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1 INTRODUCTION

ABSTRACT

From a purely none-general relativistic standpoint, weetithe empty space Poisson equation,
i.e.V2® = 0, for an azimuthally symmetric settinige., for a spinning gravitational system like
the Sun. We seek the general solution of the fdrme= ®(r, #). This general solution is con-
strained such that in the zeroth order approximation it ceduo Newton’s well known inverse
square law of gravitation. For this general solution, itéers that it has implications on the or-
bits of test bodies in the gravitational field of this spirmbody. We show that to second order
approximation, this azimuthally symmetric gravitatiofiald is capable of explaining at least
two things (1) the observed perihelion shift of solar plan@) that theAstronomical Unitmust

be increasing — this resonates with the observations ofegendent groups of astronomers
(Krasinsky & Brumberg 2004; Standish 2005) who have meastivat theAstronomical Unit
must be increasing at a rate of ab@uit+0.2 m/cy (Standish 2005) t©5.0+0.3 m/cy (Krasin-
sky & Brumberg 2004). In-principle, we are able to explaiis ttesult as a consequence of loss
of orbital angular momentum — this loss of orbital angulammeotum is a direct prediction of
the theory. Further, we show that the theory is able to erlba satisfactory level the observed
secular increase Earth Yedr70 + 0.05 ms/yr; Miura et al. 2009). Furthermore, we show that
the theory makes a significant and testable prediction tetieet that the period of the solar
spin must be decreasing at a rate of at I8a¥ + 2.00 s/cy.
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1915, Einstein immediately applied his GTR to this problem; much
to his elation which caused him heart palpitations — he abthihe

From as way back as th&50s, it has been known that the or- Unprecedented value @B.0 arcsec/century and this was (and is

bit of the planet Mercury exhibits a peculiar motion of itsipe- still) hailed as one of the greatest triumphs for the GTR arsllead
lion, specifically, the perihelion of Mercury advances4syl + 0.5 to its quick acceptance. Venus, the Earth, and other plashets
arcsec/century. When Newton's theory of gravitation is applied to such peculiar motion of their perihelion. Observationee\a shift
try and explain this — (by making use of the oblateness of kinest); of 8.40 + 4.80 and5.00 + 1.00 arcsec/century respectively (see

it was found first by Leverrier in859 seee.g.Kenyon (1990) thatit ~ €.9.Kenyon1994). Einstein’s theory is able to explain the perihelion
predicted a precession 682 arcsec/century which is larger than ~ shift of the other planets well, so much that it is now a wetleited
the observed (Kenyon 1990). With the failure of Newton'silyeto ~ Paradigm that the perihelion shift of planetary orbits isemeyal
explain this, it was proposed that a small undetected plamstthe relativistic phenomena.

cause. Careful scrutiny of the terrestrial heavens by ¢efess and

spaces probes reveals no such object — the meaning of whicatis
the cause may very well be a hitherto unknown gravitatiores-p
nomena — Einstein was to demonstrate that this was the dwde, t
there existed a hitherto unknown gravitational phenombatis the

cause of this peculiar motion.

Einstein’s GTR explains the perihelion shift of planetarpits as a
result of the curvature of spacetime around the Sun. It doetake
into account the spin of the Sun and at the same time it assalines
the planets lay on the same plane. The assumption that thetpla
lay on the same plane is in the GTR solution only taken as aofirst
der approximation — in reality, planets do not lay on the splane.

With the herald of Einstein’s General Theory of RelativiGTR) in In this reading we set forth what we believe is a new paradige;
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have coined this paradigm the Azimuthally Symmetric Theofy
Gravitation (ASTG) and this is derived from Poisson’s weltte@pted
equation for empty space — namél’® = 0. Poisson’s Law is a
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differential form of Newton’s Lawof Gravitation. We explain the
perihelion shift of the orbits of planets as a consequendhe$pin

of the Sun —.e.solar spin. It is well known that the Sun does exhibit
some spin angular momentum — specifically, it [the Sun] wuoles
differential rotation. On the average, it spins on its spiis @about
once in every~ 25.38 days(seee.g.Miura et al. 2009). Its spin
axis makes an angle of abadti® with the ecliptic plane. It is impor-
tant that we state clearly here that by no means have we dismbv
new equations, but we have merely applied Poisson’s wellkraz-
imuthally symmetric solution to gravity for a spin graviteg body.

Furthermore, with regard to Einstein’s GTR, in its solutionthe
problem of the perihelion shift of planetary orbits, assaitie tradi-
tional Newtonian gravitational potential, name®(r) = —-GM/r,
whereG = 6.667 x 10~ *' kg~ *ms~? is Newton’s universal con-
stant of gravitation M is the mass of the central gravitating body
andr is the radial distance from this gravitating body. Einstein
GTR which is embodied in Einstein’s law of gravitation, ndyne

1
R — iRgHV = KT + Aguv, D

is designed such that in the low energy limit and low spacetior-

vature such as in the Solar System, this equation reducestlglito

Poison’s equation — in Einstein’s law above,. is the Ricci ten-
sor, R the Ricci scalarg,.,, the metric of spacetime) is Einstein’s

controversial cosmological constant which at best can kentdo

be zero unless one is making computations of a cosmologatata
andk = 877G /c* andc = 2.99792458 x 10®ms~! is the speed of
light in vacuum; and Poisson’s equation is given by:

V20 = 4nGp, @)
where p is the density of matter and the operatﬁ? written for

spherical coordinate system (see figure 1 for the coordseite) is
given by:

= 10 (5,0 1 o/(. 0 19
V= r2 or (r 8r>+r2sin€ 00 <51n089>+r2 sin? 0 2 )

As already been said, our solution or paradigm, hails dirémm
Poisson’s equation, which in itself is a first order appraatiensolu-
tion to Einstein’s GTR albeit with the difference that we @asaken
into account solar spin. This fact that our paradigm exglagason-
ably well — within the confines of its error margins; the piesien
of planetary orbits as a consequence of solar spin and aathe-s
time the GTR explains this same phenomena well as a conseguen
of the curvature of spacetime raises the questi®ithe precession
of the perihelion of solar orbits a result of (1) solar spin or(2) is
it a result of the curvature of spacetime?”If anything, this is the
question that this reading seems to raise. An answer tolltpnly
come once the meaning of the ASTG is fully understood.

In the above we say the AST@xplains reasonably well — within
the confines of its error margins* what immediately comes to mind
is that can a theory have error margins or is it not experimért
have error margins? As will be seen, certain undeterminadteats
(A\e) in the theory emerge and at present, one has to infer these fr
observations and it is here that the error margins of the A8diGe
into play.

Ll

(r8.9)
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Figure 1. This figure shows a generic spherical coordinate systerh, thvi
radial coordinate denoted by the zenith (the angle from the North Pole; the
colatitude) denoted bg, and the azimuth (the angle in the equatorial plane;
the longitude) byp.

Further, we show, that in principle, the ASTG does explamith
crease in the Earth-Sun distance, the increase in EartmMa

tanceetc and these emerge as a consequence of the fact that from

the ASTG, the orbital angular momentum is not a conserved-qua
tity as is the case in Newtonian’s gravitation and the GTRatThe
orbital angular momentum is not a conserved quantity may dee

to think that the ASTG violets the Lawf Conservation of angu-
lar momentum, no! this is not true. The lost angular momenitim
transferred to the spin of the orbiting body and as well asSire.

2 THEORY

For empty spacev>® = 0; and for a spherically symmetric setting
we haved = ®(r) and this leads directly to Newtonian gravitation.
For a scenario or setting that exhibits azimuthal symmaighsas
a spinning gravitating body as the Sun we must have: ®(r, ),
we thus shall solve the Poisson equati®it®(r, §) = 0. The Pois-
son equation for this setting is readily soluble and its ofucan
readily be found in most of the good textbooks of electrodyica
and quantum mechanics — it is instructive that we presestsitH
lution here. We shall solve this exactly by means of sepamaif
variablesj.e. we shall set®(r,0) = ®(r)®(0). Inserting this into
the Poisson equation we will have after some basic algebpaca-
tions:

L0 (L0001 1 9 (. 090))
qm%(r ar )*@(9) sina%<”n0 a0 )_0' @)

The radial and the angular portions of this equation musalespme
constant since they are independent of each other. Foliptréli-
tion, we must set:

19 <r2 8% (r)

®(r) or or > =e+1), ©)
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and the solution to this is:

B

14 14

Py(r) = Aer” + SR (6)
where A, and B, are constants and= 0, 1,2, 3, ... . If we set the

boundary conditionsp,(r = o) = 0, then 4, = 0 for all £. Now,
just as Einstein demanded of his GTR to reduce to the well know
Poisson equation in the low energy regime of minute cureatwe
must demand tha®(r) — in its zeroth order approximation where
¢ = 0 and the termg > 1 are so small that they can be neglected;
the theory must reduce to Newton’s inverse square law, tieemust

have:
241
)

where )\, is an infinite set of dimensionless parameters such that
Ao = 1 and the rest of the parametexsfor £ > 1 will take values
different from unity and these constants will have — for nawtil
such a time that we are able to deduce them directly from yhéor

be determined from the experience of observations. Withgivien,

it means we will have:

GM
By = —X\c® | =5 @
C

GM £+1
q)g(’f') = —AZCQ (F) . (8)
Now, moving onto the angular part, we will have:
;?99) % (sin 9827(;)) + [6(£ +1)]sin* 0 = 0, 9

and a solution to this is a little complicated; it is given by tspher-
ical harmonic function:
D(0) = Py(cosb), (10

of degreef and P;(cos 0) is associated Legendre polynomial. As al-
ready said, the derivation df(r, #) just presented can be found in
most standard books of quantum mechanics. Since equ&ion g
second order differential equation, one would naturallyezt there
to exist two independent solutions for everyit so happens that the
other solutions give infinity & = (0, =), which is physically mean-
ingless (see.g.Grifitts 2008). Now, putting all the things together,
the most general solution is given:

o0 +1
D(r,0) = — Z |:)\4¢2 (%) Pi(cos 9)] , (11
=0

which is a linear combination of all the solutions foin the case of
ordinary bodies such as the Sun, the higher orders tareng [> 1:

of the term(GM /rc?)“F1], will be small and in these cases, the
gravitational field will tend to Newton’s gravitational they. Equa-
tion (11) is the embodiment of our ASTG and from this, we shall
show that one is able to explain the precession of the pésihel
of planetary orbits. In this equation, nowhere does theevaluthe
Sun’s spin of~ 25.38 daysenter into our equation. This may lead
one to asking “So where has this been taken into account®. Th
answer is simple that the azimuthal symmetry arising froensihin

© 2009 RAS, MNRASD00Q 1-12
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Figure 2. The elliptical planetary orbits have the Sun at one focusth&s
planets describe their orbits, their major axes slowly teobout the Sun
in the process shifting the line from the Sun to the perimeliorough an
angleAy during each orbit. This shift is referred to as the precessithe

perihelion.

has lead us to consider the solutichs= ®(r, §) and this is where
the spin of the Sun has been taken into account. Perhaps wklsho
mention that we are currently working on finding a generaifor
for the “constants”\, and we believe in the end one will be able
to express these as a function of the spin of the gravitatiuly,b.e.

Ao = )\4(9') and in this way, there is going to be a direct link between
the theory and the spin of the gravitating body in question.

2.1 Equations of Motion

We shall derive here the equations of motion for the azimlytha
symmetric gravitational field(r, #). We know that the force per
unit mass [or the acceleratiare. § = —V®(r,0)] is given by
a= (i — r¢?)f + (rg + 27+)0 (see any good textbook on Clas-
sical Mechanics) where a single dot represents the timeatie
d/dt and likewise a double dot presents the second time dervativ
d? /dt?. Comparison ofi = (i — r¢?)f + (1@ + 2¢)0 with (g);

i.e. d = g, leads to equation:

d*r de\? d®
ﬁ*(%) = (12
for ther-component and for thé-component we will have:

d*p dr dy 1do

—L 42— 1
TaE T twd T v de (13

Now, taking equation13) and dividing throughout by and re-
membering that the specific angular momentiire= r2¢, we will
have:

AQ | Perhelon shift
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1dp  2dr _ 1d _ 1dJ __1d® 14
Godt  rdt Jdp Jdt —  Jdo’

hence thus:

dJ d®

it (15

The specific orbital angular momentum is the orbital angoiar

mentum per unit mass and unless otherwise specified, wersfel|
to it as angular momentum. As an illustration of what readlytie
specific orbital angular momentum, if givehand the masg\ of

the body, the actually orbital angular momenturivt/.

Digressing a little: what the aboved. equationl5) means is that the
orbital angular momentum of a planet around the Sun is noha co
served quantity. If it [angular momentum] is not conservbdn the
sum of the orbital and spin angular momentum must be a coederv
quantity (if this angular momentum is not say transferechio$un

or other solar bodies), the meaning of which is that at thiewift
r-positions, the spin of a planet about its own axis must vahys
could mean the length of the day must vary depending on thelrad
position away from the Sun. We shall come this later and |&aige
subject for now.

Now moving on; if we make the transformatian= 1/r; for + and
7 we will have:

du d?r
pri —J% andW =

dr

dJ du

dt dy

d*u
2 2
— 1
et (16
respectively. Inserting these inté2) and then dividing the resul-
tant equation by-«>.J and rememberingl6) and also thatlr =
—du/u?, one is lead to:

Pu (1
dp? J2u?

The solutions that we shall consider are those for whicha time
constantj.e.r = r(p) and for the convenience:

du

du 1 d®(u,0)
dyp

J?  du

_ . a7

d*u 1 d®(u,6,)) du 1 d®(u,6,)

au ’ au — - 5T 18
dp? <J2u2 b, Jdo TSP du (18)
and:

dJ _ d®(u,0,)

dt do, (19

This ends our derivation of the equations of motion for th&dfie
®(r,0). Before we proceed to our main task of showing how equa-
tions (18 and19) explain the precession of planetary orbits, let us —
for instructive purposes, first lay down Einstein’s solatio

3 EINSTEIN'S SOLUTION

When Einstein applied his newly discovered GTR to the pmble
of the precession of the perihelion of the planet mercurylitained
that the trajectory of solar planets must be described bgdhation:

P,
dep?

GM _ 3GMu?
T

; (20

c2

whereu = 1/r. To obtain a solution to this equation, we note that
the left handside is the usual Newtonian equation for thét afb
planetsj.e.:

P,
dep?

GM
J2

=0, 1)

and the solution to this equation ig:= (1 + e cos ¢)/l wheree is
the eccentricityof the orbit and = (1 — €*)R whereR is half the
size of the major axis of the ellipse. Written in differentrfg this
solution is:

1+e¢

T:(TIZE@)Rm”

whereR i is the planet’s distance of closest approach to the Sun
[see figure (2) for an illustration]. This solution is a goqupeoxi-
mate solution toZ0) because the orbit of Mercury is nearly Newto-
nian. Consequently, we can rewrite the small term on the highd-
side of Q0) as:3GM (1 + ¢ cos ¢)?/1%c?; and in so doing, we make
an entirely negligible error. With this substitutio”0j becomes:

(22

P
dp?

GM _ 3GM

J? 12¢?

(1 + 2ecos ¢ + € cos® go) . (23

and the solution to this equation is:

" 1+ecosgp+ 3GM

l 12c2

€2 cos 2¢p
6

2
1—&-%—}— + epsiny| ,(24)
Of the additional terms, the firse. (1 + €2 /2) is a constant and the
second oscillates through two cycles on each orbit; botbetierms
are immeasurably small. However, the last term increasesly
in amplitude withy, and hence with time, whilst oscillating through
one cycle per orbit; clearly this term is responsible forghecession
of the perihelion. Dropping all unimportant terms we wilMea

" 14 ecos g+ enpsin e

l

(29
wheren = 3G M /Ic? is extremely small. Thus all this leads us to:

— 1+e COlS (ﬂE‘p) , (26)
where:3g = (1 — 7). At the perihelion we will haveSgp = 2nw
and this impliesy = 2n7 85" ~ 2nm +6nrGM/Ic*. Essentially,
this means that the perihelion advancesthy = 67GM /ic? per
revolution and the resultant equation for the orbit is:

= _dEe R
T\ 1+ecos(0+ Ap) '

hence thus the rate of precession of the perihelion is giyen b

(),

7

6mrGM

Tc2(1 — )R’ (28)

© 2009 RAS, MNRASD00Q 1-12
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This is Einstein’s formula derived ih916 soon after he discovered
the GTR. He [Einstein] concluded in the reading containig for-
mula:

“Calculation gives for the planet Mercury a rotation of thieibof 43" per
century, corresponding exactly to the astronomical oladienv (Leverrier);
for the astronomers have discovered in the motion of thenpkon of this
planet, after allowing for disturbances by the other plgnat inexplicable
remainder of this magnitude. ”

4 SOLUTION FROM THE ASTG

For the present, we shall take the second order approximefithe
potential®(r, ) in-order to make our calculation for the precession
of the perihelion of planetary orbits and this potential hasn writ-

ten down in 29). As has already been said; we shall consider only
those solutions for whicld is a time constant,e. r = r(¢) and

for the convenience that we do not thinkéés a variable we shall
setf := 6,. The solutions = r(¢) are those solutions for which
the orbit of a planet stays put in the safvplane. Now from the
potential 9) we shall have:

2 .
B (G/\/lu) {)\1 sinf, + \s (3G/\/lsm20p)} .

c 2rc?

dJ _
dt

@31

Now making the transformation = 1/u, the first term on the left
handside of equatior8Q) transforms to:

%Jrufci]—/;/l = Biu + (ou?, (32
where:
b= (G (o)
and:
o () (Y ()

The left handside of this equationg. 32) is what one gets from pure
Newtonian theory and the term on the right is the new term due t
the first order term in the corrected Newtonian potentialldwivise

the second term on the right is a new term due to the second orde

term in the corrected Newtonian potential.

Now, taking the termp; v in equation 82) to the right handside, we
will have:

du
dp?

GM

T = ﬁgluQ.

+ (1= Byu— (39)
We know that the solution of the right handside of the abovea&gn
when set to zerag,e.:

P
dp?

+(1*51)U*G7M

7z =0

(36)

© 2009 RAS, MNRASD00Q 1-12

is given by:
r= 71 37
" 1+ ccos(me)’
where:
GM\? [ 21 cos b
S I C

To obtain a solution to3p) to first order approximation, we note that
the left handside has solutioB%) and that for nearly Newtonian
orbits this solutionu = (1 + ecos)/l, is a good approximation
to (35) for nearly Newtonian orbits such as Mercury for example.
Consequently, we can rewrite the small term on the right sialed
of (35) as:3GM (1 + e cos )?/1?; and make an entirely negligible
error (seee.g.Kenyon 1990). With this substitution, equatioBb)
becomes:

d*u GM
T o G

do? (1+26(30s<p+62(3052g0),
4

(39

and the solution to this equation is:

€ €2 cos 2p
14+ = £ b ey
(%)%

As before,i.e., as in the steps leading to Einstein’s solution; of the
additional terms, the first is a constant and the secondlatesl|
through two cycles on each orbit; both these terms are imumneas
ably small. However, the last term increases steadily inlianade
with ¢, and hence with time, whilst oscillating through one cycle
per orbit; clearly this term is responsible for the precassif the
perihelion. Now, dropping all the unimportant terms onesd to:

_1+4ecosnmp (2

] ] + epsin ¢| .(40)

_ 1+ecosmp + enppsinnip
= ; ,

u

(41)

where for the convenience we have get= (2 and this quantity is
extremely small, in which cas@sn:p ~ 1 andsinn:p ~ n2p
and using these approximations (in the cosine addition ditam
COSNIY + M2wsinmie =~ cosnapcosnNie + sinnzpsinnie =
cos [(m + n2)¢]), we will have:

y — L ecos[(m +m2)e

l

(42

Now, at the perihelion we are going to havg; + n2)p = 2n7
wheren = 1,2,3,... and this impliesp = 27n (m +72)" " =
2mn[yT = P14 Bo] 1 = 2mn[l — (B1 — 262)/2] 7" = 2mn[l +
(B1/2 — B2) + ...] henceip ~ 2wn + nA1h1 + nA2hs, where:

_ [ 6nGM cos 6,
= (M) (557) «
and.:

_ 3cos? 0, — 1 6rGM >
hQ_f( 127 )( Ic? ) “4
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D(u,0) = —GMu ¢

d?u
dp?

d
—quu = —GMu?
dep

J
+ J2u2

This shows that per every revolution, the perihelion adearty:

_ [(67GM Arcostp) A\ 3cos? 0, — 1 6rGM
N lc? 3 ° 127 lc?

and this can be written more neatly and conveniently as:

)= (),

This formula — which is a second order approximation; teisofi
the perihelion shift of the planets. In the next section wé use
this to deduce an estimate of the values\efand A, for the Solar
System and thereafter proceed to calculate the predicleds/af
the perihelion shift. As way of showing that these are sodues,
let us denoté.e. A; andz asA? and\S.

Ap

T

).

Ay

T

3cos? 6, — 1
12771

Ag} (45

5 ANESTIMATE FOR AY AND )Y

If &7, is the precession per century of the perihelion of planee.:

P, = <%> , (46
T /o

then equation45) can be written as:

L@p = (%A? + ‘%P)‘g7 (47)

where:

= (52) (%), (49
T /g 3

and

2 2
By = — (3o O =11 ([ A9 . (49
12771 T /g

Given a set of the observed values for the siz@, the period of
revolutionr,, the tilt (¢,) and the known precessional values of the
perihelion of planetsgy’;’bs); these values are listed in colum®s3,

4 and8 of table () respectively; we can solve for;’ and\S’ since
Py, o and B, will all be known, thus one simple has to solve
equation 47) for any pair of planets as a simultaneous equation.

The values ofe, and %, for all the solar planets are listed in
columns6 and 7 of table () respectively. It is important that we
state that the values of the Inclination listed in colunorf table ()
are the inclination of the planetary orbits relative to thkic plane
and in-order to compute the inclination of these orbitstieao the
solar equator we have to add to this because the ecliptic plane

2 201
14\ <#>6050+A2<G/\;u> <3C°5 4 > :
c c 2

2 20
1+ M <2G./Vlucos€) Y <3GMu) <3c0529 1>} (30

c2

(29

c2

and the solar equator are subtended at this angle. The splatos
is here defined as the plane cutting the Sun into hemisphedgbis
plane is normal to the spin axis of the Sun.

Now, having calculated the values ¥f and\$’, we will have to use
these valuesX? and ) to check what are the predictions for the
precession of the perihelion of the other seven planetselptedic-
tions of our theory are in agreement with the observed psimesf
the perihelion of these seven planets, then our theory iecband

if the predictions are otherwise then, our theory cannotdreect —

it must be wrong!

For the present, we have calculata@ and \S for the different
planet pairs (specifically the Mercury-Planet pair) werehaee all
the information to do so and these values are displayed la {Hl.

The final adopted values are:

AP =24.0+7.0 and\S = —0.200 £ 0.100.  (50)

and these values are the mean and the standard deviatiore-ighe
a27% error in \? and about twice§0%) that error margin imS.
From the values given irbQ), the predicted values of the precession
of the perihelion of the other seven plane¢sEarth, Mars, ..., Pluto;
where computed and are listed in column 10 of tableThe equiv-
alent predictions of these values from Einstein’s theogylsted in
column 9 of the same table. Inspection of the predictionsuotioe-
ory reveals that our predicted values are — as Einsteindigirens;

in good agreement with observations. We believe that thés chot
mean the theory is correct but merely that it contains an eterof
truth in it. It means we have a reason to believe in it and as avel
reason to peruse it further from the present exploratiotstfurthest
reaches if this were at all possible!

The reader should take note that in our derivation, we hasenasd
as a first order approximation the Newtonian result namedy ttie
angular momentum is a time constant. From the precedingpaect
clearly this is not the case. We have only assumed this atingtar
point of our exploration. It is hoped that taking into accbtlre fact
arising from the ASTG that orbital angular momentum is nov@a-c
served quantity should lead to improved results that hdlyetome
closer to the observed values.

6 NONE CONSERVED ORBITAL ANGULAR
MOMENTUM AND ITS IMPLICATIONS

Through equation31) which clearly states that the orbital angular
momentum of a planet must change with time; three immediate ¢
sequences of this are (1) a change in the mean Sun-Plaretatist
(2) a changing length of a planet's day and (3) an increaselar s
spin. In the subsequent subsection, we shall go througk thesied
phenomena.

© 2009 RAS, MNRASD00Q 1-12
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Table |. PERIHELION PRECESSION OF SOLAR PLANETARY ORBITS ACCORDING TO THE ASGT

Precession (1" /100yrs)

Planet ®, O, Oncd.  ®e g, By pobs »P P,
(AU) (yrs) ()

Mercury  0.39 0.24 7.0 0206 3.50 x 10° 1.72 x 102 43.1000 £ 0.5000(¢)  43.50000  42.80000 = 0.10000
Venus 0.72 0.62 3.4 0.007 5.19x 107! 288 x 10! 8.0000 & 5.0000(¢)  8.62000  12.00000 = 3.00000
Earth 1.00 1.00 0.0 0.017 157x10"* 3.80x 10! 5.0000 & 1.0000(¢)  3.87000  4.00000 =+ 1.00000
Mars 1.52 1.88 1.9 0.093 7.02x1072 243 x 102 1.3624 + 0.0005(¢) 1.36000  1.70000 % 0.50000
Jupiter 5.20  11.86 1.3 0.048 3.02x1073 1.00x 1075 0.0700 # 0.0040(¢)  0.06280  0.07000 =+ 0.02000
Saturn 9.54  29.46 25 0.056 7.59x107% 1.72x 107 0.0140 + 0.0020(¢)  0.01380  0.01900 =+ 0.00050
Uranus 19.2  84.10 0.8 0.046 1.09x10~4 9.76 x 10~° ——(f)  0.00240  0.00250 =+ 0.00070
Neptune  30.1  164.80 1.8 0.009 3.98x107% 9.13x 1011 ——(f)  0.00078  0.00270 =+ 0.00070
Pluto() 39.4  247.70 17.2 0250 5.77x 107° 9.48 x 10~12 ——N 0.00042  0.00140 + 0.00040

Notes (&) At the 2006 annual meeting of the International Astronoinidaion, it was democratically decided that the
solar test body Pluto is not a planet but a dwarf planet. Fopatpose, its inclusion here as a planet is not affected isy th
decision for as long as this test body orbits the Sun like ropjmmets.(b) The values of,, 7, Inc. and Ecc. are adapted
from Sagan (197439) Adapted from Kenyon (1990§‘.j) Adapted from Pitjeva (2005§.e) Obtained by adding the extra
precession determined by Pitjeva (2005) and found in Id2@08b) to the standard Einsteinian perihelion preces@on.

Because of their long orbital duration covering at lea$tuman lifetimes, no data is currently available covering @ul
orbital revolution for Neptune and Pluto hence there is mtany observational values for the precession of theihpbal.

The data for Uranus is unreliable (seg.lorio 2008b).

Table Il . ESTIMATION OF THE VALUES Ay AND A

Planet Plair A1 A2
Mercury-Venus 15.8 —0.0716
Mercury-Earth 32.8 —0.4174
Mercury-Mars 20.0 —0.1574
Mercury-Jupiter 26.1 —0.2895
Mercury-Saturn 27.6 —0.3112
Mean 124.0 —0.200
Standard Deviation : 7.0 —0.100
Percentage Error 1 27% 50%

6.1 Increase in Mean Sun-Planet Distance

One of the most accurately determined constants in astrgpi®the
Astronomical Unit [denoted 1 AU and AU = 149597870696.1 +
0.1m (Pitjeva 2005)] which is known to an accuracyléfcm (Pit-
jeva 2005) has been measured and found to be changing (Bkgsin
& Brumberg 2004; Standish 2005: see tallé)(for the numeral
values). The Astronomical Unit according to the InternadioAs-
tronomical Union (Resolution No. 10 19%4@s defined as the radius
of an unperturbed circular orbit that a massless body waudlve
about the Sun iR /k days wheré: = 01720209895AU°/ 2 day "

is Gauss’ constant. This definition is such that there is arnvag
lence between the AU and the mass of the 84w which is given
by GMs = k?A3. So if My, is fixed, it is technically incorrect

1 see http://www.iau.org/static/resolutions/IAU1976 riae. pdf
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to speak of a change AU. For the purpose of this reading, wé sha
take to mean thatAU is at any epoch, the current physical distance
between the centre of mass of the Sun and the Earth.

To this resultj.e., the change in the Astronomical Unit, lorio (2008)
states that the secular increase in the Astronomical Uninca be
explained within the realm of classical physics. Contrarthis, we
believe and hold that the ASTG can in-principle explain tieisult.
The ASTG is well within the provinces of classical physicsite
thus this result is explainable from within the domains and-c
fines of classical physics. In his reading (lorio 2008a) aesgthat
the Dvali-Gabadadze-Porrati braneworld scenario — a etassical
theory, which is a multi-dimensional model of gravity aintedhe
explanation of the observed cosmic acceleration withouk da-
ergy, predicts, among other things, a perihelion seculit; slue to
Lue-Starkman Effect 0§ x 10~ *arcsec/cy for all the planets of
the Solar System. It yields a variation of abéut /cy for the Earth-
Sun distance which is compatible with the observed rate et
tronomical Unit. The recently measured corrections to #haukar
motions of the perihelia of the inner planets of the Solat&ysare
in agreement with the predicted value of the Lue-Starkmeatefor
Mercury, Mars and, at a slightly worse level, the Earth —-estéorio
(2008a) in his reading. We shall show that in-principle, K&TG
can explain this result as a consequence of the none-catioerof
orbital angular momentum of planets in this azimuthally syetric
gravitational setting. The none-conversation of the afkdingular
momentum leads directly to a time variation in the ecceityriof
planetary orbits.

Given the definition of the eccentricity of an orbit:

2 Rmzn 2
—1-
‘ (Rmax >

(67
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Table Il . SECULAR INCREASE IN THE ASTRONOMICAL UNIT difference that the eccentricity of these orbits varieiine and it
is this variation of eccentricity that we believe the secinarease
of the Astronomical Unit is rooted.

Al Al . . . L .
o % Reference Doing the right thing and taking into account the predicteenge

dt
(m/cy) (ms™1) in the angular momentum, then equati@s)(will be:

15.04+4.0 (4.75+£1.27) x 107  Krasinsky & Brumberg (2004)
7.004+0.20 (2.22£0.06) x 10~2  Standish (2005) d*u ( 1 dJ) du o G

M 2
a2 72 dt ) dp +nu— T Balu”, (59

) ) ) and taking the change of angular momentum to first order appro
WhereR min andR.nq. are the spatial extent of the minor and major - mation from equation3{), one will have:

axis respectively; and then, differentiating this withpest to time,
one is lead to: aJ M2
s |:>\1 (—) sin9p:| u? = =200, (59
(&

(52

P _
dt R%Laﬂ')

de _ Rmin dRmin Rmin dRmaac
dt Rmaz dt '

whereq is clearly defined from this equatiare.:
There is no reason to assume that the rate of change of the amdo

major axis be the same, thus we set must set: 1 G 2
=5 |M ( ) sinf, | , (60
dRmaz _ dRmzn
ot 63
it therefore follows that:
and from this it follows that:
Pu 20 du 9 GM 2
. _ _ —— o Tmu— = Balu”. (61
6% _ Rmin 11— (’Y + 1) Romnin dRmzn ) (54) d(pQ J? d(p J?
dt Rraz Rmax dt
and writingk = «/J* which is:
and multiplying by R.... both sides, and thereafter substituting
Rmin/Rmaz On the right handside we will have: N SGM\? N (GMY
k=—|——) sinf, = — 5 | sinfp, (62
de ) ARoin 2 cJ 2 le
eRmmaz—(l—e )(1—(7—}—1) (1—62)) a0 (55)
where the Newtonian approximatioff = G M1 has been used and
therefore: K = GM/J?, the above becomes:
dRmin Rmzn dE d2 d
=- — . 56 R AT S 2
dt 1-e)(1-(+1)Vi-e) (6dt) GO 7 kg, triu— K =Gl 63

Now, on the average, the time change of the minor axis must to a If the qrbital angular momentum varies constantly with tjrtreen
large extend be a good measure of the time change of the averag J = Jt + .J, where.J, is the angular momentum at tinte= 0

distance(R) between the planet and the Sun, hence thus: and J is a time constant, theh = k(t) and K = K(t), mean-
ing k(¢) and K () will dependent not on the coordinated, ¢ but
d(R) _ (R) (6 de> 57 only on time, hence in solving the above equation we can theat
dt (1—e2) ((7 +DVI—e— 1) dt )’ as constants since they do not dependent,dny. We believe the
assumption thafl = constant is justified because if that was not
In the realm of Newtonian gravitation where spherical syrimynis the case, there could be an accelerated increase in thel antgular
assumed thus producing equations only dependent on tha cish momentum and this could have been noticed by now. In thiswssu
tancer, the eccentricity is an absolute time constaet,de/dt = 0, tion thatJ = constant, we must have/ being so small that it not

and this directly leads td (R) /dt = 0, hence when one finds that ~ €asily noticeable as is the case were we have had to relaylien de
the Astronomical Unit is increasing, it comes more as a $sepr cate observations to deduce the secular increase of thendstical

If we consider azimuthally symmetry in Poisson’s equatierhas Unit.

been done here, the result emerges naturally because thetdcc
ity is expected to increase with the passage of time — thishaé s
demonstrate very soon.

Now, to obtain a solution to this equatione( 63), we need first to
get a solution to:

In §(4), against the clear message from the ASTG, we assumed thatd*u ok du 2 GM 0 64
the orbital angular momentum of a planet is a conserved iyalit de2  “Vdp tmu =g =0 ©4
turns out that taking this into account leads us to two typerbits

(1) spiral orbits (2) the normal elliptical orbits with thenportant and to obtain a solution to this, we need first to solve:

© 2009 RAS, MNRASD00Q 1-12
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d?u du 2

— — 2k— =0 6
dSDQ dQD + mu ) ( 5)
and to its solution we ad@' M /.J%. The axillary differential equa-
tion to this differential equation is\? — 2kX +77 = 0 and its {.e.
equation6b) solutions are:

X =k+4/k?—n} =k £ins,

wherens = /n? — k2. If (3)®> < 0 the solution isiu =
AeFtms)e L Be(k=n3)¢ where A and B are constants, thus adding

GM/J?* we have:

(66)

GM

u= AelFtm)e L peth—ns)e e

(67)

and if (n3)? = 0 the solution isu = (Ap + B)e*# thus adding
GM/J?* we have:

GM

(68)
The solutions§7) and ©8) are clearly spiral orbits. These solutions
are obvious very interesting but because our focus is nohem
but on the solutions giving elliptical orbits in which theceatricity
varies, we shall not be looking into these spiral orbit Sohg any
further than we have already done.

Now, in the event thatns)? > 0 the solution to equatiors) is:

ke
" 1+ee l(:OS(T]ggp)7 (69)
Now, using the same strategy as that use${®) and (4) to solving
equations20) and @5) respectively, one finds that the resultant orbit
equation will be:

l
T 1+ cek¥ cos(mense)’

r (70

and as before, at the perihelion we will hayg)s = 27n and this
impliesp = 2mn(n2ns) ™" ~ 27n[l 4+ B[l + (B1 + k%)/2] and
taking only first order terms we will have: ~ 27n[1 + (81/2 —
B2) + (k* + 4/32)/2] and this shows that the perihelion will pre-
cess by an amountky = 27((B1/2 — B2) + (k* +432)/2], and in
comparison withAy ~ 27[3; /2 — 32] obtained without taking into
account the angular momentum, there is an additional pseresf
(Ap)+ ~ 27[(k? +482)/2]. While this result is important our main
thrust is to deduce the variation of the eccentricity ofptitial orbits
(we shall shelf any deliberations on this result for a furtieading).
In equation 70), the termee*? in the denominator is the eccentric-
ity, let us write this agny = ee*?, and from this we see that the
eccentricity varies with time +e.; as the orbital angular momen-
tum changes with the passage of time, so does the eccentNoit
plucking this into equation57) we can determine the variation of
the Astronomical Unit if we have knowledge ©f unfortunatelywe
do not have this. However, if we are to reproduce the obseragd
ation of the Astronomical Unit, one finds that if they were & s
ve = 1.48 x 10™*, which practically means that the orbit grows
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evenly at every point, one is able to explain the seculaesse of
the Astronomical Unit.

It should be said that, if the ASTG is to stand on its owmnes,
independent of observations, then it must be able to expilairesult
~vE = 1.48x10~* from within its own provinces. Itis for this reason
that we sayijn-principle, the ASTG is able to explain the secular
increase in the Astronomical Unit and only until such a tinteew
one is able to derive say the valyg = 1.48 x 10~* from within the
theory itself, will we be able to say the ASTG explains theutac
increase in the Astronomical Unit.

Other than the secular increase in the Astronomical Unéreths
also the increase in the mean Earth-Moon distance. This é&as b
measured by Williams & Boggs (2009) to be3.50 x 10~ m/cy

and in Sl units this id.11 x 10~ % m /s. This observation provides

a test for the ASGT, but unfortunately, we do not have theevalu

A1 S0 as to check what the ASTG says about this. We believe one
cannot use the sames values obtained for the Sun because these
values must be specific to the gravitating body and may vety we
be connected to the spin or the gravitating body in questidmare
working on these ideas to improve the ASTG and at present we ca
only say it is prudent to assume that thevalues are specific to the
body in question hence one has to calculate them from olisamah
data. For the Earth, this increase in the Earth-Moon distasabut

the only observations we have in-order for us to dedu¢cence the
ASTG is unable to make any predictions on this as it standeéen t
present. We hope in the future one will be able to deduce argkene
form of the A\;,-values, thus placing the ASTG on a level where it is
able to make predictions that are independent from obsenst

Important to note fromey = ee®? is that, asp — —oo, the ec-
centricity will decrease and the reserve is that the ecioéytmwill
increase ap —— +oo decreases. An increasing eccentricity leads
to a secular decrease in the Planet-Sun distance and asiagree-
centricity leads to a secular increase in the Planet-Sutardis. This
means the sense in which the planet orbits the Sun is imgbBen
cause we believe from Krasinsky & Brumberg (2004) and S&indi
(2005), that there is a secular increase in the Earth-Stendis, this
means the current direction of rotation of the Earth arolnedSun
must be such thap —— —oco. This must be true for other planets
rotating in the same sense as the Earth; and to any (objdwt iBd-
lar System) that rotates in the direction opposite to tlis body
will experience a secular decrease in its distance from time S

6.2 Increase in the Orbital Period of Planets

Given that through the passage of time — what is suppose to be a
sacrosanct unit, the Astronomical Unit; is changing, arat the
time change of the specific orbital angular momentum is given
J = 270 + 20, then, if as in the case of Newtonian gravitation
the specific orbital angular momentum of a planet is a coeserv
quantity,i.e. J = 2r#6 + r26 = 0, then accompanying this result
of a changing Astronomical Unit must be an increase in thgtten
of a planet’s duration for one complete orbit siré;éé = —21/r.
Given thatd = 2w /Ty where7y is the orbital period of a planet,
the equatiori/§ = —27/r becomesTy /Ty = 27 /r. Plucking in

the relevant values for the Earth, one is leadd = 2.97 ms/cy.
Since7,¥ = 365.257p whereT;S is the period of an Earth day,

it follows that: 7;% = 365.257,5, it follows that we must have:
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75 = 8.13 us/cy — this value is at odds with physical realitipr
records held for ove2700 yrs indicate that the Earth day changes
by an amountZ"f}9 = +1.70 £ 0.05ms/cy (seee.g.Miura et al.
2009), which is abou200 times that expected if the orbital angular
momentum where a conserved quantity as in Newtonian gterita
— clearly, this suggests that the orbital angular momentuay not
be conserved.

If say the conserved quantity was the total angular momermatuan
planet,i.e. the sum total of the spin angular momentuff) &nd the
orbital angular momentum, the$i = —.J and if the radius of the
planet is not changing with time, theh, = —2xR2.JT2. For the
Earth, one finds thad;? = —5.18 s/cy which is~ 3000 times the

and this means the orbital period of the Sun must be chanéfing.
we assume that the Sun’s radius has remained constant kthtioeig
passage of timé.e. R, = 0 (which is certainly not true), then what
we obtain from the above is a minimum value for the seculangba
in the Sun’s spin. The reason for invoking this assumptidresause
there currently is no information on the secular change ef3bn’s
radius (see.g.Miura et al. 2009), hence we make this assumption
so that we can proceed with our calculation. As already salict
we get is not the exact secular change in the Sun’s spin butex lo
limit to this.

The second term in equatios), i.e. M /Mg; represents the
effect of solar mass loss, which can be evaluated in theviello

observed value — this can not be, sure something must be wronging way. The Sun has luminosity of at lea&b39 x 10%° W, or

We shall explain this observational vaItT§ =1.70+0.05 ms/cy
from the ASTG.

From the ASTG, we have:

j theory
(7) = —(6.00 +2.00) x 10~ **s™", (79
J <3}
and we know that:
7),72(x),- (%)
C) =2 X) (X (72
(J P R P TY p

hence plucking in the observed values and remembering fartget
that for the Earth;? = 365.257,, then we will have:

-\ obs
(1) = —(228£0.07) x 10757 (73
&

J

This value -vis the order of magnitude, is on a satisfactory level in
good agreement with observations. We take this as furtllézation
that the ASTG contains in it, grail of the truth.

6.3 Increase in Solar Spin

We know that angular momentum must be conserved but aceprdin
to (31), itis not conserved. This lost orbital angular momentunsimu
go somewhere — it cannot just disappear into the thin intesiof
spacetime or into the wilderness of spacetime thereof.d.gt be
the sum total angular momentum of the Solar System, were we co
sider that the Solar System is composed of the planets. I§uhe
total of the angular momentum of a planet and its system eflgat

is Ji%, thenLior = Mo Se + Y, MiJi°". We would expect that
the total angular momentum of the Solar System be convetisad,
isdLyot/dt = 0. From this we must have:

So Mo 1 M, [dJt

S@ Me S@ Z |:M@ ( dt ’ (74)
anddJ;°*/dt = dJ,/dt hence thus:

E _ 2Ro M@ M; dJ; 79
7o B Ro 27TR Mg dt’

4.382 x 10° kg/s; this includes electromagnetic radiation and the
contribution from neutrinos (Noerdlinger 2008). The padimass
loss rate due to the solar wind-s 1.374 x 10° kg/s (seee.g.No-
erdlinger 2008). From this information, it follows that ., /M, ~
9.10 x 10 2¢ey~h

Now, the last term in equation7$) can be evaluated from the
ASTG sinceJ is known — so doing, one finds that it is equal to
~ —(4.0041.00) x 10~ %y~ *; this impliesTs = 8.00+2.00 s/cy.
This result is a significant0® times larger than the term emerg-
ing from the solar mass loss so much that we can neglect this al
together and consider only the last term in equatiés) (hence

T = 8.00 + 2.00 s/cy. This value is significantly larger compared
to that calculated by Miurat al. (2009) where these authors find a
value of21.0 ms/cy. Currently no serious measurements on the sec-
ular change in the period of the solar spin has been madeoulich
be possible to undertake this effort and with respect to t8& @,
and the result of Miurat al. (2009), this experiment would act an
arbiter.

Furthermore, the authors Miuet al. (2009) propose that the Sun
and the Earth are literally pushing each other away (leattirte
increase in the Astronomical Unit) due to their tidal intgian and
they believe that this same process is what's graduallyirdyithe
moon’s orbit outward: they say “Tides raised by the moon in ou
oceans are gradually transferring Earth’s rotational gnéo lu-

nar motion. As a consequence, each year the moon’s orbindgpa
by about4 cm and Earth’s rotation slows by abos®u.s”. Further
Miura et al. (2009) assumes that our planet's mass is raising a tiny
but sustained tidal bulge in the Sun. They calculate thanhkh to
Earth, the Sun’s rotation rate is slowing 8§u.s/cy. Thus according

to their explanation, the distance between the Earth andsjrow-

ing because the Sun is losing its angular momentum — the ASTG
gives a different explanation altogether and this is in quinion,
very interesting.

7 DISCUSSION AND CONCLUSIONS

We have considered Poisson’s equation for empty space &wetiso
this for an azimuthally symmetric setting — we have coined th
term Azimuthally Symmetric Theorpf Gravitation (ASTG) for
the emergent theory thereof. From the emergent solutiorhave
shown that the ASTG is capable of explaining certain obsk(aad
yet to be observed) anomalies:
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(1) Precession of the perihelion of planets.
(2) Secular increase in the Astronomical Unit.
(3) Secular increase in the Earth Year.

(4) Secular decrease in solar spin.

(5) Spiral orbits must exist.

One of the draw backs of the ASTG as it currently stands isithat
is heavily dependent on observatidns the values of\, need/have
to be determined from observations. Without knowledge ef\t}s,

11

meets (1), (2) and (3). We shall assume this result until suiime

evidence to the contrary is brought forth. Checking on (3ye&that
within the error margins\5 ~ [(—1)**"/((2%)!(2*)]A?. Further
checking on (2); from76) we will havels = 3.40x1072° \; which

is practically small and, the meaning of which is that alhierfor

which ¢ > 3 can in practice be neglected entirely.

If the above proposal proves itself to be correct, then gthgh the
theory will have just one undetermined parameterWe are not go-
ing to try and deduce what this parameter depends on butesiniu

one is unable to produce the hard numbers required to make anyat our current thinking. We believe this parameter must nejmn

quantifications. A theory incapable of making any numerisn-
tifications is useless. This must be averted. We shall makeithe
solar values of the\;s in shading some light into our current think-
ing on this,i.e. finding a general form for the constants; In the
subsequent paragraphs, we shall make what we believee@san-
able suggestiomnd give our current envisage-ment on the general
form for these constants.

(1) First things firstjf the constants\, where all independent of
each other, then, the theory would clearly be horribly cocapéd.

If we take as guide the philosophy of Occam Razor of the siitpli

of a theory, then, these constants must be dependent on #eah o
somehow so as to reduce the labyrinth of complications. The s
plest imaginable such dependence@is= F'(¢)1; in this way, the
entire system of constanfs is dependent on just the one constant
A1. This idea that the system of constants be dependent onrjast o
constant is drawn from the theory of polynomial functionseneh
for a polynomial functionF'(z) = >>° , c,z", one can have “well
behaved” polynomial functions for which the constaatshave a
general form, were they dependentone.g, e* = >~ 2" /nl.

We envisage the functio®(r, #) to be a “well behaved” function.
By “well behaved” we simple mean its system of constanis,is
critically dependent oif just as the constants, depend om.

(2) Second, we could like that on a practical level, only teeond
order approximation of the theory must suffice, this meaadge¢hms

¢ > 3 must be practically negligible. We have already shown Inerei
that the second order approximation of the ASTG is able tta@ixp
sizable amount of anomalous observations. With the AST&emri
in its second order approximation and as will be shown in ¢wesd
reading {.e., a follow-up reading that we hope will be published in
the present journal), one is able without much difficulttesexplain
from this second order approximation, the emergence of ecnele
lar bipolar outflows in star forming systems, as a gravitalghe-
nomena. If the other terms beyond the second order apprtgima
become practically significant, one will have difficultiesexplain
outflows. So in a way, we are not going to pretend but cleadtest
that, we want — albeit with a priori and posteriori justificat to fine
tune the theory so that it is able to explain the emergencéofar.
This is the strongest reason we want the terms for which3 to be
so small such that in practice one can neglect them entirely.

(3) Third and most important, the only data point we have ebéh
constants is the determined values for the $en,>\? =24.0x7
and A2 —0.2 £+ 0.1. If logic is to hold — as it must; then, our
suggestion\; = F'(£)\1; must be able to explain this. We find that
the following proposal:
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(76)

the angular frequency of the spin of the gravitating bodyueagtion.
If we can find the correct dependence, then, the ASTG willdstan
it own thus positioning itself on the podium to make testaiskic-
tions. We have left the task to make this deduction an exeffois
the follow-up reading.

The fact the we have deduced the crucial parametgr& S from
experience, means we have in the current reading done seer@ee
engineering. Normally, a theory must give these values aakiem
clear predictions, just as when Einstein wrote down his ggos
and found that his theory predicted a fac2adifference when com-
pared to Newton’s theory when it come to the bending of lightHe
Sun and when applied to the Sun-Mercury system, it accowmsied
well for the then unexplained3.0” per century for the precession
of the perihelion of the orbit of this planet; it just came oigtht.
There were no free parameters that needed fitting as is tleeofas
the ASTG. As argued above, once a general form fonthis found,
this setback of the ASTG will be solved. Because we were able t
obtain the values? & A$ which lead acceptable values for the per-
ihelion precession, means that the valuég& % are not random but
systematic. If the theory was all wrong, then, only luck veboiake
the obtained values fow & % give values ofA? & AS such that
equation 47) give in general, acceptable values for the precession of
the perihelion of the planets.

With regard to the values obtained for the precession of énéng-
lion of solar planets, it can be said that, the values obthinem
the ASTG as shown in column 10 (tablewhen weighed against
the observational values listed in column 10 (of the samie}ave
acceptable. Given that we have taken into account the facoith
bits of these planets are not found laying in the same plaisecan
hardly be a coincident or an accident since changing thelimia-
tion by just1° will alter the predicted values of the precession
their perihelion.

of

lorio (2008a) states that the secular increase in the Astnical
Unit cannot be explained within the realm of classical pbysCon-
trary to this, we believe and hold that herein — we have shoom f
within the provinces of classical physics that this ressiléxplain-
able from within the domains and confines of classical plsy$e-
fore the present, the reason why perhaps this observatipeasgd
beyond the reach of classical physics is because clasdigalgs
has not really consider gravitation as an azimuthally sytrimphe-
nomenon as has been done in present reading. The strongstigge
to me that the ideas presented herein need to be exploréefurt

A very interesting outcome that was not explored in this iregébr
fear of digression is that the ASTG has a provision for spraits
(equation67 and 68). These orbits occur whefns)? < 0. This
condition implies the existence of a region £ R¢ri) in which
spiral orbits will occur. Evaluating the inequality.s)? < 0, leads
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t0: Rerie = (2A1GM/c?) cos®(0/2), and from this, it is easy for
one to deduce that spiral orbits are unlikely in the SolatSysince
these will have to occur inside the Sun becalisei: < Ro.

At this point as we approach the end of this reading, we feehgty

Acknowledgments | am grateful to my brother George and his wife

Samantha for their kind hospitality they offered while wiok on

this reading and to Isak D. Davids & M. Christina Eddingtom fo
proof reading the grammar and spelling. Further, | am guhtief
the unanimous reviewers, their invaluable criticism thes help in

that we must address the question; “Does the spin along the az the refinement of the arguments presented. Last and cegriadnl

imuthal axis of a gravitating body induce an azimuthal syrmne
into the gravitational field for this spinning body?” To arewthis,
we must ask the question; “Will a contracting none-spinrttaud
of gas experience any bulge alone its equator?” First, wevkhat
the equatorial bulge will occur on a plane perpendiculah®dpin
axis. Since a none-spinning gas cloud is going to have toaps
there is going to be no spin axis about which the equatorikgebu
will occur. If the material in the cloud is randomly and umifdy
distributed, the cloud will exhibit a spherically symmetdistribu-
tion of mass and its gravitational field is expected to be spaky
symmetric. A spherically spherically symmetric gravitaial field
is one that only has a radial dependeneep = o(r).

Now, if the gas cloud is spinning, the centrifugal forceslwéduse
there to exist a disk and the material distribution will hareaz-
imuthal symmetryj.e. p = p(r,0). Should not this azimuthal sym-
metric distribution of matter induce an azimuthal grawiasl field?
From Poison’s equation2), p = p(r,0) implies ® D(r,0);
should not thisj.e. ® = ®(r, 0), hold as-well for a body spinning
gravitating body in a vacuum? From this, clearly, a spinrgrayi-
tating body ought to exhibit an azimuthal symmetry. It isnfir¢his
that the subtitle and running head finds its justification.

If the ASTG turns out to be correct — as we believe it will; then
vis the connection between gravitation and electromagnetisem,
we have an important question to ask; “What is the speed bf lig
doing in a theory of gravitation? This is a similar if not a gom-
ent question that has been asked by Martin & Anderson (2009) i
their expository work on Earth Flyby Anomalies (AFA). The e€m
pirical formula deduced to quantify EFA contains in it theceg

of light, ¢, so in their exposition of the phenomena of AFA, Mar-
tin & Anderson (2009) have asked the perdurable questiondfWh
is the speed of light doing there?”. EFA are thought to be sigra
tional phenomena, so, what does the speed of light have tattio w
gravitation —really? If there is an intimate relationship between the
speed of light and gravitation, then, one will be forgivenhiok this
suggests a link between gravitation and the theory of lightee-
tromagnetism. The speed of liglt,appears to be dire to the ASTG
presented herein. Why not another value but the speed df &igh
shall leave these matters hanging in-limbo.

In closing, allow me to say that | find it hard to call what hage
presented herein as “A New Theas§ Gravitation”. When one tells
you they have come up with a new theory of gravitation, what im
mediately comes to mind is that they have discovered a naw pri
ciple upon which gravitation can further be understood frive
present understanding. The ASTG is not founded on no new-phys
ical principle but on the vintage and well known equation ofsP
son. What we have done is simply taken the azimuthally symenet
equations of this equation and applied them to gravitatRased
on this understanding, it is difficult to call it a new theowes, the
azimuthally symmetric equations of Poisson have brougiv ared
exciting physics — perhaps only because of this, the titthisfread-
ing finds its qualification.

least, | am very grateful to my Professor, D. Johan van det &l
Professor Pienaar Kobus, for the strength and couragehiisahtive
given me.
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