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First, we show through a numerical simulation that the massive Schwinger model used to \“M
formulate solutions to CDW transport in itself is insufficient for the transport of soliton—
antisoliton (S—S’) pairs through a pinning gap model of CDW transport. We show that {J.{,MWLQO
a model Hamiltonian with Peierls condensation energy used to couple adjacent chains W iw
(or transverse wave vectors) permits the formation of S—S’ pairs which could be used to
transport CDW through a potential barrier. Previously, we have argued that there are Ha -t@xj-
analogies between this construction and the false vacuum hypothesis used for showing a 3
necessary and sufficient condition for formation of CDW S-S’ pairs in wavefunctionals. aye .\—W
Here we note that this can be established via either the use of the Bogomil’'nyi inequality
or an experimental artifact which is due to the use of the false vacuum hypothesis to WW_

obtain a proportional “distance” between the S—S’ charge centers.
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PACS number(s): 03.75.Lm, 71.45.Lr, 71.55.-i, 78.20.Ci, 85.25.Cp. ° all
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1. Introduction raraci
We have prior to this paper formed an argument using the integral Bogomol’nyi m Fhe I
inequality to present how a soliton-antisoliton (S—S’) pair could form.!! In addi- /L0 l\LObWL
tion, we also have shown how the formation of wave functionals is congruent with
Lin’s nucleation of an electron—positron pair as a sufficiency argument as to forming / 1
Gaussian wave functionals. Here, we argue that our wavefunctional result is equiv- Y"\D"’" 1%

alent to putting in a multi-chain interaction term in our simulated Hamiltonian
system{{vith a constant term in it proportional to the Peierls gap multiplied by a A Y
cosine term representing the interaction of different CDW chains in our massive
Schwinger® model. This change in the Hamiltonian term adds in an additional po-
tential energy term, making the problem look like a Josephon junction problem.
We found that a single-chain simulation of the S-S’ transport problem suffers from
two defects. First, it does not answer what the necessary and sufficient conditions
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2 A. W. Beckwith

for the formation of a S-S’ pair are. More importantly, we also find through nu-
merical simulations of the single-chain transport model that one needs additional
physical conditions to permit barrier penetration. Our numerical simulation of the
single-chain problem for CDW involving S-S’ pairs gave a resonance condition in
transport behavior over time, with no barrier tunneling. The argument here that we
will present is that the false vacuum hypothesis’? is a necessary condition for the
formation of S-S’ airs and that the multi-chain term we add to a massive Schwinger
equation for CDW transport is a sufficiency condition for the explicit formation of
a soliton (antisoliton) in our charge density wave transport problem. We begin this
by a numerical simulation of the single-chain model of CDW, then show how the ad-
dition of the Peierls condenteﬂsation energy permits a soliton (antisoliton) to form.
We finally discuss in the last part of the paper how this would tie in with either
the Bogomil'nyi inequality and/or the phenomenological Gaussian wave functional
model of S-S’ pair formation and would permit necessary additional conditions to
permit CDW dynamics approaching what we see in the laboratory. Appendix A
below gives a summary of how to computationally simulate multi-chains, while the
general argument ties the analysis of this problem field theoretically to methods
presented in my dissertation and in other articles under editing review.

2. Review of the Numerical Behavior of a Single-Chain for CDW
Dynamics

We are modifying a one chain model of Charge Density Wave (CDW) transport
initially pioneered by Dr John Miller® which furthered Dr John Bardeens work® on
a pinning gap presentation of CDW transport. The single-chain model is a good
way to introduce how a threshold electric field would initiate transport, qualitatively
speaking. We did, however, when using it, assume that the CDW would be easily
modeled with a soliton (antisoliton) Gaussian packet. Hencel\we undertook this
investigation to determine the necessary and sufficient condition to physically justify
use of a soliton (anti-soliton) for our wave packet. We start by using an extended
Schwinger model® with the Hamiltonian set as

H:/x [ﬁlni%-%'(8$¢I)2+%"qu'(¢r—‘P)z‘i‘%'Dvw%-(l—cosqﬁ)].
(1)

We should note in writing this that a washboard potential with a small driving
term® up - (¢ — ©)? added to the main potential term of the washboard potential,
is used to model transport phenomenology. We also argue that this potential permits
the domain wall modeling of S-S’ pairs.” In this situation, ug is proportional to
the electrostatic energy between the S-S’ pair constituents (assuming a parallel
plate capacitor analogy); © is a small driving force we will explain later, dependent
upon a ratio of an applied electric field over a threshold field value. As we will
show later, the dominant washboard potential term will have the value of pinning
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Analogy between a Multi-Chain Interaction in Charge Density Wave Transport 3

energy multiplied by (1 — cos ¢). We call the Vg the Euclidean action version of the
potential given above. In addition, the first term in this Eq. (1) is the conjugate
momentum. Specifically, we found that we have II, = D - 8,¢, as the canonical

momentum density, D = (4—%), where § = %{i— 2 102 is a Frohlich to electron

mass ratio, and vp is a Fermi velocity > 10® cm/sec, and D - w% is the pinning
energy. In addition, we have that pg is the electrostatic energy, which is analogous
to having a S-S’ pair represented by a separation L and of cross-sectional area
A, which produces an internal field E* = (e*/e - A), where e® = 2. e~ = effective
charge and € = 10% - ¢y is a huge dielectric constant. Finally, the driving force
term, © = 2.7 - %, where the physics of the term given by [dz - pug - (¢ — ©)?,
leads to no instanton tunneling transitions if © < 7 & F < ET* which was the
basis of a threshold field of the value Ep = E*/2 due to the conservation of energy
considerations. Finally, it is important to note that experimental constraints as
noted in the device development laboratory lead to 0.01 < ug/D - w% < 0.015,
which we claim has also been shown to be necessary due to topological soliton
arguments.

It is useful to note that Kazumi Makis,® in 1977, gave the first generalization
of Sidney Coleman’s® least action arguments to NbSe® electrodynamics. We use
much the same pinning potential, with an additional term due to the capacitance
approximation of energy added by the interaction of a S—5’ pair with each other.5®
While Dr Maki’s work is very complete, it does not include a feature we found
of paramount importance, that of the effects of a threshold electric field value to
“turn on” effective initiation of S-S’ pair transport across a pinning gap. We should
note the new physics added here since in this situation, ug is proportional to the
electrostatic energy between the S—S’ pair constituents (assuming a parallel plate
capacitor analogy). © is a small driving force we will explain later, dependent upon
a ratio of an applied electric field over a threshold field value. It is also relevant
to note that we previously found!® that topological soliton style arguments can
explain why the potential lead/to the least action integrand collapsing to primarily
a quadratic potential contribution, which permits treating the wave functional as a
Gaussian. As would be expected, the ratio of the coeflicient of pinning gap energy of
the Washboard potential used in NbSe® modeling to the quadratic term pg-(¢—©)?2
used in modeling energy stored in between S-S’ pairs was fixed by experiment to
be nearly 100 to 1, which is a datum we used in our calculations.?®

To those who are unfamiliar with the Schwinger model, we can summarize
it briefly as follows. Namely, we use the Schwinger model, named after Julian
Schwinger, which is the model describing 2D Euclidean quantum electrodynam-
ics with a Dirac fermion. This model exhibits a spontaneous symmetry breaking of
the U(1) symmetry due to a chiral condensate, due to a pool of instantons. The
photon now becomes a massive particle. This model can be solved exactly and is

2Private discussions with Dr J. H. Miller about experimental phenomenology he observed in the
device development laboratory, 1998-2000, TcSAM /University of Houston.
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used as a toy model for other more complex theories. We use it, keeping in mind
the instanton!! flavor to the model, as well as how instantons can be analytically
conveyed in transport via a wave functional with a Gaussian integrand'? and work
with a quantum mechanically based energy

L0
E = ihz I g )
and momentum
II = (/i) - 8/0¢(z). (3)

The first case is a one-chain mode situation. Here, © = wpt was used explicitly
as a driving force, while using the following difference equation due to the Crank-
Nickelson!® scheme. We should note that wp is a driving frequency to this physical
system which we were free to experiment with in our simulations. The first index,
7, is with regards to “space”, and the second, n, is with regards to the “time”
step. Equation (4) is a numerical rendition of the massive Schwinger model plus an
interaction term, which one calls ¥ = ih%. One uses the following replacement:

p(Gn+1) =¢(G,n—1)+i-At
Al +1,m)— 90 —1,m) = 2-6G,n) + 4G+ Ln+ 1)+ 66~ Ln+1) - 2(,n+1)
D (Az)?

2-V(j,n)

——h—¢(j» n)

4)

We use variants of Runge-Kutta!® in order to obtain a sufficiently large time
step interval so as to be able to finish calculations in a reasonable period of time.
This avoids an observed spectacular blow up of simulated average phase values,
which was observed after 100 time steps at At ~ 10713, Stable Runge-Kutta simu-
lations require At =~ 10719, A second numerical scheme, the Dunford—Frankel'3 and
“fully implicit allows us to expand the time step even further. Then, the “massive
Schwinger model” is:

2-R 1-2-R
nt+l)= ——mm—- —1,n)—¢(j +1, + ——=9(j,n—-1
¢4 V=172 5 WU )=+ L)+ oo 40 )
. LV
where R = —i - At D.?Az) . The advantage of this model is that it is second-order

accurate, explicit, and unconditionally stable, so as to avoid the numerical blow-
up behavior. One then gets resonance phenomena as represented by Fig. 1. This
is quite unphysical and necessitates making changes, which we will be presenting
in this manuscript. In particular, we observed that Eq. (5) results in a run away
oscillation which corresponds to a continual adding up of non dissipated energy of
a S-S’ pair bouncing between the walls of the potential system, without tunneling

1st Reading
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Fig. 1. Beginning of resonance phenomena due to using the traditional Crank—Nickelson numer-
ical iteration scheme of the one chain model. Phi refers to a time dependent phase value due to a
single-chain approximation.

commencing. Appendix A refers to the run away resonance phenomena cffect for
one chain and also describes how numerical simulations for more than one chain
can be organized, with results finalized in Fig. 9 of the manuscript below. Let us
now refer to the analytical derivations needed to alter the numerical short comings
of the single-chain charge density wave model.

.

3. Addition of @New Term in the Massive Schwinger Equation
to Permit Formation of a §—S’ Pair

S

Initiallyhve will present how the addition of an interaction term between adjacent A%

CDW chains will allow a soliton (antisoliton) to form due to some analytical consid-
erations we will present here@)ﬁ’mally we shall endeavor to show how our argument
with the interaction term ties in with the fate of the false vacuum construction of
S—-S" terms done in our prior publication where one either used the Bogomil’'nyi
inequality!® as a necessary condition for the formation of S—S’ terms or used the
ground state ansatz argument which still uses the false vacuum hypothesis exten-
sively. Let us now first refer to how we can obtain a soliton via assuming that
adjacent CDW terms can interact with each other.

One of our references,!'? uses the Bogomil’nyi inequality to obtain a S-S’ pair
which we approximate via a thin wall approximation and the nearest neighbor

Ek'fﬁrs\



1st Readin
August 24, 2005 10:11 WSPC/140-IJMPB 03235 g

6 A. W. Beckwith

1 approximation of how neighboring chains interrelate with one another to obtain a
representation of phase evolution as an arctan function with respect to space and
3 time variables. Another uses the equivalence of the false vacuum hypothesis with
the existence of ground state wave functionals in a Gaussian configuration.!® To
5 whit, either the false vacuum hypothesis itself creates conditions for the necessity
of a Gaussian ansatz, or else the Bogomil'nyi inequality provides for the necessity
7 of a S—5’ pair nucleating via a Gaussian approximation which is the only way to Aw* FL{J lwaag
answer data”Dr Miller collected in an experiment in 1985.1% But in our separate
9 model presented in this paper we find that the interaction of neighboring chains of
CDW material permits the existence of solitons (antisolitons) in CDW transport
11 due to the huge A’ term added which lends to a Josephon junction interpretation
of this transport problem in CDW dynamics.
13 Note that in the argument about the formation of a soliton (antisoliton), t
we use a multi-chain simulation Hamiltonian with Peierls condensation energy used
15 to couple adjacent chains (or transverse wave vectors) as represented by

H= Z [ I + E1[l — cos¢n] + Ea(¢n — ©)? + A" - [1 — cos(¢n — ¢"‘1)]J (6)

2Dy
17 with “momentum” we define as
I, = (h/3) - 8/0¢n, (7)
19 We then use a nearest neighbor approximation and a Lagrangian-based calcu-
lation of a chain of pendulums coupled by harmonic forces to obtain a differential
21 equation which has a soliton solution. To do this, we write the interaction term in

the potential of this problem as

!
93 A'(1 = cos[pn — Pn_1]) — % b — ¢n_1]2 + very small HO.T's, (8)
and then consider a nearest neighbor interaction behavior via
A/
25 Vnn(¢) ~ El[l — COos ¢n] + E2(¢TL - 9)2 + 7 : (¢n - ¢”—1)2 : (9)
Here, we set A’ > E1 > E5 so then
A/
Vn.n.(¢) first ~ El [1 — Cos ¢TL] + 7 . (¢n+1 - ¢n)2 ) (10)
27 roundoff

which then permits us to write

n+1 n
A/
Urm By [L—costi]+ 5 Y (b1~ 90)°, (11)
29 1=0 =0
which is allowed using L = T — U, a Lagrangian-based differential equation of i
..)/ y

31 ¢i —wal(Bit1 — i) — (¢i — i—1)] +wising; =0, (12)
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with
AJ'
§=—7 13
(.1)0 mc_ !!2 1 ( )
and
E
2 1
L"".'l == me—-‘fg ] (14)

where we assume the chain of pendulums, each of length [, leads to a kinetic energy

n+1

1 .
T:i-me_F-qug, (15)
=0

where we neglect the E; value. However, having B3 — ¢ &~ 0% would tend to
lengthen the distance between a S-S’ pair nucleating, with a tiny value of E» —
et ~ 07 indicating that the distance L between constituents of a S-S’ pair would
get very large.

We did find that it was necessary to have a large A’ for helping us obtain a Sine—
Gordon equation. This is so if we set the horizontal distance of the pendulums to
d, then we have that the chain is of length L’ = (n+ 1)d. Then, if the mass density
is(p = me-/ j’ and we model this problem as a chain of pendulums coupled by
harimonic forces, we set an imaginary bar with a quantity 7 as being the modulus of
torsion of the imaginary bar, and A’ = n/d. We have an invariant quantity, which
we will designate as w2d? = p—‘"lg = 22, which, as n approaches infinity, allows us to
write a Sine-Gordon equation:

82¢(z,t) 2 Od(zx,t)

a2 Ox?
with a way to obtain soliton solutions. We introduce dimensionless variables of the
form z = 2+ -z, T = w; - ¢, leading to a dimensionless Sine-Gordon equation we

+ w?sing(z,t) =0, (16)

write as:

PPz, 7)  Pd(2,7)
ar2 922

¢+(z,7) =4 arctan (exp {i%}) , (18)

where the value of ¢4 (z,7) is between 0 to 2m. As an example of how we can do
this value setting, consider if we look at ¢4 (z,7) and set § = —0.5. If 7 = 0 we
can have ¢4 (z <« 0,7 =0) ~ ¢ =~ 0 and also have ¢ (z = 0,7 = 0) = 7, whereas
for sufficiently large z we can have ¢, (2,7 =0) — 27. In a diagram with 2z as
the abscissa and ¢4(z,7) as the ordinate, the propagation of this soliton “field”
from O to 27 propagates with increasing time in the positive z direction and with
a dimensionless “velocity” of 8. In terms of the original variables, one has that the
“soliton” so modeled moves with velocity v8 in either the positive or negative z

+sing(z,7) =0, (17)

so that

-

-
-

I

m¢,/f’
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CDW and its Solitons

CDW
< ¢ =0 >
Vg W W

CDW with Solitons

0 20 40 60 80 100

Fig. 2. The above figures represent the formation of soliton—antisoliton pairs along a “chain”.
The evolution of phase is spatially given by ¢(z) = 7 - [tanh b(z — z4) + tanh b(z), — z)].

1 direction. One gets a linkage with the original pendulum model linked together by
harmonic forces by allowing the pendulum chain as an infinitely long rubber belt
3 whose width is | and which is suspended vertically. What we have described is a
flip over of a vertical strip of the belt from ¢ = 0 to ¢ = 27 which moves with a
5 constant velocity along the rubber belt. First, we gre uging the nearest neighbor § / Ke
approximation to simplify Eq. (10). Then, we sre assumfing that the contribution 2/[[ 2
7 to the potential due to the driving force Ey (¢, — ©)? is a second-order effect. All of
this makes for the “capacitance” effect, given by Es(¢, — ©)?, not being a decisive cecon A
9 influence in deforming the solution, and is a second-order effect. This @nd)order
effect contribution is enough to influence the energy band structure the soliton will
11 be tunneling through but is not enough to break up the soliton itself. We can see
how this fits into the density wave transport by looking at Fig. 2 which gives us
13 a good summary of how density waves transport themselves through a solid. We

will in the next section develop a discussion about this while using a momentum
15 space representation of a soliton—antisoliton pair (S-5’) using a momentum space
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Analogy between a Multi-Chain Interaction in Charge Density Wave Transport 9

representation of soliton—antisoliton pair (S—5'), i.e. via a Fourier transform in the
momentum space of a phase we call in position space

¢(z) = 7 - [tanh b(z — z,) + tanh bz — z)] . (19)

4. Wave Functional Procedure Used in §—8’ Pair Nucleation

Traditional current treatments frequently follow the Fermi golden rule for current
density:

2.
h
In our prior Workhve applied either the Bogomil'nyi inequality!=®*® or we did more /\ /,\
heuristic procedures with Gaussian wave functionals as Gaussian ansatz, to come up

with an acceptable wave functional, which will refine I-F curves??® used in density
wave transport. For the Bogomol’nyi inequality approach we modify a de facto 1+1
dimensional problem in condensed matter physicsIEbeing one which is quasi one )

dimensional by making the following substitution, namely looking at the Lagrangian [ A\} s Y(’,f)hf(/n.tj
density ¢ to having a time independent behavior denoted by a sudden pop up of a \
S-S’ pair via the substitution of the nucleation “pop up” time by

/dT-dm-g—>tp-/dm-L, (21)

where tp is the Planck’s time interval. Then afterwards, we shall use the substitution
of i =c =1 so we can write

P oxc-exp(—0- /Ld:r) . (22)

J X WLR = . ITLR|2 . pR(ER) . (20)

This was later generalized Eo be of the form in a momentum space DF'T momentum [A’V" VY’]ﬂh YA (:G:l
basis in an initial physical state with]

o / delpo — $clyozpy = (2%)2 : Zn:|¢(kn)l2, (23)

and a DFT representation of - \M’méf
E 2—:( L\ [ AV - v y
o /dm[qb0 — bClpo=¢p = <T> Y (1 —n) - [dka)? (24)

n

Thesd in the charge density wave case assumed later on that ¢(k) was a momentum

space Fourier transform of a soliton-antisoliton pair (5-5’) and that n; = 1—et < 1

represented the height of this pair reaching its nucleation value, while @ ~ L1 was

one over the distance between positive and negative charge centers of the S-S5’ pair.

Furthermore, in our case we found that in the general Gaussian wave functional j
ansatz approach, it is best to assume that this, more or less,@ ground state energy @\) 5 I-Cf\’\m
start to a one dimensional Hamiltonian of a character which will lead to analytical
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work in the momentum space leading :cglthe functional current we derived as being
of the form®

This actually became a modulus argument due to considering a current density
proportional to |T'| rather than |T)? since tunneling, in this case, would involve the
coherent transfer of individual (first-order) bosons rather than pairs of fermions.
We used functional integral methods to extend this, in momentum space to obtain
the final expression which was used, after we changed the Hamiltonian tunneling

element to become®

2 — 1/ 2 2\ *
rya =D [y, S g D2 ) o4(0) - go(al)poto), (26)
where p¢(z) represents taking integration over a variation of paths in the manner
of quantum field theory, and ¥{(¢(z) — ¢o(z)) is a step function indicating that we
are analyzing how a phase ¢(z) evolves in a pinning gap style potential barrier. We
y;e/assumf@g quantum fluctuations about the optimum configurations of the field
¢r and ¢r, while z) represents an intermediate field configuration inside the@

tunnel barrier as wekepresented by Fig. 3. We pick up in both approaches wave
functionals with
¢z - exp(—agy - /di[qb:r]z) = Wanal, (27)
and
c1 - exp (—Oq . /d$[¢o - ¢F]2> = Vinitial » (28)

with ¢g = ¢r + et and where ap = ;. These values for the wave functionals
showed up in the upper right hand side of Fig. 3 and represent the decay of the
false vacuum hypothesis. As mentioned, this allows us to present the change in
energy levels to be inversely proportional to the distance between a S-S’ pair!:*10

ay = AEgp=am~ L. (29)

We also found that in order to have a Gaussian potential in our wave functionals,

we needed to have in both interpretations ( -
pv. C
{2@5 AEgp, = VE($r) — VE(PT), (30)

Mcy

where for the Bogomol’'nyi interpretation of this problem we worked with potentials

(generalization of the extended Sine-Gordon model potential):1:10

Ve2Cr-(p—do)2—4-Co-¢-do- (d—o)® +Ca (¢* — ¢3)%. (31)

b A suggestion by Dr. Miller to account for what seemed to be puzzling data which he reviewed
with me in the device development laboratory, at the University of Houston.
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u
' 0 2n ¢
[
@
LN -EG_(:L':)-_' -
&; x

Fig. 3. Evolution from an initial state ¢; to a final state ¢ ¢ for a double-well potential (inset) in a
quasi 1D model, showing a kink-antikink pair bounding the nucleated bubble of true vacuum. The
shading illustrates quantum fluctuations about the optimum configurations of the field ¢ and
¢, while ¢0(z) represents an intermediate field configuration inside the tunnel barrier. This also
shows the direct influence of the Bogomil’nyi inequality in giving a linkage between the “distance”
between constituents of a “nucleated pair” of S—S’ and the AFE difference in energy values between
V(¢r) and V(¢r) which allowed us to have a “Gaussian” representation of evolving nucleated
states.

We had a Lagrangian!® modified to be (due to the Bogomil'nyi inequality)

Lg > |Q|+%'(¢o—¢c)2'@ (32)

with the topological charge |@Q| — 0 and with the Gaussian coefficient found in such
a manner as to leave us with the wave functionals':31? we generalized for charge
density transport. This same Eq. (32) was more or less assumed in the Gaussian
wave functional ansatz interpretation while we still used Egs. (29) and (30) as quasi

experimental imputs into the wavefunctionals according to

o 10| gy = g - XD {— [ axalpons ) - ¢o<x>12} L @)

In both cases, we find that the coefficient in front of the wave functional in
Eq. (33) is normalized due to error function integration. This is using the pinning
gap formulation of density wave transport for a S-S’ pair initially pioneered by
Bardeen. Furthermore, this allowed us to derive, as mentioned in another publica-
tion a stunning confirmation of the fit between the false vacuum hypothesis and
data obtained for current applied electrical field values graphs (I-F) curves of ex-
periments initiated in the mid 1980s by Dr John Miller et al.}? which led to the
modulus of the tunneling Hamiltonian being proportional to a current which we

@;“‘ Cing y

———
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1 found was!:3:10

I x Cy - |cosh l\/ET o \/ TECV]] - exp (— TECV> . (34)
3 This is due to evaluating our tunneling matrix Hamiltonian with the momentum

version of a Fourier Transform of the thin wall approximation, which is alluded to
5 in Fig. 21310 being set by

2 sin(knL/2)

k)= — 22 35

Blla) = 1 7 (35)

7 This was a great improvement upon the Zenier curve fitting polynomial which was 9/ \6
used by Miller et aI.EWe also assume a normalization of the form \/

C; = . (36) 7~ — -
/IZ/2n N
0 \/ JARRCCIG REORTE TP
—— e
In doing this, @'efers to initial and final momentum state information of B
11 the wave functional integrands obtained by the conversion of our initial and final
CDW wayve functional states to a ¢(k) “momentum” basis. We evaluate for 7 = 1,2,
13 representing the initial and final wave functional states for CDW transport via the
error function

5 JARNR LTSRS (37)

due to an error function behaving as'”

b ™
17 /0 exp(—a - z%)dz = 1/2\/;- erf(b-/a), (38)

leading to a renormalization of the form

~ Cy-Cy
C = . 39
19 L= S s (39)
The current expression!»1%12 is a great improvement on the phenomenological
21 Zener current'® expression, where Gp is the limiting CDW conductance:
Er
IO(GP-E—ET-eXp(-——> if B> Ep
( ) E . (40)
0 otherwise
23 Furthermore, we have that we are observing this occurring while taking into account
the situation in Fig. 5 which leads to a proportionality argument we can use.
25 The Bloch bands are tilted by an applied electric field when we have Epc > Er
leading to a S-S’ pair shown in Fig. 5. The slope of the tilted band structure is
27 given by e* - F and the separation between the S-S’ pair is given by

L=<2'efs)%, (41)
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: oo°°w ’}68 K - W’“"
R g oo

0 10 20 30 40 50 60 70 80

Electric field (a.u.)

k.

Concurrent

Fig. 4. Experimental and theoretical predictions of current values versus applied electric field.
The dots represent a Zenier curve fitting polynomial, whereas the blue circles are for the
S-8' transport expression derived with a field theoretic version of a tunneling Hamiltonian. This
explains earlier data collected by Miller, Tucker, et al. Also, the classical current gives a negative
value for applied electric fields below Er.

Fig. 5. This is a representation of “Zener” tunneling through pinning gap with band structure
tilted by the applied FE field.

1 as referred to in Fig. 2. Note that the e* = 2.e™ is due to the constituent components
of a S-S5’ pair. Figure 2 gives us the following distance, L, where A, is a “vertical”

3 distance between the two band structures tilted by an applied electric field, and L
is the distance between the constituent S—S’ charge centers.

5 Then, we have L o E~1. When we consider a Zener diagram of CDW electrons

with tunneling only happening when e* - E'- L > ¢ where e* is the effective charge
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14 A. W. Beckwith

of each condensed electron and e¢ being pinning gap energy, we find
L L Er

25359

Here, ¢, is a proportionality factor included to accommodate the physics of a given
spatial (for a CDW chain) harmonic approximation of

e - F
= Esi=

1%

(42)

T=ZFp-cos(w t) S Me- Q= —Me- W (43)

My-w?
Realistically, an experimentalist!»*1% will have to consider that L > Z, where Z, an
assumed reference point, [picked by an observer to measure where a $-$' pairison [ i$ /"
210 oEHael o Hmeel e o of Ipusity k3
el

5. Conclusion: Setting Up the Framework for a Field Theoretical
Treatment of Tunneling

We have, in the above document identified pertinent issues needed to be addressed
in an analytical treatment of Charge Density Wave transport. First, we should
try to have a formulation of the problem of tunneling which has some congruence
with respect to the “False Vacuum” hypothesis of Sidney Coleman.® We make this
statement based upon the abrupt transitions made in a multi-chain model of glarge
density wave tunneling which are in form identical to what we would expect in a
Thin Wali;approximation of a boundary between true and false vacuums.

Prior researchers/authors have given very reasonable attempts to analyze den-
sity wave transport from a field theoretic standpoint. Kazumi Makis’s excellent
start in 1977% was marred because he did not have the experimental data present
to Miller and other researchers later on about the importance of a threshold field
Er for the initiation of density wave nucleation and he did not include it explicitly
in his calculations. We should note that several quantum tunneling approaches to
this issue have been proposed. Onel?\is to use functional integrals to compute the /\ /7\
Euclidean action (“bounce”) in imaginary time. This permits one to invert the po-
tential and to modify what was previously a potential barrier separating the false
and true vacuums into a potential well in Euclidean space and imaginary time.

The decay of the false vacuum is a potent paradigm for describing the decay of a
metastable state for one offlower potential energy. In condensed matter, this decay K_ LR

\S

of the false vacuum method has been uscd@to describe nucleation of cigar-shaped - V\Q\'
regions of true vacuum with soliton-like domain walls at the boundaries in a charge i e W
density wave. We use the Euclidean action so that we may invert the potential Al g X

in order to use WKB semi-classical procedures for solving our problem. Another o\l“@ﬂb

approach,@Hﬁ_s'i_n_g_thé_s_cﬁwm_gﬁi"dﬁéf time method, has been applied by other—
researchers to calculate the rates of particle-antiparticle pair creation in an electric
fieldPfor the purpose of simplifying transport problems. What we are proposing
here is a synthesis of several methods, plus an additional insight as to the topo-
logical charge dynamics of density wave transport which were neglected in prior
attempts to analyze this problem fully.
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We explicitly argue that a tunneling Hamiltonian based upon functional in-
tegral methods is essential for satisfying necessary conditions for the formation
of a S—9’ pair. The Bogomil'nyi inequality stresses the importance of the rela-
tive unimportance of the driving force By - (¢, — ©)2, which we drop out in our
formation of a soliton (antisoliton) in our multi-chain calculation.@ddition, we
argue that those normalization procedures, plus assuming a net average value of the .
A'(1 = cos[pn, — Pn_1]) — %’ - [#n — dn—1)2+ small terms as seen in our analysis of [?Au( N‘;\\m CCJ
the contribution to the Peierls gap contribution to S-S’ pair formation in our Gaus-
sian 9 o ¢ - exp(—f - [ Ldz) representation of how S-S’ pairs evolve in a pinning
gap transport problem for charge density wave dynamigjr he overall convergence
of a numerical scheme to represent multi-chain contributions to the analysis of this
problem, gives a Josephon junction flavor to our analysis. It also underlies the for-
mation of solitons (antisolitons) which was used by us as the underpinnings of the
S-S’ pairs, used to give more detailed structure to the field theoretic analysis of this .
important problem. This work in itself is a step forward from the initially classical re% Wno - 5
analysis offered by Grune F‘iirtﬂéﬁﬁ&ﬁﬂaﬁ is done here is a simpler treatment i
of transport modeling as is seen in older treatment in the literatlzr(@"ancl also TR
makes full use of Bardeens® pinning gap arguments, which is a more direct analysis
of density wave dynamics than the typical CDW literature presented earlier. Also /
it improves upon the simple minded current calculations done in the literature®
based upon simplistic quantum measurement calculations. In future work we would
like to examine the implications of Sidney Coleman’s&references to not needing a
renormalization other than that needed for zero point energy in his paper “More .
about the Massive Schwinger model” & but we do not think this will affect the—I_—E_ lﬁ'—
plots derived analytically and referenced in this publication.
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Appendix A. Additional Computer Simulation Material with Respect
to Multi-Chain CDW Transport and the Large Time
Scale Resonance Behavior of a Single CDW Chain

In our discussion about the single-chain simulation material, we looked at a second
numerical scheme.?® the Dunford-Frankel and “fully implicit” allows us to expand
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Fig. 6. This figure presented completes proof that one chain does not permit tunneling, using
Dunford-Frankel numerical scheme for large time stepping.

the time step even further. Then, the “massive Schwinger model” equation®524

has:3

2-R 1-2-R
in+1)= —— (¢ —1,n) —$(j +1, e b1
Bin+1) = =2 (G~ L,m) = i +1,m) + 17 - #lin— 1)
Vii
i a T gy, (A1)
where one has R = —i-AtW&—x);. The advantage of this model is that it is second-

order accurate, explicit?/a.hd unconditionally stable, so as to avoid the numerical
blow up behavior. One then gets resonance phenomena as represented by Figs. 1
and 6. This if{\to put it mjldlyf\quite unphysical and necessitates making changes, /\
which we will be presenting in this manuscript

This failure necessitated going to multi-chain simulations. Now, our Peierls gap
energy term A7 was added to the massive Schwinger equation model®-6:24 precisely
due to the prior resonance behavior with a one chain computer simulation. We can
now look at the situation with more than one chain. To do so, take a look at a
Hamiltonian with Peierls condensation energy used to couple adjacent chains (or
transverse wave vectors):

I3
H:;[Q-Dl

+ By [L = cosdn] + Ez (¢n — ©)* + A1l — cos (¢pn — dn_1)]| (A.2)

a3
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1 and
IL, = (h/i) - 8/0¢n, (A.3)
3 and when we will use wave functions which are
¥ = N - [[(a1 exp(~a - ¢2) + azexp(~a(p; — 2 m)?)), (A.9)
J g
5 with a two-chain analogue o@ (}_UD
2
Vtwo chains = IV - H (a1 exp(—c - ¢f) + ag exp(—a(d; —2-m)%). (A.5)
n=1
7 If so, we put in the requirement of quantum degrees of freedom so that one has for
each chain for a two dimensional case?
9 la1}? + Jaa)* = 1, (A.6)
which provides coupling between “nearest neighbor” chains. In doing so, we are
11 changing the background potential of this problem from a situation given in Fig. 6,
to a different situation where one has multiple soliton pairs that are due to the
13 A’ term which has two double well band structures given which permit the ex-
istence of tunneling due to the double well band structure.> We also have that
15 o = 1/+/soliton width. For “phase co-ordinate” ¢;, exp(—c - ¢2) is an unrenormal-
ized Gaussian representing a “soliton” (antisoliton) centered at ¢; = 0, and a prob-
7 ability of being centered therr@ given by |ai|?. Similarly, exp(—a - (¢; — 2 - m)?) @
Ny is an un:renormalized Gaussian representing a “soliton” (antisoliton) centered at
19 ¢; = 2 -7 with a probability of occurrence? at this position given by las|?. We can
use Eq. (A.6) to represent the total probability that one has some sort of tunneling
21 through a potential given by Eq. (A.2) with the potential dominated by the term A’
which dominates the dynamics we will see numerically in the following simulations
23 given below.
One then can draw, with the help of a “minimized” energy “functional” when we
25 generalize Eq. (A.2) to have a potential energy cusp with the generalized two chain
energy in the form of Eq. (A.6), in a double potential energy well band structure
27 plot showing up in my dissertation. This used®
E(G) = <\Ijtwo chains|Htwo chains|\Iltw0 chains> . (A7)
29 This is, in form, subsgantially the same diagram given by Miller et al? The im-
portance of Eq. (AJ8) is that it appears one needs the term A’ given in Eq. (A k * |5
31 in order to get this band structure. The situation done with a simulation with
A’(1 — cos[py — #1])® included, with Fortran 90, is complicated since this would
33 ordinarily imply coupled differential equations, which are extremely unreliable to
solve numerically. For a number of reasons, one encounters horrendous round off
35 errors with coupled differential equations solved numerically in Fortran. Hence,

&9}1 the problem was done, instead, using Mathematica software which appears to ﬂ/ -
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avoid the truncation errors Fortran 90 presents us if we use a personal computer
with standard techniques. Here‘\i:s how the problem was presented before being
coded for Mathematica. Where one has Fq = E, = pinning energy, E; = E, =
charging energy, and A’ - [1 — cos(¢2 — ¢1)] represents coupling between “degrees
of freedom™ of the two chains. The wave function used was set to a different value
than given in Eq. (A.4)

2
Um(ds) = Y bmexp(—a(g; —2-7-m)), (A.8)
m=—2
with
2
w2 =1, (A.9)
m=-—2

we obtained a minimum energy “band structure” with five adjacent parabolic arcs.
We obtain a "ﬁlinimum”"é/nergy out of this we can write as

E = Eqin = (U|H|), (A.10)

where Dy = 174.091, E,, = 0.00001, E, = 0.000001 and A’ = 0.005 for Hamiltonian

2
A 112
Htwo chains = Z [2 3 Bl + El [1 — COs ¢n] + E2(¢n - @)2

n=1

+A" - [1 — cos(¢y, — ¢n_1)]] , (A.11)

where minimum energy curves are set by the coefficients of the two wave functions,
which are set as b_g,b_1,bg,b1,b2;c_2,¢_1,¢0,c1,co; @ (which happens to be the
wave parameter for Eq. (A.11). This leads to an energy curve given in Fig. 7 where
there are five, not two local minimum values of the energy asfgiven in the plot
giverinitiaty- in my dissertation. It is a reasonable guess that for additional chains
(i.e. if m is bracketed by numbers > 2)|that the number of local minimum values
will go up, provided that one uses a modified version of/numerical simulation wave
function probability as given in Eq. (A.9) for Eq. (A.8). We did the following to plot
an average (phi) value, which we will represent in Eq. (A.13) below. The easiest
way to put in a time dependence in the Hamiltonian Eq. (A.11) is to provisionally
set © = wpt for the graphics presented, wp = 0.67 MHz.

If we set U = U(¢1, ¢z, ©) which has an input from the Hamiltonian Hivo chains
then we can set up an average phase, which we will call

= (1 + ), (A.12)

NO| =

[iwe

e
->

g indi ““j

0
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Fig. 7. Determining band structure via a Mathematica 8 program, and with wave functions given
by Eq. (A.8).

D1=354, delta=0.005, Ep=0.0001, Ec=0.000001

20{_ 11 L T Y .
4P|
.pmq—-o---—o- |
10 | |
2Pi
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=
A o 0
Vv i
=10
| Pi 3Pi
_20.'._,.‘ PR T S N 1 T EPER R S
=20 -10 0 10 20
Theta

Fig. 8. Phase vs. ©, according to the predictions of the “multi-chain”-tunneling tunneling model.
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where we calculate a mean value of phase given by>7
1
on= [ [ dhdtaz- b+ 61100, 0F (A.13)

The integral ($(©)) was evaluated by “Nintegrate” of Mathematica, and was
graphed against © in Fig. 8, with n = 20. These total sets of graphs put together
are strongly suggestive of tunneling when one has A # 0 in Hiwo chains-

The simulation results of Fig.l?j% akin to a thin wall approximation leading to
a specific shape of the soliton—antisoliton pair in “phase” space which is also akin
to when we have abrupt but finite transitions after long periods of stability. 12
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