AN ELEMENTARY PROOF OF THE NON-EXISTENCE OF ANY NON-TRIVIAL SOLUTIONS TO THE ERDŐS-MOSER DIOPHANTINE EQUATION

$$1^{N} + 2^{N} + \dots + (M-1)^{N} + M^{N} = (M+1)^{N}$$

ARKOPROBHO CHAKRABORTY

28th November, 2009

Abstract

Erdős had conjectured that the equation of the title had no solutions in natural numbers except the trivial $1^1+2^1=3^1$. Moser (1953) had shown that there are no solutions for $M+1<10^{10^6}$. Butske $et\ al\ (1993)$ had further shown that there are no solutions for M+1<9.3x 10^6 . In this paper I show that a solution to this equation cannot exist for any value of M>2 hence proving Erdős' conjecture. This is achieved using elementary number theoretic methods employing congruences and well-known identities.

1 Introduction

It is first assumed that a solution to the Diophantine equation in question exists. Therefore, being a natural number it should be either odd or even. Considering residues of derivative expressions modulo 4, 8, and 16 I show that this "solution" can neither be odd nor even. Hence, I show that this equation has no solutions.

2 Notation

All notations used are as in standard mathematical texts. Specifically

 \mathbb{N} is the set of natural numbers.

 \mathbb{Z} is the set of integers.

If a non-zero integer a divides b i.e if there exists an integer c such that ac = b then we write a|b.

Again, if a is congruent to b modulo m then we write $a \equiv b$ modulo m.

A solution to the Erdős-Moser equation such that M=k and N=n is written as (k,n).

3 Lemmata

Lemma 1

Let a, b, c, $m \neq 0$, $n \geq 0$ be integers. Then,

- 1. $a \equiv b \mod a$ modulo m, $b \equiv a \mod a$ modulo m and $a b \equiv 0$ modulo m are equivalent statements.
- 2. If $a \equiv b \mod ulo \ m$ and $b \equiv c \mod ulo \ m$ then $a \equiv c \mod ulo \ m$.
- 3. If $a \equiv b \mod a$ then $(a+c) \equiv (b+c) \mod a$.
- 4. If $a \equiv b \mod ulo \ m$ then $ac \equiv bc \mod ulo \ m$.
- 5. If $a \equiv b \mod m$ and $m \equiv 0 \mod n$ c where $c \neq 0$ then $a \equiv b \mod n$ c.

Proof:

- 1. Suppose $a\equiv b \mod m$. Then, by definition, m|(a-b) i.e. m|-(b-a) which implies m|(b-a). Therefore,by definition, $b\equiv a \mod m$. Again, m|(a-b) implies $m|\{(a-b)-0\}$ which implies $a-b\equiv 0 \mod m$.
- 2. Since $a \equiv b \mod m$ therefore m|(a-b). Thus, a-b=mx, for some $x \in \mathbb{Z}$. Similarly, b-c=my, for some $y \in \mathbb{Z}$. Therefore a-c=(a-b)+(b-c)=mx+my=m(x+y) i.e. m|(a-c). Hence, $a \equiv c \mod m$.
- 3. Since $a \equiv b \mod m$ therefore m|(a-b). Thus, a-b=mx, for some $x \in \mathbb{Z}$. Observe that, (a+c)-(b+c)=a-b=mx. Hence, $(a+c)\equiv (b+c) \mod m$.
- 4. Since $a \equiv b \mod m$ therefore m|(a-b) i.e. a-b=mx, for some $x \in \mathbb{Z}$. Then (a-b)c=mxc i.e. ac-bc=mxc. Therefore m|(ac-bc) which implies $ac \equiv bc \mod m$.
- 5. Since $a \equiv b \mod m$ therefore $m|(a-b) \Rightarrow (a-b) = mx$ for some $x \in \mathbb{Z}$. Now, $m \equiv 0 \mod c \Rightarrow m = cy$ for some $y \in \mathbb{Z}$. Therefore, (a-b) = cxy. Hence, $a \equiv b \mod c$.

Lemma 2

If a, b and n are integers such that $a \neq b$ then $a^n - b^n \equiv 0$ modulo (a - b) or $a^n \equiv b^n \mod u$ of (a - b).

Proof:

We have the identity $a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^2+\cdots+a^2b^{n-3}+ab^{n-2}+b^{n-1})$. Since, a and b are integers therefore all terms of the form a^xb^y where $x,y\in\mathbb{Z}$ are integers. Thus, $a^{n-1}+a^{n-2}b+a^{n-3}b^2+\cdots+a^2b^{n-3}+ab^{n-2}+b^{n-1}$ is an integer. Therefore $(a-b)|(a^n-b^n)$. Hence, $a^n\equiv b^n$ modulo (a-b) or $a^n-b^n\equiv 0$ modulo (a-b).

Lemma 3

If $a, b, m \neq 0$ and $n \geq 0$ are integers such that $a \equiv b$ modulo m then $a^n \equiv b^n$ modulo m.

Proof:

```
We have a \equiv b \mod m \Rightarrow a-b \equiv 0 \mod m a = b \mod m a = b \mod m a = b \mod m (using Lemma 1.4) a = b \mod m (using Lemma 1.4) a = a \mod m a = b \mod m modulo a \mod m a \equiv b \mod m modulo a \mod m
```

Lemma 4

If a and n are integers then $(a-1)^n \equiv \pm 1 \mod a$.

Proof:

```
We have, a \equiv 0 \mod a

\Rightarrow (a-1) \equiv (-1) \mod a

\Rightarrow (a-1)^n \equiv (-1)^n \mod a

\Rightarrow (a-1)^n \equiv \pm 1 \mod a
```

Lemma 5

If there exists a set $S \subseteq \mathbb{N}$ such that $S = \{a_i | 1 \le i \le t, t \in \mathbb{N}\}$ and $\sum_{i=1}^t a_i^{2m} \equiv 0$ modulo $4, m \in \mathbb{N}$ then the number of odd elements in the set S is a multiple of

Proof:

Let us partition the set S into disjoint subsets $S_1 = \{\text{set of all even numbers} \in S\}$ and $S_2 = \{\text{set of all odd numbers} \in S\}$.

Now, any number $e \in S_1$ is of the form 4f or 4f + 2, where $f \in \mathbb{N}$. Thus, $e \equiv 0, 2 \mod 4 \Rightarrow e^2 \equiv 0 \mod 4$.

Likewise, for any number $g \in S_2$, $g \equiv 1, 3$ modulo $4 \Rightarrow g^2 \equiv 1, 9 \equiv 1$ modulo 4.

Let, the number of elements in S_1 be n_e and the number of S_2 be n_o . Then, $\sum_{i=1}^t a_i^{2m} \equiv \sum_{i=1}^t (a_i^2)^m \equiv n_e. (0^m) + n_o. (1^m)$ modulo 4

 $\Rightarrow \sum_{i=1}^t a_i^{2m} \equiv n_o$ modulo 4. Now, $\sum_{i=1}^t a_i^{2m} \equiv 0$ modulo 4. Therefore, Lemma 1.2 $\Rightarrow n_o \equiv 0$ modulo 4.

Therefore, the number of elements in S_2 must be a multiple of 4.

Now, the number of elements in S_2 =the number of odd elements in S.

Hence, the number of elements in S must be a multiple of 4.

Lemma 6

If there exists a set $S \subseteq \mathbb{N}$ such that $S = \{a_i | 1 \le i \le t, t \in \mathbb{N}\}$ and $\sum_{i=1}^t a_i^{2m} \equiv 0$ modulo 8, then (number of odd elements in S)+(number of elements in S of the form $8f \pm 2$, $f \in \mathbb{N}$). $(4^m) \equiv 0$ modulo 8.

Proof:

Let us partition the set S into disjoint subsets $S_1 = \{\text{set of all numbers of the form } 8f+2 \in S, f \in \mathbb{N}\}$, $S_2 = \{\text{set of all numbers of the form } 8f-2 \in S, f \in \mathbb{N}\}$, $S_3 = \{\text{set of all odd numbers } \in S\}$ and $S_4 = \{\text{set of all numbers of the form } 8f \text{ or } 8f+4 \in S, f \in \mathbb{N}\}$.

Now, for any number $e \in S_1$, $e \equiv 2 \mod 8 \Rightarrow e^2 \equiv 4 \mod 8$. Similarly, for any number $g \in S_2$, $g \equiv -2 \mod 4$.

Likewise, for any $h \in S_3$, $h \equiv \pm 1, \pm 3$ modulo $8 \Rightarrow h^2 \equiv 1, 9 \equiv 1$ modulo 8 while for any number $x \in S_4$, $x \equiv 0, \pm 4$ modulo $8 \Rightarrow x^2 \equiv 0, 16 \equiv 0$ modulo 8.

Let, the number of elements in S_1 be n_{e1} , the number of elements in S_2 be n_{e2} , the number of elements in S_3 be n_o and the number of elements in S_4 be n_r .

Then,
$$\sum_{i=1}^{t} a_i^{2m} \equiv \sum_{i=1}^{t} (a_i^2)^m \equiv (n_{e1} + n_{e2}).(4^m) + n_o.(1^m) + n_r.(0^m) \equiv n_o + (n_{e1} + n_{e2}).(4^m)$$
 modulo 8.

Now, $\sum_{i=1}^t a_i^{2m} \equiv 0$ modulo 8. Therefore, Lemma 1.2 $\Rightarrow n_o + (n_{e1} + n_{e2}) \cdot (4^m) \equiv 0$ modulo 8.

Now, n_{e1} is the number of elements of S of the form 8f-2 and n_{e2} is the number of elements of S of the form 8f+2, $f \in \mathbb{N}$.

Therefore, $n_{e1} + n_{e2}$ is the number of elements in S of the form $8f \pm 2$, $f \in \mathbb{N}$ while n_o is the number of odd elements in S.

Hence, the result.

Lemma 7

If there exists a set $S \subseteq \mathbb{N}$ such that $S = \{a_i | 1 \leq i \leq t, t \in \mathbb{N}\}$ and $\sum_{i=1}^t a_i^{2m} \equiv r \mod 16$, $r \in \mathbb{N}$, then (number of elements in S of the forms $16f \pm 1$ and $16f \pm 7$, $f \in \mathbb{N}$)+(number of elements in S of the forms $16f \pm 2$ and $16f \pm 6$, $f \in \mathbb{N}$). (4^m) +(number of elements in S of the forms $16f \pm 3$ and $16f \pm 5$, $f \in \mathbb{N}$). $(9^m) \equiv r \mod 8$.

Proof:

Let us partition the set S into disjoint subsets $S_1 = \{$ set of all elements of S of the forms 16f, $16f \pm 4$ and $16f \pm 8$, $f \in \mathbb{N} \}$, $S_2 = \{$ set of all elements of S of the forms $16f \pm 1$ and $16f \pm 7$, $f \in \mathbb{N} \}$, $S_3 = \{$ set of all elements of S of the forms $16f \pm 2$ and $16f \pm 6$, $f \in \mathbb{N} \}$ and $S_4 = \{$ set of all elements of S of the forms $16f \pm 3$ and $16f \pm 5$, $f \in \mathbb{N} \}$.

Now, for any element e_1 of S_1 , $e_1 \equiv 0, \pm 4, \pm 8$ modulo $16 \Rightarrow e_1^2 \equiv 0, 16, 64 \equiv 0$ modulo 16, for any element e_2 of S_2 , $e_2 \equiv \pm 1, \pm 7$ modulo $16 \Rightarrow e_2^2 \equiv 1, 49 \equiv 1$ modulo 16, for any element e_3 of S_3 , $e_3 \equiv \pm 2, \pm 6$ modulo $16 \Rightarrow e_3^2 \equiv 4, 36 \equiv 4$ modulo 16 and for any element e_4 of S_4 , $e_4 \equiv \pm 3, \pm 5$ modulo $16 \Rightarrow e_4^2 \equiv 9, 25 \equiv 9$ modulo 16.

Let, the number of elements in S_1 be n_{e1} , the number of elements in S_2 be n_{e2} , the number of elements in S_3 be n_{e3} and the number of elements in S_4 be n_{e4} .

Then,
$$\sum_{i=1}^{t} a_i^{2m} \equiv \sum_{i=1}^{t} (a_i^2)^m \equiv n_{e1}.(0^m) + n_{e2}.(1^m) + n_{e3}.(4^m) + n_{e4}.(9^m) \equiv n_{e2} + n_{e3}.(4^m) + n_{e4}.(9^m)$$
 modulo 16.

Now, $\sum_{i=1}^{t} a_i^{2m} \equiv r \mod 16$. Therefore, Lemma 1.2 $\Rightarrow n_{e2} + n_{e3} \cdot (4^m) + n_{e4} \cdot (9^m) \equiv r \mod 16$.

Now, n_{e2} is the number of elements in S of the forms $16f \pm 1$ and $16f \pm 7$, n_{e3} is the number of elements in S of the forms $16f \pm 2$ and $16f \pm 6$ and n_{e4} is the number of elements in S of the forms $16f \pm 3$ and $16f \pm 5$, $f \in \mathbb{N}$.

Hence, the result.

4 THE PROOF PROPER

. Let us assume that there exists a non-trivial solution to the Erdős-Moser equation. We shall denote this solution by (k, n). Evidently $k \in \mathbb{N}$.

Obviously, $3^n = (2+1)^n > 2^n + 1^n$ for any n > 1, $n \in \mathbb{N}$. Thus, k must be greater than 2.

Now,
$$1^n + 2^n + 3^n + \dots + (k-1)^n + k^n = (k+1)^n$$
 (1)

$$\Rightarrow 2^{n} + 3^{n} + \dots + (k-1)^{n} + k^{n} = (k+1)^{n} - 1^{n}$$

$$\Rightarrow k|(2^n+3^n+\cdots+(k-1)^n+k^n)$$
 (using Lemma 1.4)

Therefore,
$$2^n + 3^n + \dots + (k-2)^n + (k-1)^n \equiv 0 \mod k$$
 (2)

Again, $k - x \equiv -x \mod k$ for any $x \in \mathbb{N}$

$$\Rightarrow (k-x)^n \equiv (-x)^n \text{ modulo } k \tag{3}$$

$$\Rightarrow (k-x)^n + x^n \equiv x^n + (-x)^n \text{ modulo } k$$
(4)

Assume n is odd

If k is odd then $2^n + 3^n + \dots + (k-2)^n + (k-1)^n \equiv (k-1)^n + \sum_{x=2}^{\frac{k-1}{2}} x^n + (-x)^n$ modulo k

but
$$\sum_{x=2}^{\frac{k-1}{2}} x^n + (-x)^n = \sum_{x=2}^{\frac{k-1}{2}} 0 = 0$$

$$\Rightarrow 2^{n} + 3^{n} + \dots + (k-2)^{n} + (k-1)^{n} \equiv (k-1)^{n} \text{ modulo } k$$

Therefore, $(2) \Rightarrow (k-1)^n \equiv 0 \mod k$ which is absurd! (Using (3))

If k is even then $2^n+3^n+\cdots+(k-2)^n+(k-1)^n\equiv (k-1)^n+(\frac{k}{2})^n+\sum_{x=2}^{(\frac{k}{2}-1)}x^n+(-x)^n$ modulo k

but
$$\sum_{x=2}^{(\frac{k}{2}-1)} x^n + (-x)^n = \sum_{x=2}^{(\frac{k}{2}-1)} 0 = 0$$

$$\Rightarrow 2^n + 3^n + \dots + (k-2)^n + (k-1)^n \equiv (k-1)^n + (\frac{k}{2})^n \text{ modulo } k$$

Therefore,
$$(2) \Rightarrow (k-1)^n + (\frac{k}{2})^n \equiv 0 \mod k$$
 (5a)

(5a) & (3)
$$\Rightarrow (\frac{k}{2})^n + (-1)^n \equiv 0 \mod k \qquad \Rightarrow (\frac{k}{2})^n \equiv 1 \mod k$$
 (5b)

Let k = 2b then (5b) $\Rightarrow b^n \equiv 1$ modulo $2b \Rightarrow b^n \equiv 1$ modulo b which is absurd!

Therefore, n must be even.

Let
$$n = 2n_1, n_1 \in \mathbb{N}$$

Therefore,
$$1^{2n_1} + 2^{2n_1} + \cdots + (k-1)^{2n_1} + k^{2n_1} = (k+1)^{2n_1}$$

$$\Rightarrow 1^{2n_1} + 2^{2n_1} + \dots + (k-3)^{2n_1} + (k-2)^{2n_1} + k^{2n_1} = (k+1)^{2n_1} - (k-1)^{2n_1}$$

$$\Rightarrow 4k | (1^{2n_1} + 2^{2n_1} + \dots + (k-3)^{2n_1} + (k-2)^{2n_1} + k^{2n_1}) |$$

Therefore,
$$1^{2n_1} + 2^{2n_1} + \dots + (k-3)^{2n_1} + (k-2)^{2n_1} + k^{2n_1} \equiv 0 \mod 4k$$
 (6)

If
$$n_1 = 1$$
 then $(1) \Rightarrow 1^2 + 2^2 + \dots + (k-1)^2 + k^2 = (k+1)^2$

$$\Rightarrow \frac{k(k+1)(2k+1)}{6} = (k+1)^2$$

$$\Rightarrow 2k^2 - 5k - 6 = 0$$

$$\Rightarrow k = \frac{5+\sqrt{73}}{4} \notin \mathbb{N}$$

Therefore, $n_1 > 1$

$$\Rightarrow 4^{n_1} = 16 \text{x(some power of 4)} \Rightarrow 4^{n_1} \equiv 0 \text{ modulo 8}$$
 (7)

Case I: Assume k is odd.

Now,
$$(6) \Rightarrow 1^{2n_1} + 2^{2n_1} + \dots + (k-3)^{2n_1} + (k-2)^{2n_1} + k^{2n_1} \equiv 0 \mod 4$$

Therefore, Lemma 5 implies that the number of odd elements in the set $\{1, 2, 3, \dots, (k-3), (k-2), k\}$ is a multiple of 4.

Now, number of odd elements in the set $\{1, 2, 3, \dots, (k-3), (k-2), k\} = \frac{k-1}{2} + 1 = \frac{k+1}{2}$

Therefore,
$$\frac{k+1}{2} = 4m, m \in \mathbb{N} \Rightarrow k = 8m - 1$$
 (8)

Now, $(8) \Rightarrow k + 1 \equiv 0 \mod 8$

Therefore, $(1) \Rightarrow 1^{2n_1} + 2^{2n_1} + \dots + (k-1)^{2n_1} + k^{2n_1} \equiv 0 \mod 8$

Consider the set $S = \{1, 2, ..., (8m-2), (8m-1)\}.$

Number of odd elements in S = 4m

Number of elements of the form 8f - 2 in S = m

Number of elements of the form 8f+2 in S=m-1 where $f\in\mathbb{N}$

Therefore, Lemma $6 \Rightarrow 4^{n_1}(2m-1) + 4m \equiv 0 \mod 8$

Therefore, (7) $\Rightarrow 4m \equiv 0 \mod 8 \Rightarrow m$ is even.

Let
$$m = 2m_1$$
. Therefore, $k = 16m_1 - 1$ (9)

Now, $(9) \Rightarrow k + 1 \equiv 0 \text{ modulo } 16$

Therefore, $(1) \Rightarrow 1^{2n_1} + 2^{2n_1} + \dots + (k-1)^{2n_1} + k^{2n_1} \equiv 0 \mod 16$

Consider the set $S' = \{1, 2, ..., (16m_1 - 2), (16m_1 - 1)\}.$

Number of elements of the form 16f - 1 in $S' = m_1$

Number of elements of the form 16f + 1 in $S' = m_1 - 1$

Number of elements of the form 16f - 7 in $S' = m_1$

Number of elements of the form 16f + 7 in $S' = m_1 - 1$

Number of elements of the form 16f - 2 in $S' = m_1$

Number of elements of the form 16f + 2 in $S' = m_1 - 1$

Number of elements of the form 16f - 6 in $S' = m_1$

Number of elements of the form 16f + 6 in $S' = m_1 - 1$

Number of elements of the form 16f - 3 in $S' = m_1$

Number of elements of the form 16f + 3 in $S' = m_1 - 1$

Number of elements of the form 16f - 5 in $S' = m_1$

Number of elements of the form 16f + 5 in $S' = m_1 - 1$ where $f \in \mathbb{N}$

Therefore, Lemma 7 \Rightarrow $(4m_1-2)(1^{n_1}+4^{n_1}+9^{n_1})\equiv 0$ modulo 16

$$(7) \Rightarrow (4m_1 - 2)(1 + 9^{n_1}) \equiv 0 \text{ modulo } 16$$

$$(10)$$

If n_1 is even then $n_1 = 2n_2, n_2 \in \mathbb{N}$

$$\Rightarrow 9^{n_1} \equiv 81^{n_2} \equiv 1^{n_2} \equiv 1 \text{ modulo } 16$$

$$\Rightarrow 1 + 9^{n_1} \equiv 2$$
modulo 16

$$\Rightarrow (1+9^{n_1})(4m_1-2) \equiv 2(4m_1-2) \text{ modulo } 16$$

Therefore, $(10) \Rightarrow 2(4m_1 - 2) \equiv 0 \mod 16$

$$\Rightarrow 2(4m_1-2)=16t$$
, $t \in \mathbb{N}$

 $\Rightarrow 2m_1 - 1 = 4t$ which is absurd!

Again, if n_1 is odd then $n_1 = 2n_2 + 1$, $n_2 \in \mathbb{N}$

$$\Rightarrow 9^{n_1} \equiv 81^{n_2}.9 \equiv 1^{n_2}.9 \equiv 9 \mod 16$$

$$\Rightarrow 1 + 9^{n_1} \equiv 10$$
modulo 16

$$\Rightarrow (1+9^{n_1})(4m_1-2) \equiv 10(4m_1-2) \text{ modulo } 16$$

Therefore, $(10) \Rightarrow 10(4m_1 - 2) \equiv 0 \mod 16$

$$\Rightarrow 10(4m_1 - 2) = 16t , t \in \mathbb{N}$$

$$\Rightarrow 5(2m_1 - 1) = 4t$$
 which is absurd!

Hence, k cannot be odd.

Case II:

Assume k is even.

Now, (6)
$$\Rightarrow 1^{2n_1} + 2^{2n_1} + \dots + (k-3)^{2n_1} + (k-2)^{2n_1} + k^{2n_1} \equiv 0$$
 modulo 4

Therefore, Lemma 5 implies that the number of odd elements in the set $\{1, 2, 3, \dots, (k-3), (k-2), k\}$ is a multiple of 4.

Now, number of odd elements in the set $\{1, 2, 3, \ldots, (k-3), (k-2), k\} = \frac{k}{2} - 1$

Therefore,
$$\frac{k}{2} - 1 = 4m, m \in \mathbb{N} \Rightarrow k = 8m + 2$$
 (11)

Now, (11) $\Rightarrow k \equiv 2$ modulo $8 \Rightarrow 4k \equiv 8 \equiv 0$ modulo 8

Therefore, (6) and Lemma 1.5 \Rightarrow $1^{2n_1} + 2^{2n_1} + \cdots + (k-3)^{2n_1} + (k-2)^{2n_1} + k^{2n_1} \equiv 0$ modulo 8

Consider the set $S = \{1, 2, ..., (8m-2), (8m-1), 8m, (8m+2)\}.$

Number of odd elements in S = 4m

Number of elements of the form 8f - 2 in S = m

Number of elements of the form 8f+2 in S=m where $f\in\mathbb{N}$

Therefore, Lemma $6 \Rightarrow 4^{n_1}.2m + 4m \equiv 0 \mod 8$

Therefore, $(7) \Rightarrow 4m \equiv 0 \mod 8 \Rightarrow m$ is even.

Let
$$m = 2m_1$$
. Therefore, $k = 16m_1 + 2$ (12)

$$\Rightarrow k \equiv 2 \text{ modulo } 16 \tag{13}$$

$$\Rightarrow k+1 \equiv 3 \text{ modulo } 16 \Rightarrow (k+1)^{2n_1} \equiv 9^{n_1} \text{modulo } 16$$
(14)

Again, $(13) \Rightarrow k - 1 \equiv 1 \mod 16$

$$\Rightarrow (k-1)^{2n_1} \equiv 1^{2n_1} \equiv 1 \mod 16$$

Therefore,(1) \Rightarrow $(k+1)^{2n_1} - \{1^{2n_1} + 2^{2n_2} + \dots + (k-3)^{2n_1} + (k-2)^{2n_1} + k^{2n_1} \equiv 1 \mod 16$

$$\Rightarrow 1^{2n_1} + 2^{2n_1} + \dots + (k-3)^{2n_1} + (k-2)^{2n_1} + k^{2n_1} \equiv (k+1)^{2n_1} - 1 \mod 16$$

Therefore,(14) $\Rightarrow 1^{2n_1} + 2^{2n_1} + \dots + (k-3)^{2n_1} + (k-2)^{2n_1} + k^{2n_1} \equiv 9^{n_1} - 1$ modulo 16

Consider the set $S' = \{1, 2, ..., (16m_1 - 2), (16m_1 - 1), 16m_1, (16m_1 + 2)\}.$

Number of elements of the form 16f - 1 in $S' = m_1$

Number of elements of the form 16f + 1 in $S' = m_1 - 1$

Number of elements of the form 16f - 7 in $S' = m_1$

Number of elements of the form 16f + 7 in $S' = m_1 - 1$

Number of elements of the form 16f - 2 in $S' = m_1$

Number of elements of the form 16f + 2 in $S' = m_1$

Number of elements of the form 16f - 6 in $S' = m_1$

Number of elements of the form 16f + 6 in $S' = m_1 - 1$

Number of elements of the form 16f - 3 in $S' = m_1$

Number of elements of the form 16f + 3 in $S' = m_1 - 1$

Number of elements of the form 16f - 5 in $S' = m_1$

Number of elements of the form 16f + 5 in $S' = m_1 - 1$ where $f \in \mathbb{N}$

Therefore, Lemma 7 \Rightarrow $(4m_1 - 2)(1^{n_1} + 9^{n_1}) + 4^{n_1}.(4m_1 - 1) \equiv 9^{n_1} - 1$ modulo 16

Therefore,
$$(7) \Rightarrow (4m_1 - 2)(1 + 9^{n_1}) \equiv 9^{n_1} - 1 \mod 16$$
 (15)

If n_1 is even then $n_1 = 2n_2, n_2 \in \mathbb{N}$

$$\Rightarrow 9^{n_1} \equiv 81^{n_2} \equiv 1^{n_2} \equiv 1 \text{ modulo } 16 \tag{16}$$

 $\Rightarrow 1 + 9^{n_1} \equiv 2 \text{ modulo } 16$

$$\Rightarrow (1+9^{n_1})(4m_1-2) \equiv 2(4m_1-2) \text{ modulo } 16 \tag{17}$$

Now,
$$(16) \Rightarrow 9^{n_1} - 1 \equiv 0 \text{ modulo } 16$$
 (18)

Therefore, (15),(17) & (18) $\Rightarrow 2(4m_1 - 2) \equiv 0 \text{ modulo } 16$

$$\Rightarrow 2(4m_1-2)=16t, t\in\mathbb{N}$$

 $\Rightarrow 2m_1 - 1 = 4t$ which is absurd!

Again, if n_1 is odd then $n_1 = 2n_2 + 1$, $n_2 \in \mathbb{N}$

$$\Rightarrow 9^{n_1} \equiv 81^{n_2}.9 \equiv 1^{n_2}.9 \equiv 9 \text{ modulo } 16$$
 (19)

 $\Rightarrow 1 + 9^{n_1} \equiv 10$ modulo 16

$$\Rightarrow (1+9^{n_1})(4m_1-2) \equiv 10(4m_1-2) \text{ modulo } 16$$
(20)

Now,
$$(19) \Rightarrow 9^{n_1} - 1 \equiv 0 \mod 16$$
 (21)

Therefore, $(15),(20) \& (21) \Rightarrow 10(4m_1 - 2) \equiv 0 \text{ modulo } 16$

$$\Rightarrow 10(4m_1 - 2) = 16t , t \in \mathbb{N}$$

 $\Rightarrow 5(2m_1 - 1) = 4t$ which is absurd!

Hence, k cannot be even.

Since, k is neither even nor odd, therefore $k \notin \mathbb{N}$. This contradicts (\exists) .

Therefore, there exists no $a\in\mathbb{N}$ with a>2 such that it is a solution to the Erdős-Moser equation.

Hence, there exist no non-trivial solutions to the Erdős-Moser equation.

5 References

 $1. \ \ The \textit{Erdős-Moser Equation} \ \text{at Wolfram Mathworld}: \ \text{http://mathworld.wolfram.com/Erdos-MoserEquation.html}$

6 Contact the Author

email address: arkoch@mail.com.