (5.1)

                       Where c is a point so the function f(x) behaves in the form:

                        ( )
c

a
dxf x               ( )

b

c
dxf x                 (5.2)

                        As for example (2 1)( )    nnf x x N   , with a < c < b

                   Hadamard introduced the ‘Finite part’ of an integral in the form:

                        
1

1

( ) ( )
. ( )       ( )   

k ka

k ka

d g x d g x
F P dxf x f x

dx dx










           (5.3)

                        Where we split the interval  , [ , ] ( , ) [ , ]a a a a          so all the 

                        possible singularities of the integral lie on   ,  for k=1 we get the 

                        usual Leibniz’s rule for integral calculus.

                        As an example let be ( ) rf x x r>1 then :
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                        ( )   , 1k
m k

P
g x k m

x                    
1

0

1
( 1)

( )

k
k

k
i

P
m i





 
          (5.4)

                         Hadamard finite part  is:     

                         
11

1
1

0

1 ( ) ( )
( 1)

ai k ik ai
i m k k i ma

i a

d d x x
FP dx

dx r dx x

  


   
 

                  (5.5)

      
                     Here ( )x is an infinitely differentiable function, the Hadamard integral 
                         uses the properties of distributions, for a test function , so ( ) 0  
                         then if we introduce the scalar product in the form:

                          , ( ) ( )S dxS x x 



  so  , ,S S        (5.6)

                         For the special case of Dirac delta function then:

                           ( ) (0)
[ ] (0)    and    [ ] ( 1)

n
n n

n

d

dx

                     (5.7)

                      Using the definition of Dirac delta as a Fourier transform then:

                       ( )2 ( ) ( )n n ikxx dx ix e



                    (5.8)

                      So for every Analytic function f(x) we can define its Fourier transform in 
                      term of ‘test function’ as the linear functional:

                    [ , ] 2 ( ) ( )xI f f i x              (5.9)

                     The ‘Borel integral’ (3. ) and ‘Hadamard finite-part integral’ can be useful   

                      to deal with divergences in the form 4 | |rd p p for r >0 and r<0 , 1r  

                      and the modulus of the momentum | | 0,p   that appear in QFT at long 
                      or short distances (wavelength), since in natural units | | 1p  , hence we 
                      could use these 2 techniques to get rid of the divergences, introducing a 
                      cut-off or regulator Lambda and making  . 
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