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Abstract

Ideas about the electron as a sort of a boundreteagnetic wave and/or the electron
as electromagnetic field trapped in (equivalentyegaiide can be found more or less
explicitly in many papers, for example by Zhi-YoWang, Roald Ekholdt, David
Hestenes, V.A.Induchoodan Menon, J. G. William$4nB. van der Mark.

What we want to show here is that the Dirac equndto electron and positron plane
waves admits an equivalent electrical circuit, csthgy of an equivalent transmission
line.

The same transmission line is representative ob@enm waveguide, so you can also
say that the Dirac equation for plane waves in@duwreimplicit representation in
terms of an equivalent waveguide.

All the calculation will be done in elementary fqrmith the usual notations of circuit
theory and electromagnetism, without the needgorteo Clifford algebra as in
previous papers.
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Equivalent waveguide representation for Dirac planevaves

Introduction and summary

In this paper an equivalence between transmisgierahd Dirac plane waves is
introduced. The same transmission line is reprasigatof TE, TM modes in
waveguide, so you can also say that the Dirac equfdr plane waves includes an
implicit analogy with an equivalent waveguide.

PART ONE: Starting from Maxwell equations, equasiam a waveguide for the
transverse components are derived.

PART TWO: in these equations we decouple the deggaredon X, y introducing an
analogue voltage and current V and | equivalemt waveguide mode (a TE mode).
This permits to define an equivalent transmissioa for the mode.

PART THREE: there is a degree of freedom in thende&fn of a scale factor for V
and I. With a proper choice of the scale factorMpt (and the impedance Z) the
equations for V, | are reduced to the form of the®equations for plane waves.
Thus the plane wave Dirac equations admits thegsreguivalent circuit in terms of
equivalent transmission line and/or equivalent vganee.

For simplicity the calculation will be done in ertked form only for a TE mode, and
shortly for TM.

All the calculation will be done in the classicatrhalism, with the usual notations of
circuit theory and electromagnetism, without thedt resort to Clifford algebra as
in [1].



PART ONE: Maxwell's equations in a waveguide for tle transverse components

In this section we derive the equations satisfigethle “transverse” component of the
E, Hguided fields. In particular we consider a cylimdtiwaveguide (of whatever
cross-section) with the axis parallel to the z akise non-evanescest, H fields are
therefore assumed to have a dependence on time @uatdinates described by
e« For “transverse” component &f, Hwe mean th&E, +iE,) and (H, +iH )
component, transverse to the z-axis.

We start from Maxwell's equations in natural ufatsl):
rotE = —a—H, rotH = a—E,divE =0,divH =0
or or
and in particular from these two equations:
rotE = —a—H,divE =0
or
where

m
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which, in terms of the individual components, are:

(1) 9,E,-9,E,=-0H,
(2) 9,E,-0,E,=-0,H,
(3) 0,E,-9,E =-0H,
(4) 9,E +d,E +0,E, =0

Forming —(2)+i(1) i.e. summing i times the equat{dhto minus equation (2) we get:
-0,(E, +iE )+ (0, +i0,)E, ==id,(H, +iH )
Similarly, forming (4) + i(3), we get:

(0, -0 )(E, +iE ) +0,E, =-i0,H,

We can repeat the procedure for the other two M#ébageations, i.erotH ZZ_E and

divH =0. The resulting 4 equations are:

~9,(E, +iE,) +(d, +id,)E, ==id,(H, +iH )
@,-i0,)(E, +iE,)+d,E, ==id,H,



-0,(H +iH )+, +id )H, =id, (E, +iE,)
@, -0, )(H, +iH )+d,H, =idE,

Now we specialise to the waveguide case and weieedmst the TE modeg, =0).
The above equations become:

(5) —0,(E,+iE,)=-i0,(H, +iH )
(6) (0, —i0,)(E, +iE))=—-i0H,
(7)  -0,(H, +iH,)+(0, +id,)H, =id,(E, +iE,)

(8) (0,-id, )(H, +iH )+0,H,=0

Suppose now a z propagation with an exponestial* (IEEE convention).
Replace everywhere, - iw:

(5) 0,(E, +iE,) =-a(H, +iH )

(6) (0, =10, )(E, +IE ) =aH,

(7)) =0,(H, +iH ) +(0, +id )H, = -w(E, +iE )
(8) (0,-i0,)H,+iH )+d,H,=0

We want equations expressed in terms of the texe\component&, +ig,) and
(H,+iH,) only. Take equation (7°) and use equation (6’) limi@ate the component
H, as follows.
From (6’) we get:

(0, +id )H, :ai)(ax +i0,)(0, —id,)(E, +iE,)
and then, as it is well know from the theory of wguides, being:

(0, +i9,)(9, —i0,)(E, +iE,) = (05 +07)(E, +iE,) =-k;(E, +iE,)
we arrive at:

: 1., :
(ax +Iay)Hz = _Z)kc (Ex +|Ey)

which can be substituted in (7°), obtaining:

. 1 _ _
-0,(H, +iH ) —Z)kf(EX +iE,) = -a(E, +iE,)

or:



8,(H, +iH ) = (@-—K?)E, +iE,)
w

But (in natural units ¢ = 1):
k:=af = -k

so that:
—l 2 = —g
(w wkc) w(l wz)

From (5’) and (7’) we then have:

(9)  0,(E,+iE))=-a(H, +iH,)

(10) o,(H, +iH )= a)(l—%)(Ex +iE,)

To establish a more direct correspondence withrresmission line equations:

(11) N i
dz

(12) a - ar(l—w—oz)\/
dz w

we rewrite the equations (9) and (19) as:
(13)  8,i(E, +iE,) = -ia(H, +iH )
(14) OZ(HX+iHy):—ia)(1—%)i(Ex+iEy)

Note: this means that equations similar to those ottdy@smission involve the
quantitiesi(g, +iE,) and (H, +iH ) andnot (E, +iE,) and(H, +iH ), ie there is an

imaginaryi between.



PART TWO: decouple the dependence on x, y

In this section we establish a clear correspondehequations (13) and (14) with the
transmission line equations.

The meaning of the imaginary umiivhich multiplies the second member of the
equations (13) and (14) is well expressed by equd8):

(5) d,(E, +IiE,)=id,(H, +iH )

which shows thag, +iE,) and(H, +iH ) are each other at 90° in the X, y plane; it's
i(E, +iE,) and(H, +iH ) which are "parallel”. Their quotient, as well ag Min a

transmission line, it is purely ohmic (or bettergdy real) such that V = ZI with Z
real, just as in a lossless transmission line-

More precisely, as the z,t dependence is givemégkponential:

iat—ik,z

e

making the two derivatives, ando, :

9. . ik
at Silw

z

we get from (5):
ik, (E, +iE,) =a(H, +iH )

This shows again and explicitly thgtE, +iE,) and(H, +iH,) are "parallel", and
their quotient is real:

w _i(E, +iE,)
K, (H, +iH)

or:
i(EX+iEy):ki(Hx+iHy)

z

Write now the transverse fieldg, +iE,) and(H, +iH,) in the form:

E, =6(x, YV (2)

15
(1) H, =h(x,y)! (2)



Note that if there are not physical conditions mhietermine V and I, the amplitudes
to be assigned individually te(x,y),V(z) as well as tth(x,y),1(2) are arbitrary,
provided their product remains constant and equtde amplitude of, and

respectivelyH, .
We can rewrite the previous equation:

(16) i(E, +iE,) =ki(Hx +iH )

as.
(17) iE :kiH‘t

or even.
(18) &(x YV (2) = kiﬁ(x, Y1 (2)

z

The (18) shows what we need right now, a parattebgtweenie(x,y) andh(x,y).
Express the parallelism in the form:

(19) ©(x,y) = Ah(x,y)

This allows to eliminate the dependence on X, \shasvn below.
Thanks to the definition (15), equations (13) (hkdgome:

or
0,8V = —iahl
2
d.hl =i a)(l—%)iév
but being:
e = Ah
we obtain:

N = i
A

2

. (49
9, :—|a)(l—a—g)AV



If there are not physical conditions that uniquidyermine V and | (as it happens for
example for TE and TM in waveguide) you might méike A the choice which is
most convenient , e.cp=1.

With this choice the above equations are writtethefinal form:

20) OV =-id

(21) 9,1 =-i a)(l—%)v

Compare it with the usual equations of the transimislines.

Since V and | depend only on z we can write theaggnos (20) and (21) in the usual
form of transmission line equivalent to a TE mod®IiKSA units (see for example
Ramo Whinnery [2]):

dav .
- = -l C(JJI

dz

ﬂ——iazs 1—6()—02
dz W’

The equations of a transmission line are:

(22)

d_V =-7]
dz

(23)
ﬂ =-YV
dz

where Z and Y depend on the transmission Iine\% is the characteristic

impedance of the line.
Equations (22) then implicitly assume as the chargstic line impedance:

Z=iwu
(24)

(25) 24 =

Is equal to the mode impedance ("Schelkunoff chigiice




(26) 7= ZowzzzTE

=
S

The equivalent line has inductance and capacitasde the following figure:

| |
11
@)
I
™

The transmission line is dispersive because theactexistic impedance (29) is
frequency dependent and it resonates when:

Remains, for the waveguide, all the remaining eathitess in the definition of
impedance and thus V, | discussed [1], which wersarze here in the following.



PART THREE: reduction to the form of the Dirac equation

As we have seen in the previous section, in theryhef waveguides, we can
introduce an equivalent voltage and current, V lakar all modes but the TEM one
the definition of V and | leaves the freedom in theice of a scale factor, as shown
below.

We remember the definition of transverse fieldeerms of V and I:

E (x y.2) =V(2))e(x. y))
(28)
H, (x y.2) = 1(z)h(x. y))

with the condition:

(29) P:%Reilétxﬁt DﬁdS:%Re(VI*)

The physical meaning of (28) is that V and | deldtely ignore the detailed
configuration ofg, and H, on the transverse plane.

According to (29) V and | correctly reproduce tlsue of the total energy that
propagates.

The impedance Z is given of course by:

CONNEE-E

Equation (28) leaves a degree of freedom in thmitieh of V and I. we can alter V
and | and simultaneousBh as follows:

V':av,é'zié
a
(31)
|':1|,ﬁ':aﬁ
a

which leaves condition (29) invariant:

(32) P :%Re(VI*):%Re(V' 1)

Accordingly the value of the impedance Z becomes:
(33) Z'=

10



This freedom does not change the value of quasitiiiated to energy storage and
propagation, such as:

2
V—,ZIZ,VI*
Z

We can now derive an explicit form of the equivalieansmission line which is
implied by the Dirac equation for plane wave.
Select the scale factor in (31) as:

_Nwta,
(34) a-= "z

Substituting in (20), (21) we get:

d—\fl+(iw+ia)0)l':o

Z

(35)
%+(ia)—ia)0)\/':o

L

and the new Z is:

(36) ZI:¥ = w-;)wo Zre

It is immediate now to see that the equations {@5yoltage and current are actually
the Dirac equation fog, andy,.

To see this we refer to the Dirac equation writteaxtended form, as can be found
for example in Schiff [3]:

Jd .0 0 0 .

— =l =W,y +| —+imy, =0
(ax oy Vs az% (ar jwl

Jd .0 0 0 .
—+i— -—y,+| —+im =0
ox dy Vs azl’[/4 (ar jll/z

11



0 .0 0 0 .

— — - i =0

[ax * aijl azl'[/2 +(0T |mj¢/4

Herey, w,.w,p, are complex functions such as V, | in the usuauti theory. By

settingy, =y, =0 and assuming the'“ dependence on t, as it is for the Dirac’s
plane wave solution we have for the two componédifitsrent from zero:

(w+icw, =0

oY
0z
(37)
0 S
%+(|a)—|a)o)¢3 =0
which coincide with (35).
Thus the Dirac equations (37) are perfectly analsgo the waveguide-transmission
line equations (35), once we select the choice f@4the scale factos . In particular

the characteristic impedance for the Dirac equasiort the "Schelkunoff choice”
(26), but it's that determined by (35), i.e.:

A
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The equivalent transmission line has inductancdscapacitance as shown in the
following figure:

—\

L=+
w

- c=a-2Y
([

The natural units employed to write (35) and (38)@nvenient but they may mask
the true meaning of the electrical parametersdidatance, capacitance and
impedance.

Rewrite the equations (35) in MKSA units:

% = —(ia)+ia)0),ul '= —icqu(l+%)l '
(39)
dl'

d'_ oo G
- (w-ia)eV'=-iae NV

Comparing (39) with (23) we deduce the parametktiseotransmission line.
The equivalent transmission line has serial Z aardlfel Y like this:

—W

L= u+2d)
w

- Cc=:01-2)
w

The "Dirac choice" for the characteristic impedarschen:

77 _ |p |wtaw, ., ot
(40) A_\/: a)—a)z =% a)—a)z

For « - « this impedance tends to the impedaagef empty space.
The same holds fag, =0, which holds for a TEM-like propagation (which mea
also no waveguide and neutrino equations).

13



The equivalent circuit shows that far= «, there is voltage V while the current | is
zero, as can be seen also by the impedance (40).

This seems physically reasonable by the fact tireatvhole calculation from the
beginning has been developed for a TE.

For ws w, exponentially damped evanescent waves propagate.

Until now the calculation was done in extended féoma TE, from the Maxwell
equations (5) and (7).

This will be now briefly repeated for a TM with tipair of equations (6), (8).

With similar procedure, for TM mode we get the daling equivalent circuit

1

I
T

L=u

and equations similar to (22):

dav. . w.’
— =—iau|1-—= |l
dz w[ a)ZJ

(41)

— = -V
z

where we use the MKSA units.

14



Taking advantage of the arbitrariness inherenbitage and current and proceeding
as for (34) (35), but now with:

- Jw
34bis =
( ) a=——— o
we arrive at;

d_\{l+(iw_iwo)ﬂllzo

L

(42)

%+(ia)+ia)0)£V'=O

You can now see that the equations (42) for voleagkcurrent are now
corresponding to the Dirac equation for andy,. These are, in a form similar to
(37):

-%% + (iw"'iwo)‘ﬂz =0
(43)
0 A
_sz +iw-ia )y, =0
Identify with (42) except for a complex conjugafeeaation, which is interpreted as

wave propagatior™“*** instead ofe“™*. The equivalent circuit, deductible from
(42), is the following

——\

L= pa-2)
w

— C=e+
w

The " Dirac choice" for the characteristic impedarsthen:

77 - (1 |w-aw _ ., |o-aw,
(44) A \/: w+ w, %o w+ w,

15



The characteristic impedance assumes a highly symenfi@m between the TE and
TM cases, see (40) and (44).

Also the equivalent circuit is very symmetricalisitalways the same apart for a
change of sign iny,.

For « - » the impedance tends to the impedang®f empty space.

The same holds fag, =0, which still means a TEM-like propagation (whicleans

also no waveguide and neutrino equations, but nilwapposite polarization).

The equivalent circuit shows now that foE «, there is current I, while voltage V is
zero, as can be seen also by the impedance (40).

This seems physically reasonable by the fact thatthe calculation has been
developed for a TM.
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CONCLUSIONS

We have thus shown that the Dirac equation forelaaves can be put in
correspondence with an electrical circuit, equinate a transmission line.

The same transmission line is representative ob@enm waveguide, so you can also
say that the Dirac equation for plane waves indwuteimplicit representation of an
equivalent waveguide.

The equivalence is embedded in the usual V anddrgsion.

To quote Hestenes “we want to emphasize thatrkespretation is by no means a
radical speculation; it is a fact! The interpreiathas been implicit in the Dirac
theory all the time. All we have done is make pleit”. (Hestenes here refers to the
interpretation of the imaginary “i”).

The calculation was done in extended form for affdmn the Maxwell equations (5)
and (7). This was briefly repeated for a TM witk tair of equations (6), (8).

Doing so, the full set of plane wave Dirac equatioan be interpreted in terms of
appropriate equivalent transmission line circuitd/ar equivalent waveguide.
Obviously solutions with opposite spin are représety opposite polarization in the
waveguide.

The equivalent transmission line shares all thalystoperties of the transmission
lines, including the dispersive character, and esaent waves.

The evanescent waves may be the correspondergabfagls propagating through a
potential barrier.
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