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The results of the experiments, which were set until now for confirmation of Higgs's 
mechanism, are negative.  In connection with the difficulties, which will appear if Higgs's 
bosons is not discovered, an interest arises in other possible variations of the field theory, 
which can be accessible for experimental check. Below we will examine the nonlinear 
quantum field theory (NQFT), which is the generalization of Standard Model and which solves 
the problem of particle masses  without the Higgs mechanism.  
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1.0. Introduction. Nonlinear field theories and the Standard Model  
1.1.“Is the quantum theory linear or is it a nonlinear theory?” 
This question, set by W. Heisenberg in 1967 (Heisenberg, 1967), arose in connection with the fact 
that  “practically every problem in theoretical physics is governed by nonlinear mathematical 
equations, except perhaps quantum theory, and even in quantum theory it is a rather controversial 
question whether it will finally be a linear or nonlinear theory”.  
 A number of works is devoted to the analysis of this contradiction (Parwani, 2005; Jordan, 
2007), but no final solution was found until now.  

1.2. Nonlinear electromagnetic basis of modern quantum field theory 
The basis of the contemporary theory of elementary particles - Standard Model (SМ) - is the 
nonlinear theory of Yang–Mills. Another special feature of contemporary theory is its close 
connection with the electromagnetism. 

According to modern ideas (Ryder, 1985), the observed substance of the Universe consists of 
photons, leptons and quarks. Besides electromagnetic interactions, there are strong and weak 
interactions. All of these interactions are described by the unified theory, which is a substantial 
generalization of Maxwell's theory. Instead of vectors of the usual electrical and magnetic fields 

 and ΗΕ
r r

, the modern theory contains several similar field vectors iE
r

 and  , the waves of  
which are strictly nonlinear. 

iH
r

The first such generalization of Maxwell's theory was made by C. Yang and R. Mills in 1954. 
All similar theories are therefore called the Yang-Mills theories. Let us emphasize that the 
nonlinearity is deeply embedded into the nature of the Yang-Mills fields (Y. Nambu in (Coll. of  
transl. papers, 1962)): “The generalization of the Maxwell theory is the theory of the Yang-Mills 
fields or non-Abelian gauge fields. Its equations are nonlinear. In contrast to this, the equations of 
Maxwell are linear, in other words, Abelian”. 

Obviously, if we prove that the theory of Dirac’s lepton can also be recorded as the nonlinear 
theory of electromagnetic field, then it is possible to hope for the creation of unified nonlinear 
electromagnetic field theory.  

The first unified nonlinear quantum theory of elementary particles was the theory of W. 
Heisenberg and his colleagues (Coll. of articles, 1959; Heisenberg, 1966). The universal unified 
spinor field was accepted as the basis of this theory.  

Unfortunately, the mathematical solution of Heisenberg's equation proved to be a difficult 
problem and theory was not further developed. But one of the ideas of Heisenberg in framework 
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of this theory influenced deeply the development of modern quantum field theory. This was the 
idea of the spontaneous symmetry breakdown (SSB), which became the basis of Higgs's 
mechanism of particle mass generation in the Standard Model theory (SM). 

1.3. Unified quantum nonlinear Heisenberg's theory of matter, and spontaneous 
symmetry breakdown  
W. Heisenberg’s goal was the description of all particles as bound states of a different number of 
some primary particles.  

In order to obtain all necessary particle spins, the primary particles must have spin ½. 
Therefore, as his initial equation, Heisenberg used Dirac’s electron equation of leptons: 
 ( ) 0ˆ =−∂ ψα mi ,   (1.1) 
where γ  is the Dirac’s matrix,   is the mass of a particle,  and m ∂  is a four-dimensional gradient.  

According to Heisenberg’s supposition, the fundamental equation must have the highest 
possible symmetry. However the mass term in Dirac's equation disrupts the invariance of this 
equation in relation to a series of transformations (of transformation ψγψ 5→ , where 5γ  is the 
fifth matrix of Dirac; of scale transformation xx θ→  ψθψ 21−→ , where θ  is a certain number, 
and others). Therefore W. Heisenberg proposed a nonlinear equation without particle mass, which 
in its simplest version has the following form: 
 ( )[ ] 0ˆˆ =−∂ + ψψγψλαi ,   (1.2) 

where γ̂  is the gamma set of the Dirac matrices and λ  according to Heisenberg (Heisenberg, 
1966) is an arbitrary constant (which is sometimes called a coupling constant or a constant of self-
interaction).. 

Since the equation (1.2) has not a term with particle mass, it possess the highest possible 
symmetry. However it is very well known that the interactions of elementary particles are 
characterized by different symmetries (isotopic symmetry is lost upon transfer from the strong 
interaction to the electromagnetic, upon the subsequent transfer to the weak interaction the 
law of parity conservation ceases to work, etc). It is understandable that it is impossible to 
create a simple fundamental equation which will automatically have these different 
symmetries. 

The theory of ferromagnetism, the author of which was Heisenberg, showed him a way to 
resolve this situation. It was the idea of spontaneous symmetry breaking (SSB): the fundamental 
equation can have a maximum symmetry, but other symmetries can be introduced by the 
spontaneous breaking of this symmetry. 

One of the most important mechanisms of SSB within the framework of Heisenberg's program 
was proposed at the beginning of the 1960's by Nambu and Jona-Lazinio (Nambu and 
Jona-Lasinio, 1961, 1961a). It was taken from the microscopic theory of superconductivity of 
Bardeen, Cooper and Shriffer (known as the BCSh mechanism). 

Mathematically this was like the appearance of a new symmetry - so-called chiral symmetry, 
which is spontaneously broken. As a result of the breaking of chiral symmetry, in the model of 
Nambu and Jona-Lasinio mesons appeared, and fermions acquired significant mass. 

Heisenberg’s equation (1.2) and the  equation of superconductivity (nonrelativistic here):  

 ( ) 0ˆ
2

2

=⎥
⎦

⎤
⎢
⎣

⎡
−

∇
+

∂
∂ + ψψγψλ

mt
i ,  (1.3) 

have similarities. In Heisenberg's theory, in the case of attraction between primary particles, SSB 
also occurs as the result of formation of Cooper’s pairs of primary particles and their Bose 
condensation.  

The generalization of the SSB model in the case of interaction of scalar and vector EM fields 
was examined by Higgs. In a statical limit, Higgs' model is completely analogous to the theory of 
Ginsburg-Landau’s superconductivity, being its relativistic generalization.  
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Thus, we come to the conclusion that in order to introduce the required symmetries and 
particle masses we must take the initial dynamic equations in a mass-free form and use the idea of 
spontaneous symmetry breakdown (SSB).  

Early versions of a unified theory of weak and EM interactions were proposed by Weinberg 
and Salam. An essential element of this theory was the use of Higgs's model. 

1.4. The SSB mechanism and mass generation   
The possibility of calculation of the particle masses by means of the SSB is the characteristic 
property of SM. The mathematical description of this procedure is called Higgs's mechanism. 
This mechanism is repeatedly described in literature. Therefore we will only consider the 
conclusions of the theory. 

The Higgs field in SM has three important functions:  
1) it breaks the gauge symmetries and gives masses to intermediate bosons (W and Z);  
2) it breaks the chiral symmetry and gives masses to fermions;  
3) it restores the unitarity of the theory. 
The last role is very important: if Higgs's boson does not exist, the unitarity of theory in the 

general case will be broken. In this case it is necessary to exceed the limits of SM. According to 
present ideas this possibility gives: super-symmetry; the additional measurements of space-time; 
“great” unificaton of interactions; new internal particle structure of SM (technicolor, little Higgs, 
etc); superstring, membranes, and the like. But all these versions lie beyond the limitations of the 
experimental check. 

In the Standard Model theory the Higgs's boson mass is not determined. Some estimations, 
which is based on experimental data, showed that the mass of Higgs's boson must lie 
approximately in the interval of 96-251 GeV. The results of the experiments, which were set 
until now for confirmation of Higgs's mechanism, are negative. With a 95% confidence level 
(ScienceDaily, 2009) the mass of the Higgs boson (within the framework of SM) must be in 
the limits: m(H) >114 GeV from straight searches on LEP II, and m(H) <160 GeV from the fit 
of precision measurements on LEP and Tevatron. Also the 1st type of two-doublet Higgs 
model, in which the different bosons of Higgs are required, was not confirmed. 

Other results show that the probability of the Higgs boson detection in a remained, 
comparatively small, region of energies from 114 to 160 GeV is limited. In connection with the 
difficulties, which will appear if Higgs's bosons is not discovered, an interest arises in other 
possible variations of the field theory, which can be accessible for experimental check. 

Below we will examine the nonlinear theory of spinor particles, which is possible to solve the 
problem of particle masses in the framework of SM without the Higgs mechanism. The simplest 
way to approach the nonlinear theory is the use of the electromagnetic representation of Dirac’s 
lepton theory. 

2.0. Electromagnetic representation of the lepton theory 
The possibility of a formal representation of the Schroedinger or Dirac electron equations in a 
form of linear Maxwell equations was mentioned in several articles and books (Archibald, 1955; 
Akhiezer and Berestetskii, 1965; Koga, 1975; Campolattoro, 1980; Rodrigues, 2002).  However, 
the sequential and noncontradictory electromagnetic representation of the nonlinear theory of 
leptons did not exist until now (Kyriakos, 2004b; 2005) 

2.1. The bispinor form of Dirac’s lepton equation 
In the common form, the Dirac's equation for the free leptons is written in the bispinor form. 
There are two bispinor Dirac equation forms (Schiff, 1955; Bethe, 1964): 

 ( )[ ] 0ˆˆˆˆˆ 2 =++ ψβαεα mcpco
rr ,  (2.1) 

 ( )[ ] 0ˆˆˆˆˆ 2 =−−+ mcpco βαεαψ rr ,  (2.2) 
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which correspond to two signs of the relativistic expression of the electron energy:  

 4222 cmpc +±=
rε ,  (2.3) 

Here ∇−==
r

h
r

h ip
t

i ˆ,ˆ
∂
∂

ε  are the operators of the energy and momentum;  are the 

electron energy and momentum respectively;  is the light velocity;  is the electron mass, and  
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where  0σ̂ , σ̂r  are the Pauli matrices. 
Note also that for each sign of the equation (2.3) there are two Hermitian-conjugate Dirac’s 

equations. 
Let us show that the equations, their elements and also mathematical constructions, which 

comprise the lasts, have simple electrodynamics sense in the nonlinear theory.  

2.2. Electromagnetic form of  Dirac’s lepton equation 
Consider two Hermitian-conjugate equations, corresponding to the minus sign of the expression 
(2.3): 

 ( )[ 0ˆˆˆˆˆ 2 =++ ψβαεα mcpco ]rr ,  (2.5’) 

 ( )[ ] 0ˆˆˆˆˆ 2 =+++ mcpco βαεαψ rr
, (2.5’’) 

Let us choose the electromagnetic representation of the wave function, for example, in the 
form of wave in direction of the -axis. Then the lepton wave function must contain the 
following field components: 

y
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ψ ,   ( )zxzx iHiHEE −−=
+

ψ ,    (2.6) 

Let us emphasize that here the electrical and magnetic fields are not Maxwell's fields, but 
nonlinear quantized electromagnetic fields, which have the same solutions as the Dirac bispinors  
(in other words, these fields are not vector, but electromagnetic bispinors). 

Using (2.6), from (2.5') and (2.5'') we will obtain EM forms of Dirac's equations for the lepton 
and antilepton: 
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where Ej e
rr

π
ω
4

=   and  Hj m
rr

π
ω
4

=  are own electromagnetic currents of particles, which depend 

on the wave function, in which 
h

2cme
s =ω  is the conductivity-like value. As we can see, 

equations (2.7’) and (2.7’’) are the Maxwell-like equations with imaginary electric and magnetic 
currents. It is known that the existence of the magnetic current mj

r
 does not contradict to quantum 

theory (see Dirac’s theory of a magnetic monopole (Dirac, 1931)).  
It is easy to verify that the correct choice of wave functions can be obtained by cyclic 

transposition of indices, or by a canonical transformation of matrices and wave functions 
Analysis shows (Kyriakos, 2005) that particles’ own currents in the general case are 

alternating currents. In this case, the particle charge as integral of the current is equal to zero. Such 
particles are neutral and can be identified with neutral leptons with contrary spirality – neutrino 
and antineutrino. 

In a more special case (Kyriakos, 2004b) there are particles with direct electric currents and 
zero magnetic currents. In this case according to the equations (2.7') and (2.7'') there are two 
identical particles with a different sign of currents. Obviously, leptons of such type with positive 
and negative electric charges can be identified with the electron and positron.  

It should be noted that there are no particles with direct magnetic currents, possibly because 
magnetic currents do not ensure the stability of particles. 

2.3. Electrodynamical sense of bilinear forms of Dirac’s lepton equation 
It is well known that there are 16 Dirac matrices of 4 x 4 dimensions. We will exploit the same set 
of matrices, which Dirac used, and name it as α -set. 

The values , where ψαψ ˆ+=O α̂  is any of  the Dirac’s matrices, are called bilinear forms of 
Dirac's theory. 

It can be shown that the tensor dimensions of a bilinear form follows from the tensor 
dimensions of nonlinear electrodynamics forms. Let us enumerate the Dirac’s matrices as 
follows (Akhiezer and Berestetskii, 1965; Bethe, 1964; Schiff, 1955): 
Here we have:  
1) scalar ,  βα ˆˆ 4 ≡

2) 4-vector { } { }432100 ˆ,ˆ,ˆ,ˆ,ˆˆ,ˆˆ ααααααααµ ≡=
r

,  
3) pseudoscalar 43215 ˆˆˆˆˆ ααααα ⋅⋅⋅= ,  
4) 4-pseudovector . µµ ααα ˆˆˆ 5 ⋅=A

Let us calculate (Kyriakos, 2004a) the electrodynamics values corresponding to the above 
matrices using  ψ  according to (2.6). 

1) ( ) ( ) ,8ˆ 1
222222

4 IHEHHEE zxzx πψαψ =−=+−+=+
rr

 where I1  is the first scalar 
(invariant) of electrodynamics;  

2) uHEo πψαψ 8ˆ 22 =+=+
rr

, where  is the energy density of the electromagnetic field; u

   yPyy gcS
c

rr
ππψαψ 88ˆ −=−=+ , where rg y  is a momentum density of an electromagnetic 

field; the value 
⎭
⎬
⎫

⎩
⎨
⎧ gu

c
r,1  is a 4-vector of the energy-momentum of EM field. 

3) ( ) ( )HEHEHE zzxx

rr
⋅=+=

+ 22ˆ5 ψαψ  is a pseudoscalar of electromagnetic field, and 

( ) 2
2

IHE =⋅
rr

 is the second scalar (invariant) of electromagnetic field theory. 
It is not difficult to show that the statistical interpretation of wave function within the 

framework of SM is equivalent to electromagnetic representation of wave function in NQFT, if 
we take into account the normalization of energy and momentum densities of particle field 
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relatively to the particle mass. Actually, the probability continuity equation can be obtained from 
the Dirac’s equation (Schiff, 1955; Bethe, 1964): 

 
( ) ( ) ,0,

,
=+ trSdiv

t
trP

pr
pr rr
r

∂
∂

   (2.8) 

Here, ( ) ψαψ 0ˆ, +=trPpr
r  is the probability density, and ( ) ψαψ ˆ, rrr

+−= ctrS pr  is the 

probability flux density. Using the above results, we can obtain:  and ( ) utrPpr π8, =
r

SgcS pr

rrr
π82 == . Then, an electromagnetic form of equation (2.8) can be presented in the 

following form: 

 0=+ Sdiv
t
u r

∂
∂ ,   (2.9) 

which is the form of law of energy-momentum  conservation of electromagnetic wave. 

3.0. Nonlinear lepton equation and its Lagrangian 
Further we will derive the general type of the nonlinear equation of electron and construct its 
Lagrangian. 

3.1. Self-action and the nonlinear equation of leptons 
The stability of a semi-photon is only possible because of the self-action of the semi-photon. 
This self-action forms the particle itself, and the particle’s internal parameters must ensure this 
self-action. The basic parameters which determine the behavior of a particle are the energy and 
momentum of the particle’s fields. This shows how self-action can be introduced into the 
equation. 

Since Dirac's equation (2.5) does not have other parameters, the internal parameters of electron 
must be connected with the free term: . Linearizing the conservation law of energy-

momentum 

2ˆ cmeβ

02222 =−− cmpc e
rε  according to Dirac's method, namely 

( 24222 ˆˆ cmpccmpc ee βαε +±=+±=±
rrr ), we obtain the linear equivalent of this relationship: the 

linear expression of the energy-momentum conservation law (in present case for the internal  (in) 
field 

 inininine Aeepccm
rrrr αϕαεβ ˆˆˆ 2 −−=−−= ,  (A) 

(note that here inin eϕε =  and inin Aecp
r

=  are not operators, but the energy and momentum of 

field; inϕ  and  are the scalar and vector potentials correspondingly). Substituting (A) into 
Dirac's equation, we obtain the following equation: 

inA
r

 ( ) ( )[ ] 0ˆˆˆˆ0 =−⋅+− ψαεεα inin ppc rrr ,  (3.1)    

Here, the inner energy inε and momentum  can be expressed using the inner energy density u  

and the inner momentum density 
inp

gr (or Poynting vector S
r

) of an EM wave: 

 ( ) ∫∫∫∫ =+=
τ

τ
π

ε
0,,

22

8
1 uddxdydzHE

zyx
in

rr
,  (3.2)        

 [ ] ∫∫∫∫∫ ==×=
ττ

ττ
0

2
0,,

1 ds
c

dgdxdydzHEp
zyx

in
rrrrr , (3.3)       

assuming that the upper limit of integration for the space is variable ( ∞<≤ zyx ,,0 ) or 
conditionally ( ∞<≤τ0 ), where dxdydzd =τ . 
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Taking into account the EM form of ψ - function (see chapters 3 -4), we obtain the quantum 
forms of and  as follows: u S

r

 ( ) ψαψ
ππ 0

22 ˆ
8
1

8
1 +=+= HEu

rr
, (3.4)  

 [ ] ψαψ
ππ

ˆ
84

2 rrrrr +−==×=
cgcHEcS ,  (3.5) 

Substituting expressions (3.2) and (3.3) into the electron equation (3.1), and taking into 
account (3.4) and (3.5), we will obtain the nonlinear integro-differential equation in both 
electromagnetic and quantum forms. 

We assume that equation (3.1) is the basic nonlinear equation of the electron, which describes 
both the electron’s motion and structure.  

Actually, taking into account the relationship (A), the equation (3.1) is reduced to the usual 
Dirac’s equation (3.1), which describes motion of an electron. 

For the description of the electron field structure apparently it is necessary to solve the 
nonlinear equation. The difficulty of solving such equations is already noted by Heisenberg 
(Heisenberg, 1967). The solution is usually anticipated by the analysis of the properties of the 
equation symmetry and by the possibility of its conversion into the system of linear equations. A 
large number of papers is devoted to this (Zakharov and Takhtadzhyan, 1979; Fushchich and 
Shtelen, 1983;  Fushchich and Zhdanov, 1987. ;  Fushchich and Zhdanov, 1988), etc. 

In order to study the properties of symmetry, let us find the approximate quantum form of the 
equation (3.1). Then the nonlinear equation of Heisenberg occurs unexpectedly, which properties 
of symmetry are well studied. 

3.1.1. The derivation of the nonlinear equation of Heisenberg 
Let us find the approximate quantum form of the equation (3.1). 

Taking into account that the solution of Dirac’s equation for a free electron is the plane wave 
 ( )[ ]kyti −= ωψψ exp0 ,   (3.6)  

we can approximately write (3.2) and (3.3) as follows: 

 ( )22
0 8

ˆ
8

HEup

rr
+

∆
=

∆
=∆= +

π
τψαψ

π
ττε , (3.7)       

   [ ]HE
cc

gp p

rrrrr
×

∆
=

∆
−=∆= +

π
τψαψ

π
ττ

4
ˆ

8
,   (3.8)      

where τ∆  is the volume that contains the main part of the semi-photon’s energy. If we assume 
that the fields of the particle apply to infinity, then apparently the cutting of integral will lead to 
the violation of the unitarity of theory. This must be taken into account in the use of this 
(approximate) equation for the description of particles. 

Using   (3.7)  and  (3.8) we can find the approximate form of the equation (3.1) as follows: 

 ( 0ˆˆˆ
8

ˆ
0 =−

∆
+∇− ++ ψψαψαψαψ

π
τψα

∂
ψ∂ rrrr

c
ic

t
) ,        (3.9) 

If instead of using the α -set of Dirac’s matrices we use the γ -set matrices, from the equation 
(3.9) we obtain the equation of Heisenberg in a form, which is known from the theory 
(Heisenberg, 1966; Paper translation collection, 1959):  

 ( ) ( )[ ] 0
2
1

55 =++
∂
∂ ψγγψψγγψγψψγλψγ µµµµ

µ
µ i

x
,   (3.10) 

where 
cπ
τλ

4
∆

=   is a positive constant. 
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The nonlinear equation (3.10) was postulated by Heisenberg. Unlike, the equation (3.9) was 
obtained in a logical and correct way, and the constant λ  automatically appears in this equation 
as a self-action constant.  

In order to understand the connection of this theory with the contemporary results, let us find 
the Lagrangian, which corresponds to equation (3.9-3.10). 

3.2. The Lagrangian of the nonlinear lepton theory  
The linear type Lagrangian is presented in quantum form in Dirac’s electron theory as follows 
(Schiff, 1955): 

 ( ) ,ˆˆˆˆ 2 ψβαεψ cmpcL eD ++= + rr    (3.11) 

It is not difficult to find its electromagnetic form: 

 ( ),
8

22 HEiSdiv
t
uLD

rrr
−−+=

π
ω

∂
∂   (3.12) 

(Note that in the case of a variation procedure we must distinguish the complex conjugate field 
vectors 

r
E * ,

r
H * and 

r
E ,

r
H ). 

The Lagrangian of nonlinear theory can be obtained from the Lagrangian (3.11) using the same 
method that we used to find the nonlinear equation. Substituting relationship (A) into this 
equation, we obtain: 

    ( ) ( ) ψαεψψαεψ ininN pcpcL rrrr
⋅−+⋅−= ++ ˆˆˆˆ ,      (3.13)  

We will assume that (3.13) represents the general form of the Lagrangian of nonlinear 
electron theory.  

In order to confirm this, let us compare (3.13) with the known results from classical and 
quantum physics. For this purpose let us find  electromagnetic and quantum approximations of 
this Lagrangian. 

Using (3.7) and (3.8), we can represent (3.11) in the following quantum approximation: 

 ( ) ( ) ( ) ( ) ⎥⎦⎤⎢⎣
⎡ −

∆
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⎥
⎥
⎦

⎤

⎢
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h cdiv
t

iLN , (3.14) 

In order to obtain an EM form of (3.14), we initially substitute the normalized ψ -function 

using the expression NN L
mc

L 28
1'

π
= .  Then, using (3.4) and (3.5), we obtain the following 

electromagnetic approximation: 

 ( 222
22

1
2

' gcu
cm

gdiv
t
u

cm
iL

ee
N

rrh
−

∆
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

τ
∂
∂ ),      (3.15) 

We can transform the second term using a known identity in electrodynamics: 

( ) ( ) ( ) ( ) ( ) ( )222222222222 448 HEHEHEHEgcU
rrrrrrrrr

⋅+−=×−+=−π , (3.16) 

Taking into account that , and using (3.12) and (3.16), we can represent (3.15) in the 
following form: 

0=DL

( )
( )

( ) ( )[ ]2222
22

22 4
88

1' HEHE
mc

HEL N

rrrrrr
⋅+−

∆
+−=

π
τ

π
, (3.17)   

As we can see, the approximation of the Lagrangian of the nonlinear equation for the 
transformed quantum of an EM wave contains only invariants of Maxwell’s theory. It is similar to 
the known Lagrangian of photon-photon interaction (Akhiezer and Berestetskii, 1965). 

Now, let us analyze the quantum form of the Lagrangian density (3.17). The equation (3.14) 
can be written in the form: 



                                       
9 

  ( ) ( ) ⎥⎦⎤⎢⎣
⎡ −

∆
+= +++ 22

0
ˆˆ

8
ˆ ψαψψαψ

π
τ

ψ∂αψ µµ
r

QL ,  (3.18) 

We can see that in quantum form, the electrodynamics correlation (3.16) takes the form of the 
known Fierz identity (Cheng and Li, 1984; 2000):   

   ( ) ( ) ( ) ( )ψ α ψ ψ α ψ ψ α ψ ψ α ψ+ + + +− = +$ $ $ $0

2 2

4

2

5

2r
,  (3.19)   

Using (3.19), we obtain from (3.18): 

 ( ) ( )[ ]2
5

2
4 ˆˆ

8
ˆ ψαψψαψ

π
τψ∂αψ µµ

+++ −
∆

+=QL ,  (3.20) 

If instead of using the α -set of Dirac’s matrices we use the γ -set matrices, the Lagrangian 
(3.20) coincides with the Lagrangian of Nambu – Jona-Lazinio (Nambu and Jona-Lazinio, 1961; 
1961a).  

Let us note some special features of the results, obtained in the nonlinear quantum field theory 
(NQFT) in comparison with the results that were obtained in the contemporary theory. 

Since the Lagrangian of Nambu – Jona-Lazinio is a Lagrangian of weak interaction of the type 
(V - A), the nonlinear theory NQFT covers not only electromagnetic, but also weak interactions. 
To this corresponds the fact that in the general case Dirac's equation describes massive neutrino 
with a conserved inner helicity (Kyriakos, 2005).   

The NQFT show that Lagrangian of Nambu – Jona-Lazinio is approximate. Therefore its use 
can cause different violations of the type of violations of unitarity.  This is connected to the fact 
that the probability distribution density must behave under the Lorenz transformation as time 
component of the four-dimensional vector, whose divergence is equal to zero. But the Lagrangian 
of Nambu - Jona-Lazinio contains the strengths of electromagnetic field. As is known, from the 
strengths of electromagnetic field it is not possible to compose the bilinear combination, which 
forms the four-dimensional vector, whose divergence would be equal zero. However, this value 
can be constructed, relying on the integral values - energy and momentum, which compose a 
completely determined 4-vector. 

It is understandable that in order to avoid these difficulties there is no need to use some 
additional models; it is sufficient to use the precise Lagrangian (3.13). 

As we noted, Heisenberg's equation has a high degree of symmetry because of the absence of 
mass, but a special mathematical mechanism SSB is required for the primary particles of equation 
(3.10) to become massive. 

In our case the nonlinear integro-differential equation (3.1) does not contain mass, and “the 
mechanism”, through which the mass is introduced into the quantum field equations, is the 
relationship (A) (Kyriakos, 2009): 

 2ˆˆˆ cmAeepc einininin βαϕαε =−−=−−
rrrr ,  (A’). 

This relationship, recorded here in the reverse order, clearly reflects the process of symmetry 
breaking, since we substitute the term of high degree of symmetry with a term of low degree of 
symmetry. Moreover, it is possible to show that the relationship (A’) reflects the result of the 
rotation transformation of the internal symmetry of particle, which is mathematically equivalent to 
the gauge transformation result (Kyriakos, 2009). 

The special feature of this mechanism is that it does not require the introduction of additional 
particles and at the same time it does not lead to the necessity to exceed the limits of SM. 

Heisenberg poses a problem to obtain all the remaining particles in the form of bound states of 
a different number of primary particles on the basis of some primary spinor particles.  

If we consider the spinor particles as the primary building elements of matter, then it is really 
possible, using spinor equations, to obtain the equations of all other particles (Kyriakos, 2009). 

Now, on the basis of the obtained results it is possible to propose the solution of the difficulties 
of the theory, which can arise in connection with the possible absence of Higgs's boson in nature. 
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4.0. The symmetry breaking and mass generation without Higgs's 
mechanism 
In the introduction we analyzed the difficulties, which arose in Heisenberg’s attempt to obtain a 
linear equation for the massive particle from the mass-free nonlinear equation. In order to 
overcome these difficulties Heisenberg proposed to use a SSB of the ground state. 

To overcome the same difficulties within the framework of SM the introduction of SSB with 
additional particles - Goldstone bosons and Higgs's bosons – was also nessesery.  

The essence of the Nambu – Jona-Lazinio and Higgs mechanisms of mass generation is 
described in the majority of books about the quantum field theory. We will only note nodal points 
of this description, which are necessary for the comparison. 

As it is known (Okun, 1988; Ryder, 1985) the SSB according to Higgs lies in the fact that from 
the mass-free vector field (similar to photon field), which has two spin states, and the mass-free 
doublet of scalar field φ  (two particles  and two antiparticles 0,ϕϕ + 0,ϕϕ − ), appers the massive 
vector particle with three projections of isospin.  In this case from four scalar fields as a result of 
SSB three particles “are eaten” and one particle acquires mass. These massive bosons are called 
Higgs's bosons. 

It is remarkable that SSB appears by the nonlinear interaction of the field φ  with itself; the 

self-interaction energy can be written down in the form of the potential ( )2222)( ηφλφ −=V , 

where 002 ϕϕϕϕφ += ++  is isoscalar, λ  is the dimensionless parameter, η  is the parameter, 
which has the dimensionality of mass. 

Within the framework of NQFT (Kyriakos, 2009) the process of the particles mass 
generation is connected with the generation of particles themselves, so they acquire all their 
parameters and characteristics in the process of this generation. Nevertheless, analogy with 
the process of particles’ mass generation according to Higgs's mechanism is obvious. Let us 
compare these mechanisms step by step. 

1) Similarly to Higgs's mechanism (HМ) the initial stage of the introduction of mass in 
NQFT is the mass-free field of photon.  

2) In the second stage in NQFT occurs the process of the symmetry breaking of initial 
field. But in contrast to HM here, there is no need of introducing  any additional particles. 
Symmetry breaking occurs as a result of rotation transformation of the photon fields. Due to 
this process the photon acquires mass and becomes the “massive photon”, i.e. the intermediate 
boson. In this case, similarly with HM, mass appears as a result of self-interaction of photon 
fields (conditionally speaking, photon becomes an additional particle by itself). 

It is important to emphasize that the result of the rotation transformation is equivalent to the 
result of  gauge transformation . Therefore the process of acquisition of the particles’ masses in 
NQFT always remains an invariance relatively to gauge transformations. 

3) Similar to Higgs's mechanism, in NQFT the intermediate boson (“massive photon”) is 
necessary for the generation of other massive particles - leptons and hadrons. But in contrast to 
SM in NQFT elementary particles (excluding photons) are never mass-free. This corresponds to 
the experimental observations: in nature no mass-free elementary particles were ever observed, 
except for photons. With the spontaneous symmetry breaking of massive intermediate photon all 
particles are born massive. In particular, under certain conditions the particles appear in form of 
pairs of particle-antiparticle in reaction of the intermediate boson disintegration.  

Let us also note that the mathematical description of all these stages has similarity both in SM 
and NQFT. This allows us to assume that HM is the abstraction of mathematical description of 
the simple mechanisms, which occur in nature and are adequately described by NQFT. Let us 
emphasize that NQFT, as the generalization of Standard Model, contradicts in nothing with the 
results of the latter. 
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Conclusion 
The negative result of the experiments, set until now for the confirmation of Higgs's 

mechanism, implies that in nature a different version of the generation of masses takes place. 
Complete agreement of NQFT with SM and with the existing experimental results makes the 
version, proposed by NQFT, the basic candidate to the role of the theory, which is adequate to the 
reality. 
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