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Abstract: 

 
In this, the final paper in the recent series on the new twin-tori model of 

cosmology, the model is developed in a logical way. Its historical 
development is included, and what follows is a statement of the central 

axioms of the theory. The reasons for them are described and their use in the 
theory is shown. What then follows is a brief description of the cosmological 

side of the theory, and its application to large scale structures and 
astrophysics. The paper then begins to develop the opposite length scale of 

the model, that on the order of the nuclear scale and ranging down to planck 
scale physics and Quantum Gravity. 

The theory is developed by laying theoretical foundations and mathematical 
idea’s and structures and building on these using phenomenology and 

statistical techniques to fit parameters for the theory, including the dark 
energy – dark matter coupling constants. Many basic simplified models are 

then set out in various dimensions and with varying degrees of physical 
relevance.  

The models are also tested against current theory using observations of 
various physical systems ranging from nuclear physics, both earth-bound 

and stellar, to galactic dynamics and rotations. Historical deatils are included 
to increase readability from a variety of backgrounds. 

 
 

Introduction: 
 

The greatest mysteries in modern cosmology and physics are Dark Matter, 
Dark Energy, and Quantum Gravity.  

Dark Matter was first proposed as a solution to a problem encountered by 
the swiss mathematician and astronomer Fritz Zwicky in 1933, in relation to 

the rotational properties of the coma cluster. In summary, he attempted to 
derive the mass of the cluster using 2 methods, the first was to apply the well 

known virial theorem to the motions of the outer galaxies and derive the 
mass, whilst the second was to compare the luminosity with a standard 

luminosity-mass ratio and find the mass by direct multiplication. On doing 
so he found that the mass predicted by the motions of the outer galaxies was 



approximately 800 times higher than the mass predicted using standard 
techniques using luminosity. Obviously 2 solutions are apparent, either there 
is a considerable amount of mass which is not luminous and hence does not 
contribute to the luminosity and is not included in the luminosity-mass ratio, 
or Newtons Law of Universal Gravitation is not applicable on such scales. 

The standard approach in physics is to assume the former, and experimental 
evidence has borne this out quite well as the law of Newton has since been 
verified down to, and below, the value of the acceleration involved in the 

coma cluster problem.  
 

The second great mystery of modern science, dark energy, has an equally 
interesting history. In esscence, however, and for simplicity dark energy may 

be introduced as something similar to the cosmological constant, Λ, in 
Einstein’s equation of general relativity: 

 
Rµν-½gμνR+Λgμν=8πGc-4Tμν 

In recent years experimental evidence has built up to show that, not only is  
Λ≠0, but also that the expansion of the universe is accelerating! That is to 

say that the decelleration parameter q<0. 
Dark energy, in conventional physical and cosmological thinking, produces 

a repulsive force that is somewhat in the vein of an ‘anti-gravitational’ force.  
It is often thought and indeed formalised in physical investigations and 
theories that there is a dirtect relationship between dark matter and dark 

energy. 
 

The third point, that of quantum gravity, is the one in which the most 
theoretical progress has been made.  

In most situations in the universe, gravity and quantum systems are usually 
seperate and hence QFT and GR can be used individually. However, there 

can arise certain situations such as black holes and elementary particle 
physics where a quantum theory of gravitation must be used to avoid 

nonsensical infinite answers. In the last 30 years many possible suggestions 
for a quantum theory of the gravitational force have been made, with the 
most successful attempts being superstring theory (and its more recenty 

successor, the even more mystical M-Theory), and loop quantum gravity a 
nice mathematical structure based on rigour rather than evidence from 

experiment. Neither of these theories have yet shown themselves to be truly 
mathematically consistent, or even finite! More importantly neither has been 

able to offer a truly testable physical prediction, and any test to wich they 
have been subjected has been that of its mathematical predictability. 



 
There are many differences betwen the afforementioned theories and 

speculations, and the new twin-tori model. The first, and most striking, 
difference is that the twin-tori models original objectives were to provide a 
consistent and testable theory of cosmology, through an understanding of 

known physics and a new understanding of the function and nature of dark 
matter and dark energy. In  the process of developing such a model, from a 

methematical point of view, it became clear that certain specualtive 
hypotheses would be required, including such things as the shape of the 

universe, its overall topology, and several ambiguously observed particles. 
In accepting these hypotheses as axioms of the theory, it became clear that it 
was possible without too much mathematical difficulty to extend the model 
to a theory encompassing fundamental particles. At this point ambition took 
over and it was decided that an attempt to formulate a full theory of particle 

physics and cosmology, including gravitation, was to be the aim.  
As it is formulated in other papers, the twin-tori model is an exercise in pure 
mathematics, and not a physical theory. However, the authors offer in this 
paper examples of its potential interpretation as a physical theory and also 
examples of its full form and application to many physical situations at a 

wide variety of length and energy scales. This is the most physical paper in 
the recent series. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Twin-Tori Model As An Axiomatic Theory: 
 



As with almost all theories of physics, and in particular the 
cosmological and astrophysical disciplines, theories are 

constrained quite tightly by several factors such as experimental 
and observational data, empirical facts, mathematical consistency.  
This is also the case with the twin-tori model. The main constraints 
imposed on this model are those given by observational data in the 
context of cosmology, in that all known data collected, even by the 
most advanced satellites such as WMAP, are consistent with a big-

bang, flat space, Ω=1, Λ>0, universe. This leads to the 1st, and 
most important, axiom of the twin tori model: 

 
Axiom 1: The universe takes the shape of a torus containing both 
baryonic and dark matter, but not dark energy, and is surrounded 

and encased by an outer torus which contains the dark energy 
nessecary to maintain the illusive big-bang type dynamics. 

 
For more information on this particular axiom please refer to the 

references [1],[2],[3][4]. 
 

The second axiom is also one motivated by serious experimental 
evidence, as well as tremendous theoretical success. It is the 

fundamental postulate of quantum field theory, and also 
fundamental in the special and general theories of relativity, and is 

one of the few common characteristics of the current theories of 
gravitation and quantum physics: 

 
Axiom 2: The laws of physics retain the same form under a general 

Poincare transformation x’=Lx+C, and also under the restricted 
Poincare transformation x’=Lx (Postulate of Lorentz/Poincare 

Invariance) at all length scales X>lplanck. 
 
 
 

The next axiom is also associated with relativistic physics, and is 
often called the second postulate of the special relativity: 



 
Axiom 3: The speed of light in a vacum, denoted c, is independant 

of the reference frame in which it is measured. 
 

The next three axioms are standard axioms of most cosmological 
models, and are also very important in the development of the 

twin-tori cosmological model: 
 

Axiom 4: The laws of physics are universal, different physical 
laws do not apply in different area’s of the universe. 

 
Axiom 5: The universe is, to good approximation, homogeneous 

and isotropic in space. It need not be homogeneous and isotropic in 
time. 

 
Axiom 6: We are not observing the universe from any special 

position within it. 
 

Axiom 6 is often referred to as the Copernican principle. 
 

Also important in modern theoretical physics is a specification of 
the dimensionality of any theory, and this is embodied in the 

following axiom: 
 

Axiom 7: The universe is made up of 3 spatial dimensions (x,y,z), 
and one time direction which is denoted t 

 
 
 
 
 
 
 
 
 



 
 
 
 
 

The Twin-Tori Model On Astrophysical Scales 
   

The aim of this section is to provide a detailed account of the cosmological 
side of the theory, which also includes applications of the model to 

astrophysics and planetary science, and presents its logical development 
using a mixture of detailed description, theoretical development, 

phenomenology, description of data, and results obtained by statistical and 
probabilistic techniques. 

 
Description of the astrophysics of the model on the scale of the solar 

system, with extrapolations to a general model for all planetary systems 
around a main sequence stars. 

 
This analysis is centered on solar system data, and based against physical 
predictions based on theoretical models of stellar and planetary formation.  

 
Physical prediction 1: The chemical composition of planetary matter should 

be broadly similar across the spectrum of planets, and of a similar type to 
that of the parent star. This is based on the theoretical prediction that  planets 
are formed from the same protostellar disk as the parent star, or stars. This is 

refuted by considering statistical analysis of solar sytem data in the 
following way:  

 
Case Study 1: Multiple Linear Regression Analysis. 

 
This case study tests the prediction that chemical composition of planets 

should be broadly similar over the range of planets accompanying the parent 
star, and also directly related to the composition of the parent star.  

This is done using multiple linear regression analysis based on the fact that 
the chemical composition of a planet is directly proportional to its mean 

density. In this case study the only part of the chemical composition 
nessecary to study is the percentage of hydrogen by mass, which will be 

represented by Φ. So, in symbols, the fundamental fact on which the 
analysis is based is given by: Φ ∝ <ρ>. 



An assumption to which a model can be fitted must now be formulated.  
The fundamental assumption of this model is that the mean density of a 

planet in the system varies as a linear function of the planets semimajor axis 
and its mass. In symbols this is given by: ρ(m,a)=C+Bm+Aa where A,B,C 

are constant real numbers. This is the functional form of mean density 
predicted by standard theories of plaetary and stellar formation, and it will 

now be tested in the case of the solar system.  
 

The data used in this analysis is shown in this table: 

Planet Mass/10^24 kg 
Equatorial 
Radius/km 

Average 
Density/(kg/m^3) 

Semimajor 
Axis/AU Semimajor Axis/km 

Mercury 0.33 2439 54000 0.387 57895200 
Venus 4.87 6052 5.2 0.723 108160800 
Earth 5.97 6387 5.52 1 149600000 
Mars 0.64 3393 3.9 1.524 227990400 
Jupiter 1900 71398 1.4 5.203 778368800 
Saturn 569 60000 0.69 9.54 1427184000 
Uranus 87 25559 1.19 19.18 2869328000 
Neptune 103 24800 1.66 30.06 4496976000 

 
N.B: Pluto, Eris etc are not included in the analysis as by the 2006 IAU 

definition of a planet these bodies are designated as ‘minor planets’ and, in 
the context of the solar system, as ‘trans-neptunian objects’. 

 
The next stage in the case study can be summarised as a 3-step process: 

Step1: Formulate the multiple linear regression model. 
Step 2: Analyse the accuracy and predictive power of the model. 

Step 3: Analyse the validity of the model by checking the truth of the 
assumptions of the regression model. 

 
To formulate the model, the form of the function is assumed, and 

coefficients are fitted to maximise the explanation of the variability of the 
data. The model calculated for the solar system is given in the computer 

output, from statistical package MINITAB, below: 
 

 
 
 
The regression equation is 
Average Density/(kg/m^3) = 13507 - 6.3 Mass/10^24 kg 
                           - 0.000004 Semimajor Axis/km 
 
 
Predictor                 Coef     SE Coef      T      P 
Constant                 13507       10571   1.28  0.257 
Mass/10^24 kg            -6.33       12.00  -0.53  0.620 



Semimajor Axis/km  -0.00000367  0.00000489  -0.75  0.487 
 
 
S = 20966.8   R-Sq = 13.8%   R-Sq(adj) = 0.0% 
 
 
Analysis of Variance 
 
Source          DF          SS         MS     F      P 
Regression       2   353194044  176597022  0.40  0.689 
Residual Error   5  2198041928  439608386 
Total            7  2551235972 

 
 

And so the regression equation, giving the functional form of ρ(m,a) is 
calculated, based on the data given for the solar system (which is taken to be 

a typical planetary system for a star of the same spectral type and average 
physical paramaters as the sun) is given by the following equation in 3 

variables: ρ(m,a)=13507-6.3m-0.000004a, where m is the mass in units of 
10^24kg and a is the semimajor axis in units of km. This is step 1 of the 

analysis process complete. 
 

Step 2 in the process is to analyse the validity and predictive power of the 
given model.  

A good 1st step in this process is to take a look at the value of the multiple 
linear correlation coefficient, R2. 

 
From the output given above, R2=0.138. This is a very low value for this 

statistic, and a statistical test of H0: R
2=0 against H1: R

2≠0 yields that there is 
insufficient evidence to reject the null hypothesis. This means that the model 
above is a poor model for explaining the variability in ther data, and hence 

the assumption of a linear model in these variables is invalid. This, however, 
does not disporve the prediction given by current theoretical models of 

planetary formation yet. 
 

Step 3 in the process is to check the validity of the assumptions used in the 
formulation of the above regression model. These are the standard 

assumptions of multple linear regression analysis and are given here: 
1) The mathematical form of the relation is correct, and the expected 

value of the errors is zero.  
2) The variance of the errors associated with all variables are the same 

3) The variables are independant 
4) The residuals are normally distributed 

 



These can be tested individually. The main way of testing the first is to plot 
a graph and observe its form. This is not possible in the case of multiple 

linear regression as a graph in more than 2 dimensions is required.  
The 2 assumptions most easily tested are 3 and 4. First we test 4 by 

examining a normal probability plot computed by MINITAB: 
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This plot shows that the assumption of normality holds, but only 
approximately. This however is not a great concern as mathematical tools 

such as transformation functions can be applied to the data to ensure that the 
normality assumption holds. 

 
The method chosen to analyse the third assumption, that of independence of 
the 2 independent variables from each other, is to use a set of statistical tests 

based on the assumption that there is a relationship between them. 
 

Firstly, it is assumed that there exists a linear relationship between the 2 
independent variables (mass and semimajor axis). Pearson’s correlation 
coefficient is then calculated using MINITAB and tested appropriately: 

 
Correlations: Mass/10^24 kg, Semimajor Axis/km  
 
Pearson correlation of Mass/10^24 kg and Semimajor Axis/km = -0.050 



P-Value = 0.907 
 

From the output, the value of r=-0.05, which indicates almost no linear 
relationship between these variables. A statistical test confirms this, and is 

included only to show rigour: 
 

H0: r=0 
H1: r≠0 

 
The p-value, taken from the output, yields p=0.907, and this implies that 

there is insufficient evidence to reject the null hypothesis. Therefore there is 
no linear relationship between mass and semimajor axis. To assess if there is 
any kind of relationship between the two variables, it is possible to anaslyse 

a scatterplot of m against a: 
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This plot shows no noticeable relationship between these variables. Hence it is a forced 
conclusion that the two variables are independent. 

 
Following these analyses it must be concluded that the relationship between 

average density, mass, and semimajor axis is not linear. This disproves, 
using phenomenology and empirical evidence, the prediction given by 

current theoretical models of stellar and planetary formation. Whilst not 



direct evidence for the twin-tori model, it does show cracks in current 
theory. The planetary formation problem and other aspects of astrophysics 
that can be addressed by the twin-tori model are discussed in case study 3. 

 
A note on the statistical issue of small sample size: The usual argument of 

insufficient data to make reliable analyses does not apply in this case. This is 
because the data given represents not a sample but the whole population. 

Therefore the coefficients and statistics calculated are indeed the population 
parameters.  

 
Cosmological side of the twin-tori model: 

 
The aims of this section are to describe the main aspects of the new 

cosmological model proposed by the authors. The main tools used are 
theoretical methods, most of which have been derived from the quantum 
gravity framework to be described and formulated in the next part of this 

paper. These are supplemented by graphical and statistical methods to show 
consistency with current observational data, and in some cases current 

theory, within certain theoretical bounds which become clear in the latter 
part of this discussion. 

 
Case Study 2: Theoretical explanation of the observed recessional dynamics 

of the universe 
 

The first part of this case study is the proof, based on the afforementioned 
axioms and quantum-gravitational framework, of the following theorem: 

 
THEOREM 1: At the time at which the big bang is predicted to have occured 
the universe could have a non-zero spatial extension in all spatial directions.  

 
The expansion dynamics of the universe are governed, according to axiom 7, 

by one equation for each spatial dimension.  
 
 

These equations give the time evolution of each individual spatial 
dimension. 

 
For their most convenient expression, a definition is first required: 

 
Definition: the time-derivative operator (d/dt) is to be represented by D. 



i.e D=d/dt→D2=d2/dt2. 
 

The equations for the time-evolution of the spatial dimensions as derived 
from the quantum-gravitational framework are: 

 
tD2x+Dx=0 

 
tD2y+Dy=0 

 
tD2z+Dz=0. 

 
These equations are obtained in matrix form and, obviously, yield the same 

solution.  
 

The solution to these equations are given by: x(t)=A+Bln(t), y(t)=C+Dln(t), 
z(t)=E+Fln(t). A,B,C,D,E,F��.  

The quantum gravity gramework of the twin-tori model [5], imposes an 
extra and stronger condition on {A,B,C,D,E,F}. This condition is that the set 

{A,B,C,D,E,F} is a subset of the rational numbers ℚ. 
These solutions, and several other results, including the ‘twin-tori 

cosmological formula’ yielding the flux of the gravitational force exerted by 
the outer dark energy torus, give a basic model for the structure of the 

universe according to the twin-tori model. 
 
 
 
 

It should, at this point, be noted that these equations also do not hold at all 
times. This is easily shown by analysis of the initial conditions found in the 

model: t=0⇒x=y=z=-∞. ∀A,B,C∈ℚ. 
Therefore this description, though based around a theory of quantum gravity, 

it does not hold for all times. However, as is to be shown later, these 
equations hold very well as an approximation. Hence for the purposes of this 

discussion these solutions hold. 
 

Hence theorem 1 is proven. 
 



The next step in this analysis is to show that these solutions are qualitatively 
consistent with those of the currently accepted and empirically verified ‘big 

bang’ model.  
Linearity derivation: 

A fundamental result, which unlike many in physics can be derived 
theoretically and also inferred from empirical data, of the big bang model is 
the well known Hubble’s law v=H0d. This result, obviously, implies a linear 

relationship between distance and time. The purpose of this analysis is to 
show that for most times including the current cosmological era, that the 

solutions given above can be well approximated by a linear function 
x(t)=α+βt. The data used are not intended to produce the correct Hubble 

constant for this era, as this is done later in the paper in a different way. The 
data used here are chosen to represent early times in the universe according 

to the twin-tori model, and are close to the limit of validity of the 
approximation used to derive the solutions given above. 

 
A summary table of the data, in units of c=1, used in the analysis is given in 

the tables below: 
 

A=B=C=D=E=F=1 
 
 
 
 
 

T x y z 
1 1 1 1 

10 3.302585 3.302585 3.302585 
100 5.60517 5.60517 5.60517 
1000 7.907755 7.907755 7.907755 

10000 10.21034 10.21034 10.21034 
100000 12.51293 12.51293 12.51293 
1000000 14.81551 14.81551 14.81551 

10000000 17.1181 17.1181 17.1181 
1E+08 19.42068 19.42068 19.42068 
1E+09 21.72327 21.72327 21.72327 
1E+10 24.02585 24.02585 24.02585 
1E+11 26.32844 26.32844 26.32844 
1E+12 28.63102 28.63102 28.63102 
1E+13 30.93361 30.93361 30.93361 
1E+14 33.23619 33.23619 33.23619 
1E+15 35.53878 35.53878 35.53878 
1E+16 37.84136 37.84136 37.84136 
1E+17 40.14395 40.14395 40.14395 



1E+18 42.44653 42.44653 42.44653 
1E+19 44.74912 44.74912 44.74912 
1E+20 47.0517 47.0517 47.0517 
1E+21 49.35429 49.35429 49.35429 
1E+22 51.65687 51.65687 51.65687 
1E+23 53.95946 53.95946 53.95946 
1E+24 56.26204 56.26204 56.26204 
1E+25 58.56463 58.56463 58.56463 

 
 

The next step in the analysis is to establish that there is a set of correlations: 
{(x,t),(y,t),(z,t)} that are statistically significant. 

 
The analysis from MINITAB is: 

 
Correlations: x, t  
 
Pearson correlation of x and t = 0.426 
P-Value = 0.069 
 
  
Correlations: y, t  
 
Pearson correlation of y and t = 0.426 
P-Value = 0.069 
 
  
Correlations: z, t  
 
Pearson correlation of z and t = 0.426 
P-Value = 0.069 

 
All of the values are identical and satisfy: 0.05<p<0.1, and hence are 

significant at the 10% level. These correlations increase dramatically at even 
earlier times, as the linearity becomes more pronounced. This is sufficient to 

allow a set of regression equations to be calculated: 
 

Regression Analysis: x versus t  
 
The regression equation is 
x = 2.19 + 0.0287 t 
 
 
Predictor      Coef   SE Coef      T      P 
Constant    2.19018   0.08352  26.22  0.000 
t          0.028658  0.001436  19.96  0.000 
 
 
S = 0.414472   R-Sq = 80.3%   R-Sq(adj) = 80.1% 
 
 
Analysis of Variance 



 
Source          DF      SS      MS       F      P 
Regression       1  68.432  68.432  398.35  0.000 
Residual Error  98  16.835   0.172 
Total           99  85.267 
 
 
Unusual Observations 
 
Obs  t       x     Fit  SE Fit  Residual  St Resid 
  1  1  0.0000  2.2188  0.0823   -2.2188     -5.46R 
  2  2  0.6931  2.2475  0.0810   -1.5543     -3.82R 
  3  3  1.0986  2.2762  0.0798   -1.1775     -2.90R 
  4  4  1.3863  2.3048  0.0786   -0.9185     -2.26R 
 
R denotes an observation with a large standardized residual. 

 
As can be seen from this output the value of R2 is statistically significant and 
non zero. The strength of the model is confirmed in the ANOVA table also. 
The regression equations for the other two spatial variables can be obtained 

by comparison. This analysis shows that the observed linear recessional 
dynamics are a feature of the twin-tori model within the current 

cosmological dark energy era. 
 
 
 
 
 
 
 
 

The twin-tori model on length scales less than or equal to the atomic 
scale. Including applications to, and models of, Planck scale physics, 

fundamental particle theory, and Quantum Gravity.  
 

Introduction: 
 

In the previous paper ‘Mathematical and Phenomenological elements of the 
twin-tori model’, [2], some of the basic mathematical structures on which 
the twin-tori description of quantum gravity and particle dynamics is built 
were introduced rather informally and without obeying strict mathematical 
rigor. The purpose of this section of the paper is to rigorously define and 

develop the mathematical structures to be used, and also to provide 
explanation of their physical relevance and uses. What follows is a 

demonstration of a particular feature of the mathematics which is very 
similar to supersymmetry, as it is used in and applied to other theories of 



particle physics. Physical consequences of the framework are described, and 
a critical evaluation is given. Conclusions are then drawn and details of 

further work to be undertaken are given.  
 

Description of the mathematical formulation of the twin-tori description of 
the motion of a single particle. 

 
Consider a single particle, a point particle, and define a Cartesian coordinate 

system with origin (0, 0, 0, 0), and general coordinate (ct, x, y, z).  
The particle has instantaneous co-ordinates (ct, x, y, z). In the twin-tori 
formulation at any time later, t+∆t, the co-ordinates of the particle are 

described by the vector (τ(ct), ψ(x), φ(y), σ(z)) such that the functions τ, ψ, 
φ, & σ all obey three basic conditions: 

 
 

I. They are continuous for all values of the independent variables that 
are within the domain upon which the co-ordinate system is defined. 

II. They are n-times differentiable with respect to the independent 
variable and n>3. 

III. The function τ(ct)>0 ∀t. 
 

It can be shown that the x-, y-, and z-functions (which at this point are still 
purely arbitrary) form a mathematical structure called a group with respect 
to both addition and multiplication. That is to say that if it is defined that G 

is the set of all functions obeying the three conditions stated above. Then the 
systems {G,+} and {G,×} obey the following axioms: 

 
1) Closure property: a(x),b(x)∈G⇒a(x)+b(x)∈G, a(x)b(x)∈G. 

2) Associative property: a(x),b(x),c(x)∈G then 
a(x)[b(x)c(x)]=[a(x)b(x)]c(x) & a(x)+[b(x)+c(x)]=[a(x)+b(x)]+c(x). 

3) Identity element: ∃I+∈G such that a(x)+I+=I++a(x)=a(x) ∀a(x)∈G 
& ∃I×∈G such that b(x)I×=I×b(x)=b(x) ∀b(x)∈G 
4) Inverse elements: ∀a(x)∈G ∃a-1+∈G such that  

The combination a(x)+a-1+=a-1++a(x)=I+. 
& ∀b(x)∈G ∃b-1×∈G such that b(x)b-1×=b-1×b(x)=I× 

The above axioms are satisfied for the functions of all spatial variables x, 
y, z.  

 
Then physical considerations yield that the functional form of 

τ(ct)=ct+∆ct=c(t+∆t). 



 
The next step in the mathematical formulation of the model is to define, 
develop and interpret the algebra obeyed by the space-time functions. 

This has to be done, as restrictions must be placed upon the 
transformations that can be allowed to happen between particles. 

Transformations such as Boson→Fermion, and also Baryonic 
Matter→Dark Matter, clearly cannot be allowed on physical grounds. 

 
Denoting the group of functions of spatial variable x as G1(x), and in a 

similar fashion G2(y) and G3(z), it is now possible to define the 
commutation relations that the functions obey: 

 
The general commutator is [A,B]=AB-BA. 

 
Definition: Space-time Algebra 

 
[f(x),g(x)]≝2f(x)g(x) ⇒ {f(x),g(x)}=0 ∀f(x),g(x)∈G1(x). 
[j(y),k(y)]≝0 ⇒ {j(y),k(y}=2j(y)k(y) ∀j(y),k(y)∈G2(y). 
[a(z),b(z)]≝0 ⇒ {a(z),b(z)}=2a(z)b(z) ∀a(z),b(z)∈G3(z). 

  What the second two sets of relations imply is that G2(y)≡G3(z), which 
can be read as ‘The group G2(y) is isomorphic to the group G3(z)’.  

Also it implies that both G2(y) and G3(z) are abelian groups. 
 

Representation of theoretical result showing great similarity to 
supersymmetry 

 
As defined in the previous section, the anti-commutator of the x-dimensional 

space-time functions is given by {f(x),g(x)}=0. This equation has some 
hidden content, in that it holds a functional algebra specific to the twin-tori 
model, which has to the best knowledge of the authors, never arisen in any 

other area of theoretical research into fundamental physics. This is 
demonstrated in the following piece of algebra: 

{f(x),g(x)}=0 
→ f(x)g(x)+g(x)f(x)=0 
→ f(x)g(x)=-g(x)f(x) 

If both particles have motion in the x-direction described by the same 
equation then f(x)=g(x): 

 
→ [f(x)]2=-[f(x)]2 

 



⇔ f(x)2=0. ∀x. 
This does not imply that f(x)=0. Therefore, in taking a lead from the way the 
complex numbers are defined, it is possible to define an algebra in which the 

general element has the form a+bf(x), such that a and b are real numbers, 
though in this case they are constrained further to being rational numbers. 

This algebra is defined only in the case where f(x) can be approximated well 
by a polynomial function, because it then follows that a+bf(x) can also be 

expressed as a polynomial, and hence will form a vector space.   
 
 

The similarity with supersymmetry becomes more obvious when, following 
Rodger Penrose,[5], the supersymmetry generator ε is introduced as an 
anticommuting number. i.e one that satisfies εε=-εε → ε2=0. Hence the 

supersymmetry algebra is given by elements of general form a+εb, where a,b 
are Grassman numbers. There is, however, a major difference between the 
two formulations in that the general element of the twin-tori algebra is a 

function which can be evaluated to be a real number, whereas in the 
supersymmetry algebra the general element can be regarded as a ‘number’ 

and cannot be evaluated any further.  
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