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 ABSTRACT: In this paper we study how the Mellin convolution of functions f and g 

 *f g and how is related to the Riesz criterion for the Riemann Hypothesis, the idea 

is to stablish a Fredholm integral equation of First kind for the Riesz function and the 
Hardy function.

1. MELLIN CONVOLUTION OF FUNCTIONS:

Given two functions f and g , we can define the Mellin Convolution  *f g by the two 

equivalent integral forms

   1

0 0

* ( ) ( )
dt x dt

f g f g t f xt g t
t t t

 
   

         (1.1)

This operator is linear       * * *f g h f g f h      , and associative 

    * * * *f g h f g h , another main property is the ‘Convolution Theorem’ , if we 

define the Mellin transform of f and g,  1

0

ˆ ( ) ( ) sF s dtf t t


  and 1

0

ˆ ( ) ( ) sG s dtg t t


  this 

theorem tells that the Mellin transform of the Convolution theorem is the product of the 

Mellin transforms of f and g   ˆˆ[ * ( ) ( )M f g F s G s 
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Proof: If we take the integral 1

0

sx dx


 to both sides , and introduce the change of 

variable z xt   inside of the double integral involving x and t.

     1 1 1

0 0 0 0

ˆ* ( ) ( ) ( ) ( ) ( )s s sdt
f g x x dx dt dxf xt g t x F s dtg t t

t

   
            (1.2)

The last factor is just ˆˆ ( ) ( )F s G s , so our Convolution Theorem is proved , the main 
and direct application of this theorem is the solution of the Convolution integral 

equation 
0

( ) ( ) ( )
dt

dxK xt y t h x
t



 for some given K(xt) and h(x) , then the solution for 

y(t) can be described by the Mellin-Cahen integral 

ˆ1 ( )
( ) ˆ2 ( )

c i

s
c i

H s ds
y t

i tK s

 

 




     1

0

ˆ( ) ( )sdtK t t K s


       1

0

ˆ( ) ( )sdth t t H s


       (1.3)

Here ‘c’ is a real constant chosen in a manner so all the poles of  
ˆ

( )
ˆ

H
s

K
 lie on the left 

of the line in the complex plane defined by  Re (c) .

2. RIESZ AND HARDY CRITERION AND RIEMANN HYPOTHESIS:

Given an infinite sum 
0

n
n

a



 we can define its Borel transform and its ‘sum’ B(S)

0

( , )
( 1)

nn
n

n

a
B a x x

n






     

0

( 1) ( ) nn dtg t t


       
0

( ) ( ) ( , )nB S dtg t B a x


      (2.1)

(2.1) can give the sum of the series (providing the integral is convergent and well 
defined) no matter if the series is convergent or divergent , for example it gives the 
correct value of the Grandi’s series 1 1 1 1 1 1 ... 1/ 2        , and the correct 

expansion for the exponential integral 
t

x

e
dt

t

 

 , by evaluation of the divergent series 

(except when x=0 ) 
0

( ) !n

n

x n




 via the Laplace transform  
0 1

te
dt

xt

 

 , this results with 

( 1) !n n   were known to Borel , the general result (2.1) appeared in the paper by 

Leopold Nachbin as a generalization of Borel series to the case when ( , ) ( )ax
nB a x O e

(see reference [5] ) . Appart from the linearity of the Borel transform and its sum B(S), 
we have another interesting property S = B(S) , the usual ‘sum’ in the sense of addition 
gives the same result as the Borel transform B(S)
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Example:   
0

1
( )

1
n

n

x
x





 
  its Borel transform is 

0

( 1)
( , ) ( )

!

n
n xt

n
n

B a xt xt e
n







 

and its sum (1 )

0

1
( , )

1
t xB S x dte

x


  

 S = B (S) are equal just because the power 

series expansion of 1(1 )x  is convergent on the interval ( 1,1)

We will exploit this property in order to study and give an integral equation for the 
following Hardy and Riesz criterion for the Riemann Hypothesis

 Riesz criterion and Riemann Hypothesis:

Hardy [3] and Riesz provided two different criteria for the truth of Riemann Hypothesis 

based on the growth of two different power series  
0

n
n

n

a x



 involving the Riemann zeta:

1
1/ 4

1

( 1)
( ) ( )

( 1)! (2 )

n n

n

x
Riesz x O x

n n










 

       1/ 4

1

( 1)
( ) ( )

! (2 1)

n n

n

x
H x O x

n n





 




 

   (2.2)

Here  is any positive real number , and 1/ 4( )O x  means that there is a positive 

constant ‘C’ so 1/ 4( )f x Cx  , that is if Riemann Hypothesis is true then 
1/ 4( )Riesz x Cx  and 1/ 4( )H x Dx   for both positive ‘C’ and ‘D’ (see [7] ) .

Using the Mellin convolution of two functions  *f g and the properties of 

convolution theorem, we can give an integral equation representation for the Riesz and 

Hardy functions via a Fredholm integral of first kind with Kernel 
x

t

 
 
 

in the form:

0

1 ( )x dt x
e Riesz t

t t


  

   
 

         
0

( 1)
2

x dt x H
x e tH

tt


         

  
      x >0   (2.3)

 With 
dH

H
dt

 ,from the representation 
1

1

0

1
(2 ) ss s dt t

t
      we have that 

1/ 2R ( ) ( )iesz t O t  due to the ‘Prime Number theorem’ .In order to give a proof for the 
Riesz function integral equation inside (2.3) we should recall the properties of the 

Mellin integral transforms for Riesz function ,   ( 1)
( )

( 2 )

s
M Riesz t

s
 




, the inverse of 

the Floor function [x] and the Riemann Zeta are related by the integral 
1

1

0

1
(2 ) ss s dt t

t
      valid for Re(s) > 1 , using the properties and definition of 

Gamma function for positive ‘s’ 1

0

( )t sdte t s


    and the ‘Mellin Convolution 



4

theorem’ we find 
( 1) ( 2 )

( ) . ( )
( 2 )

s s
s s

s s



  

   
 

, so we can give an inmediate 

justification for the first integral equation inside (2.3) for the Riesz function. A proof 
based on the fact that for a infinite ( and convergent) power series its Borel generalized 
transform and its ‘normal’ or usual definition of sum are equal so S= B(s) , is the 
following :

 First we use the known expansion 1

1

1 ( 1)
!

n
x n

n

x
e

n


 



      (2.4)

 We use the Mellin integral representation valid for 1n    
1

1

0

1
(2 ) nn n dt t

t
     

 The Riesz(t) function has the power series
1

1

( 1)
( )

( 1)! (2 )

n n

n

x
Riesz x

n n








 , now if 

we use that S= B(S) since the power series defining the Riesz function is 
convergent we get the result 

1 1
1

1 10

1 ( 1) ( )
1 ( 1)

! (2 ) ( 1)!

n n n
x n

n n

x dt xt
e

n t n nt 

 
 

 

            
      (2.5)

The final expression inside (2.5) is just the Riesz(xt) so with a change of variable y=xt 
and the fact that for 1x  , then [ ] 0x  , we can see that the series expansion of Riesz(t) 
solves the integral equation (2.3) for ‘x’ positive , in order to give a proof for Hardy’s
series we must use the properties  

1

( 1)

! (2 1)

n n

n

dH nx
x

dx n n








             
1

1/ 2

0

(2 1) 1

1/ 2
nn

dt t
n t

            1n          (2.6)

In order to prove (2.3) we have used simply the fact ( )S B S , in a previous paper [2] 
we investigated a similar procedure to solve integral equation with Kernel 

0

( ) ( ) ( )g s dtK st f t


  , and applied this to solve and obtain an expression for the Prime 

counting function ( ) 1
p x

x


  via the series expansion   
1

log
( 1) ( 1)

nn

n

a
x

n n



    , 

since the Prime number theorem imposes a bound to the Prime number counting 

fucntion  
( ) log

lim 1
x

x x

x




 then for big ‘n’ 
1

na
n

 (formally) , these   na come from 

the expasion of  log ( )s into a power series  
0

n
n

n

a s





 valid for Re (s) > 1 with  

1
log ( )n nC

dz
a z

z
  for a certain contour ‘C’ inside complex plane, the proof again is 

based on the fact S= B(S)
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1

0 0 00 0

( )
log ( )

1 ( 1) ! 1 ( 1) !

n n
n

n n nt sy
n n n

dt ts dy y
s a s a s a

e n n e n n


 

   


  

   
           
        (2.7)

To prove (2.7) we have used the Generalized Borel transform involving the Zeta 

function
0

( 1) ( 1)
1

n
t

dt
n n t

e




   
 , and an appropiate change of variable, the last 

expression inside (2.7) is ( )te due to the Fredholm integral equation of First kind 

satisfied by the Prime Number counting function 
0

log ( ) ( )

1

t

st

s dt e

s e t

 


 as it can be 

seen in , Apostol [1] (for other issues involving Number theory treated on this paper , 
this is perhaps the best introductory reference ).

An alternative definition of equations (2.3) exists if we take the representation of 
Riemann Zeta as the Mellin transform involving the fractional part of x 

1

0

1 ( )s s
dt frac t dt

t s


    

        
1

1 1 sin(2 )

2 k

kx
frac t

k








      (2.8)

In (2.8) the ‘fractional part function’ is understood in terms of Fourier Analysis to be 

proportional to the sawtooth function , its derivative is the distribution 
1

2 cos(2 )
k

kx




  , 

which is zero everywhere except for 0,1,2,3,4,......x  using again the property of the 
Borel resummation algorithm ( )S B S the integral equations for Riesz and Hardy 
functions become

0

1 ( )x dt x
e frac Riesz t

t t


  
    

 
   

0

(1 )
2

x dt x H
x e frac tH

tt


          

  (2.9)

The main advantage of using (2.8) instead of (2.6) is that (2.6) is easier for practical 
calculations involving the Fourier expansion in order to check if the RH is true so 

1/ 4( ) ( )Riesz z O z  , another problem comes as 0x  for 
1

x

 
  

this problem can be 

avoided using the Fourier representation for the fractional part of ‘x’ ,the fact that we 

can take the Mellin transform of
1

x

 
  

or  
1

frac
t

 
 
 

in order to define the Borel sum 

B(S) comes from the ‘regularized’ integral 1

0

0st dt


  valid for every s and the 

definition of the fractional part as   t t .

According to Wolf [7] the solution to the Riesz function in(2.9) as  x  should be 

1/ 4 1R ( ) sin log
2

ies x Cx x
   

 
with 1 14.134725....  (imaginary part of the first 
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non-trivial zero for Riemann Zeta ) , 57.775 10C   and 0.54916..   some 
computer calculations are still to be made in order to check if this is correct. If we insert 
this formula inside (2.9) and use the Mellin representation of the Riemann zeta function 

1

0

1
( ) ss s dtfrac t

t



   

  , since  
1

0
2

i    
 

and using Euler’s formula for the sine 

as  x  , 0xe    1/ 4 / 2 1/ 4 / 2

1 1
2 2

1 0
2 2

i i i i

i i
C x e C x e

i i
   

   

 
  

       
     
 

(2.10)     

So we get 0 = 1 ¡¡ this apparent contradiction would come from the fact that Wolf’s 
formula is only valid for big ‘x’ [8] and we have taken the regularized value for the 

divergent Mellin transform 1 1

0 0

0 ( )s st dt t H t dt
 

    . A final question is , could we 

reproduce from (2.9) , and using the Mellin transform technique, the equalities ??

2 2
1

( )
( ) exp

n

n x
Riesz x x

n n





   
 

    and    
2

1

x

n

x
xe Riesz

n






   
 

       (2.11)

Both formulae in (2.11) were known to Riesz  , and can be proved in the following way 

, using the Mellin transform inside (2.9) we get  
( 2 )

( ) . ( )
s

s R s
s

 
  , rearranging terms 

( ) ( 1) ( 2 ) ( )s s s s R s      or simply   1

0

( 1)
( ) ( )

( 2 )
ss

R s dtRiesz t t
s


 

 
  , now using 

the following representation (Perron formula  [1] for Dirichlet series )

1
0

( ) ( )
s

dt
F s s f t

x



    
1

10

( ) ( )
s

n

dt x
F s s s f

x n


 




   
 

     
1

10

( )
( )

( ) s
n

F s dt x
s n f

s x n




 




   
 

   (2.12)

And  
1

0

1
( )

( ) s

dt
s M t

s x



    , the proof of (2.11) is inmediate , however (2.9) have the 

advantage of avoid a summation involving the Möebius function defined as follow 
0           if n has repeated prime factor

( )
( 1)  if n is product of k different primeskn

 

    and  (1) 1 

From integral equation (2.9) could we deduce that we have solved RH ?, we do not 
know the answer, however if there was an extra term inside Riesz function  

/ 2 sin log( )
2

u
x C x   

 
so  ( ) 0iu    , the imaginary part of this root ‘u’ would 

yield to a very oscillating function with period 
2

T
u


   u  , this fact would be 

noticeable when solving the integral equation (2.9) , also from the definition for ‘x’ big 
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of the Riesz function , we have the (approximate) functional equation 
1

( )g x Riesz
x

   
 

        

1/ 4

1 1 1
( )g g x O

x xx

       
   

       (2.13)

Appendix A: An integral equation involving Gamma function 

for Kernel x
frac

t

 
  
 

The Riesz function, is not the only one that satisfy an integral equation similar to (2.9) , 
given the logarithm of the Gamma function defined by

 1 0
2

( )
log (1 ) ( )

n

n

z
z z A n

n
 






           

 1

1

1 1
dt

x x


  
   

 
          (A.1)

And  0A is a Real constant of integration , using again the Borel resummation trick with  

0

1
1

( )
nn dt

frac t
n t t

     
          

0

1
( )

1
n

n

z
z





 
      ( )B S S           (A.2)

The first equation in (A.3) is just the representation for fractional function, the last one 
is the condition that for a summable power series, the Borel transform must be equal to 
the usual sum , with  (A.1) and (A.2) we can obtain formally the integral equation

 1 0

0

2 log (1 ) 2 ( )
dt z

z z A frac f t
t t


  

        
 

      ( )
1

t
f t

t



     (A.3)

From  (A.3) we see that f(t) diverges as t for big ‘t’ , on the left part we have a 

function of order  1( )O z  , form the theory of integral equations with Symmetryc 
Kernels , the solution to the Riesz function can be expressed into an integral form

 0

0

1 1
( ) ( , ) 1tRiesz y x dtW x t e

x x


     

          2
0

( ) ( )
( , )

m i

x t
W x t frac xt

 






     (A.4)

Here 0 ( )y x is the solution to the equation   0

0

0 ( )frac zt y t dt


  , and    0i i
 


,   0i i
 



is the set of Orthogonal Eigenfunctions /Eigenvalues of  ( , ) ( , )K x t K t x frac xt  , 

function W(x,t) is called the Resolvent (or ‘inverse’ operator)
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