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Abstract

In a previous paper [1] we showed that the enargpuise four vector of the
propagation of electromagnetic fields into a waveguwand in free space can be
described by a Dirac spingr.

This suggest an analogy with for example TE-elegtidV-positron and possibly
TEM-neutrino.

Aim of this work is an interpretation of the actjohany, of the electroweak gauge
group U(2)0U (1) on the before mentioned e.m. fields (TE, TM, TEMd®s). This

Is based on the following observation: the enengyulse four vector is invariant
under a global transformation ef)(2) DU (1), so¢ can be “gauged” in order to verify
the effect not only of the electromagnetic force ddao of the weak forces.

In other words, what are “weak forces”, if any, s, TM and TEM?

Obviously this requires “a modification of the Diraquation to accomodate the
larger gauge group” (Hestenes, [2]).

This is in fact done here, and it is shown thatahalogous of the “weak forces” can
be roughly interpreted in the following way: thebBd/son acts as a horn antenna
(receiving or transmitting), performing the transhation TEM«<—— TE, TM, giving
or subtracting mass to the field; the Z° bosoasia radar target acting on the TEM
(neutrinos) with a doppler frequency. Those objeetge a mathematical counterpart
in gauge fields.

No Higgs boson is needed in the theory.

[1] G. Bettini, “Algebra di Clifford ed equazione Dirac per i campi in guida”,
available in vixra.

[2] D. Hestenes, “Clifford Algebra and the interfat®on of quantum mechanics”, in
“Clifford Algebras and their Applications in Mathaical Physics”, NATO ASI
Series, Reidel (1986)



Electroweak forces acting on TE, TM, TEM.

Introduction and summary

What we intend to deal here (except suggestiveeasid not particle physics and the
implications and consequences, but the descriptidine propagation of any
electromagnetic field through its energy moment@cior.

Useful references (electromagnetism, Clifford afgeletc..) are in [1]...... [7], and on
electron theory in [8 ]......[ 14].

| think | have well demonstrated in [15] “Cliffordligebra and Dirac equation for TE,
TM in waveguide" that the usual description of tieéds in terms of V and | involve
the Dirac equation. Conversely, | have shown thatRirac equation provides (and
distinguished) TE and TM fields and describes thlanzation. As a byproduct, of
course, are included in the same description tHd.TE

Avoiding such considerations as Bohm would saydlmgfical”, from a
epistemological point of view that we face and \&a study is at least a complete
formal analogy. We say a Dirac equation which adiirids TE and TM each with
both polarizations, and idem TEM fields at the speklight. The formal analogy is
with electrons positrons and neutrinos.

| identify the massn with the cutoff frequency of a waveguide whictoals the TE
and TM fields in it. | finally identify the actioand the effect of a gauge field
generated by - ¢'=¢e™" (i.e., electrical potential), with a variationsize of the
waveguide.

At this point there is an extension of the analyts& can only arouse curiosity, and
that is by definition a problem from electronic evegr. It happens that:

1°) the group that leaves unchanged the total gmaamentum vector of the
electromagnetic field is not only the 'electromagngauge groupy - ¢'=ye"?
(Hestenes) but the growgu (2)0U(1);

2°) the application of a local transformatiga (2) U (1) in physics is in the way we
produce and describes the "unification of the etmsagnetic forces and the
electroweak force”.

Well in short you can not be satisfied until istsown the effect of a local
transformationsu (2)JU (1) on the electromagnetic field or the effect of the
"electroweak force" (if any) on the TM and TE, THivbdes.

The two main difficulties are as follows.

Firstly, the difficulty of a Dirac equation thatrads the groupe™”*1*=**# j.e. with
exponential from right as global transformationisTlis necessary to introduce gauge
fields of su(2)Ou(1).

Secondly, the difficulty to express mathematic#tliy shift from the speed of light (or
TEM) to a velocity v (i.e. TE TM) and vice versa,"give a mass” to TEM.



The weak force

| have repeatedly expressed (....to myself) tha tat the action of physical objects
on a incident signal might be interpreted as th®aof the electroweak force, or the
action of the particleg Z° e W, thus making them "physically visible”.

As for the electromagnetic force, which is respblesfor the particle "photon”, |
have already given in [15] an interpretation imterof TE and TM fields in a
waveguide.

| tried several times but it seemed almost impdsdisee the action of the particles
W and Z °, assimilating to the action of objecteming on TE TM TEM modes.
Let us think for a moment the analogy "electren™— "electromagnetic signal, or if
we want the analogy" methods of quantum mecharies3" electromagnetism and
radar. "

Deviation or deceleration or acceleration of a aign waveguide ([15]) match in
physics or in quantum mechanics with the so-cdllean. force " or " e.m.
interaction”. This force is exerted by the partipteoton, carrier of “e.m. force "
Particles W and Z ° carriers of the "weak forcedudd find their interpretation in the
action of a radar target, or an object in waveguideimilar.

You can support this point of view?

You can view the action of an object on an elecagnetic signal incident on it
saying, 'Look, this is the action of the Z ° pdeitor "This is like the action of the W
particle "?

Now it seems that this is possible.

| intend to show that there are physical objecas tperate on the TM and TE TEM
similar to the action of W and Z ° particles onctlens and neutrinos.

For the moment confine ourselves to a qualitatkan@nation.

| remember the similarities and help me with thewdngs.

neutrino:
(TEM)

circular polarization, speed c

circular polarization, speed V

electron (and positron)
(TE or TM) I\R,V



We begin to summarize the action of the photosloMvs down or speed up or diverts
electrons

In a radar analogy is a fictitious " equivalent wguide" that slows down or diverts
TE or TM modes.
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(I have given this interpretation in [15] In thdléaving | give a simple interpretation
of it).

We try instead to interpret the actions of theipks W and Z ° carriers of the "weak
force". No photon is able to act (to divert or sldawn) a neutrino, and this is
consistent with the fact that no guide acts on MTieing by definition a TEM free
from any waveguide. Neutrino may act converselyzliewhose action, seen in
terms of action of a radar target can be repreddnta scattering from TEM to
TEM, diverted or delayed (or accelerated) to equaddrization.

'\,

eutrino

neutrino/\/




The object that can do this could simply be a raalayet in any motion approaching
or going away.

The more complex the action of the W particles lable to transform into electron
neutrinos or vice versa (and is therefore a partigth charge).

mv
V

[\/ neutrino

In a radar analogy an object that transforms TET@dn TEM or vice versa exists
andis ...... a horn antenna. It operates theitramdree space — waveguide and then
the above transformations.

__— S~
e VA .

eletctron neutrino neutrino electron

The challenge is to translate the action of théxgeats in these mathematical
operators to operate in a similar manner to thea@d W particles in quantum
mechanics. Or conversely, to translate the matheahdrmalism of the action of W
and Z° particles in quantum mechanics in mathemmlabigerators representing the
electromagnetic action of the various objects.

This is the task that | will try to solve by studgithe action of the groupu(2)C0u (1)
on TE TM and TEM fields.



The invariance with su(2)ou(y) of the energy momentum vector

The basic observation from which to start is alovwaed.

| have seen in [15] that was ultimately responsible for providing the fau@etor
YTy . Itis assigned a spinor with 8 parameters whiggedenough to assign a four
vector. So there is a fourfold arbitrariness/in(Hestenes, [3], [4]), which is
represented by the 4 parameters transformation:

(1) Y- (//eT“ﬁeiive—iqaeip

(or rathery' - ge"#*1v7**# pheing the exponential non-commutative, excet).

It is indeed significant that an arbitrary transfiation of this kind leavegT ¢’
unchanged (see also Appendix 1).

Now the groupe™#*iv®+i# is the groupsu (2)0U (1). Specificallyi, j,ij is SU (2), the
group of all space rotations, which leavainchanged . The same thing dags It
follows that in the description of the electromatiméeld with a four-vectorTy”
you can experiment og a global transformatiosu (2) U (1) without altering the
four velocity (or the energy momentum vector).

What happens if the transformation from global lbees local? If we impose the
invariance of the Dirac equation for local transfationssu(2) DU (1) gauge fields
arise following the usual techniques of gauge tiesdgicovariant derivative and so
on).

The problem, for continuing, however, is that @jiist accepted as a legitimate
global transformation into a new equation ("a miedtion of the Dirac equation to
accommodate the larger gauge group", Hestenes [4]).

The Dirac equation actually is formulated as ityatcepts the “electromagnetic
gauge group'e™.



A modified Dirac equation that admits su (2)

The starting points that made me arrive at theltrase, say, three.
One is the following. | have always given some sbdisturbance, especially after |
rewrote my way the Dirac equation, the fact thatas written:

(3) oy =-imyiT
4) y=y. +ig,+Tig,+Ty,

with a sign (-) and not with the sign (+). Why &)d not (+)? Among other things |
had originally written with the (+), then | havedorrect to derive the equations
written with the signs as well as in many books.

0 .0 0 0 .

i =, | —+ =0
X Iay = azl’[/3 [ar |mjt//1

0 .0 0 J0 .
il =, +| —+ =0
ox Iay Vs 621'04 (af |mjt,02

©))

0 .0 0 J .

— == W, +—=¢,+| ——im, =0
[ax ay Y 621’[/1 (ar j‘/’s

0 .0 0 0o .
—+tl =W, =y, +| ——imy, =0
[ax dy g azl'[/2 (ar j¢/4

This is the first premise. | will say then as | wed.
Now the second premise. In (3) who prevesig2) as global symmetryj(ij from

right) is the irritating position of. If there was not, or was switched to the left,
everything would be solved.
For the party, of ¢, | can write the equation in the way | wanteddg s

6) Oy =-imy,T
which means to take instead@fonly the part:

(7)) w=y, =y, +Tjy,



So, it is apparent but illusory to say that (6)egate SU (2) .

(For example if | change with an exponential from right - ¢'=ye'”,
substituting in (7) shows that terms arise in uirdbte componentgy, that are
unacceptable, becaugeno longer commute with which is the initial hypothesis).
This is the second premise. | will say then whadve got.

Third observation.
Solutions at rest of the Dirac equati®y = -imyiT are:

y=e W, %0

W= je ¥,#0
(®) |

Y =Tjie"™ W, %20

@ =Tji(je") ¢, #0
In my representation of radar polarization, theisoh with onlyy, # 0 viz

(9) Y=4,= e
gives a TE at rest with an electric field

rotating in the x, y plane from x to y.

The solution with onlyy, 20 i.e. ¢ = jy, = je™* represents, as in the electron
theory, the opposite rotation.

But all this happens just because | have arbiyrahbsen to represent the TE
(satisfying the condition that we give the Kleinr@on equation), the Dirac equation
d'w =-imyiT . If | had chosen the equation with the opposige $or m | would have
solutions with opposite. and therefore this time was rathee je" (¢, 20

solution) to represent the same rotation as befotlee electric field, viz:

(11)  E=gi+y (i =g i =je i =™



So you can use to represent the same rotationf@sle the electric field with the
Dirac equation (5), but with the opposite sigmoin the equations that provide, .

We can also use democratically both componentsbowd in quadrature with sin
and cos, so as to maintain the condition:

(12) /=1

That said, | have solved the whole issue leaninthese three facts, arriving the
following proposal. Write the equations for thegiendirection of rotatiorg = e i
of the electric field, using the same equation (6)

(13) W =—imiyT

but now also in agreement with the acceptabilittheftermy, and more generally
of all, in the usual form:

(14) Y=g+, + T, + Ty,

Now not only apparent but it is also possible {i&) admitssu (2) .
(In fact now if for example changes with an exponential from right - ¢'=ye’”,
substituting in (13) arise terms iy, components what time are acceptable).

Developed (13) get the equations (I write for plarave in z for a reason which I'll
explain later):

0 0
s [gremp =0
0 0 .
‘&"’4*(&"”@‘”2 =0

(15)

0 0 .
-—Y,+| —+im, =0
% o[ S,

that coincide with the Dirac equation (5) for plam&ve in z, but with the opposite
sign of m in termsmy, andmy, .



We interpret the solution with (10) and (11) whstiould be amended in
E+TjiH =g, +¢_(-j)j, with aj in the party_, to maintain the condition:

(16) g =1

(For additional considerations and details, seeAppendix 2).

| repeat that equation (13) represents the onBtimtse™i of electric field, namely
that in the conventions IEEE is a polarization'Rght").

You can see that the equation gives the R TE astdad the TM L.

A similar equation gives the polarizations TE Lft)land TM R with a change of
sign of m in the second member.

| am writing to remind you, with the appropriatel@x R and L:

(13 a) Oy =—-imy,T
(13 b) Y, =+Hmiy T

Obviously thenm=0 is integrated into a single equation valid forrbdEM R and
TEM L:

(13c) 0y=0



Analysis

Eq. (13) is no longer the Dirac equation, but & igestricted" (or expanded?) Dirac
equation. But proves easily (skip steps) that:

- Is invariant under rotations around the z axis;

- Is relativistic-invariant for any velocity alorige z axis;

- does not satisfy the Klein Gordon equation inegah but satisfy for

0* = ji+Ti, I.e. for plane waves in z.
0z or

The whole than enough to study TE TM TEM along z.
| put the (13) to a long series of tests on whido hot want to dwell. | recall that is
(perhaps) the most significant and that the efééet SU (2) gauge field namely that

generated by
(17) Y- @=ye™,

Equation (13) with the introduction of a suitabt®Variant derivative" (for details
see Appendix 3), becomes:

(18) o'W +imiyT - TYijw =0

With long, but canonical developments:

0 J . :
+Ew3 +(E+|mjw1 —Y,*IW=0

0 0 . :
_Ew4+(a_lm}/lz+w1*lwzo
(19)
+i¢/ +(i—imj¢/ +,*IW=0
az *t \or s
0 0o . :
_sz-'-(g-ﬂmjw“ ~Y*IW =0

W =0 yelds the following TE solution:

W, = itz v, = ik
(20) lﬂs = Be—ial+ikzz [//4 :_Be+ia1—ikzz
w- W
B= > kK2 =’ -f @, =m




A similar solution applies to the TM.
For m=0 andw =0 instead, you have (among many) the solution TEEMT
"right™):

W, = giatik;z W, = gtitik;z
(21) wg = e—ia,t+ikzz [//4 :_e+ia1—ikzz
k, =w

In short (19) represent fav =0 TE and TM fields in a waveguide with cutoff

w, =m, and propagate in the way that you would expect.

For m=0 andw =0 are TEM fields.

More complex the situatiow # 0. Here | have had various problems, until | realize
that it must be assumed that the coupling of mageetnponents with the field
created by - ¢'=¢e™™ be through a "coupling charge " of opposite signder
these conditions in (19), *iw andy, *iw changes sign and so the equations are
"right":

+i¢/3 +(i+|mj¢’1 Y, IW =0
0z or

_il/u +(i_im}/l2 +, *IW =0
0z or

(22)

d d . .
—sz +(E+|m]¢/4 i, *IW =0

Examined the effect of gauge fields.
Seeking a solution as an attempt (to be checkest@pori) that it has:

W=,

W, =y
(23)

l/ls :_l//4*

Y, :—41/3*



Equations (22) becomes

+—l/’3 +(i i(m- W)j[//l =0
or
0 0
PR (E i(m- W)jz//2
(24)
0 0
+E¢/1 +($ i(m- W))lﬂs
d 0
_El/lz +($+I(m—W))¢/4 =0
of clear solution:
wl - e—iax+ikzz wz — e+iax—ikzz
(25) ws - Be—ial+ikzz (//4 =_Be+ia1—ikzz
@)
Jot (m-wW)

But (25) also fulfill the assumptions attempt (2Bd therefore are the solution.

In (22) then the solutiong,,y, # 0 at rest are TE fields which propagate in a
waveguide with cutofty, = m-w.

Also solutions withy,,¢, # 0 at rest are TM fields which propagate in the same
waveguide with cutofty, = m-w.

In essence, the application of tlgs (2) gauge field is equivalent to the transition in a
waveguide with cutofty, = m-w, with k? = «” - (m-W)? and group velocity:

dw _ wc2>,2

(26) v, = 1-

b 7 wherew,, = (m-W)

The patrticularity of this waveguide is that for=m becomes a "horn antenna”, that
disappears, i.e. the field becomes a TEM.
The conclusion is that the gauge transformatipnsy'=ge™ in equations (13) of

TE TM is equivalent to the action of a "horn antghim transmission.



From a TEM is obtained exactly the opposite restdin TEM to TE, which in
guantum mechanics is like saying “from neutrin@l@ctron / positron”.

Do the steps about.

We start from the equations of a TEM

0 o
+Ew3 +E‘ﬂ1 =0
0 o
E‘/M +a_z_¢’2 =0
(27)

0 0
+—y, +—w., =0
0t 575

0 0
—_ + :0
PRl CREPU

Consider, for example, the solution TEM R (“right”)

wl - e—iwt+ikzz wz - e+ia1—ikzz
(28) wg — Be—iax+ikzz [//4 :_BeJrim—ikZz
B=1 KZ = o

We now introduce in (27) a gauge field as in (22)dpposite sign.
(I assume it obvious that if the gauge transforomagi - ¢'=ye™™ was equivalent to

the action of a "horn antenna" in transmissionl, sa@rve the opposite transformation
¢ - @'=ye™ for the action of a receiving antenna). The eguatiof TEM under the

action of gauge field thus become the following:
0 0 .
+E(//3 +Ewl +,*iIW =0

0

gt W =0

d
E‘h"‘
(29)
d d ,
+E¢’1 +E¢’3 +¢/4* IW=0

0

S~ *IW =0

0
-y, +
azl//z



Is it possible that these equations provide a TEM)ht")?
Look for a possible solution once again in an effiypothesis (to be checked a
posteriori):

=y,

v, =y,

l/l4 = —1//3 *
In this case (29) become:

0 0 :
Y+ — Y, + YW =0
PRUCRF L RS

d

E‘/’z ~Y,iW =0

0
) 62¢I4 ’
(30)
0 0 .
+E¢/1 +E¢/3 _w3|W =0

0 0 .
_sz +E‘/’4 +Y, W =0

namely those of a TE "right" in a waveguide withafti «g, =W, with solution:

W, = gricitik.z v, = pHic-ikz
(3 1) lﬂs = Be—ial+ikzz [//4 :_Be+ia1—ikzz
w-w
B= ° k? = - w,’ aw, =W

Jw+ w, ’

There is a posteriori verified the (23), so thithis solution sought.

The conclusion is that the gauge transformagion ¢'= g™ in equations (27) of
TEM is equivalent to the action of a receiving 'thantenna”, closed on a waveguide
with cutoff «, =w .



Interpretations: the analogy with the W particle

We have seen that the TEM (28) with frequencis reported in a waveguide with
=W, transforming in TE (31).
With easy but lengthy calculations (Appendix 4) anth the normalization:

(B2) =2

w

the four-velocity is:

k. ~
(33) w(-Ty*=-T+-2k
w
It varies betweerg-T) at rest and<T +k).in the extreme case of TEM, speed ¢

(Note: ¢ = 1 in the units used).
Appears explicitly the group velocity of the waveray the z axis:

_ dw _ o Kk,
V _—— = =
97 ok, W W

(34)

But there is some further interesting interpretatiwat are worth highlighting.
Computeyky * resulting:

(35) Yk = %e—zmuzikzzi“

We can combine (33) and (35) in a single expressiabtain:

(36) @(-T+ K)* = =T +k_2|2 + Do itz = F 47
w w

where? is a spacelike unit vector, as a result of (31):

A

(37) T N
w w

v parametrically describes a helix, andr(+ ) is a four-velocity, which describes a
propagation at speed of light along the helix.



We are therefore faced with a fact and a possitiépretation.

The fact is the following:

transformation (36) transforms the four-velocityaoé.m. field along z moving at the
speed of light, changing it in the four-velocityaf e.m. field at the speed of light in
motion on a helix.

Possible interpretation is this:

gauge transformatiop - ¢'=ye*™ simulates the action of the receiving antenna for
which a TEM is captured in a waveguide in the fafiTE, traveling from moment

to moment on a helix at the speed of light.

Graphically the field that travels the helix at 8peed of light is indicated by the
black arrow in the figures, the arrow represengsviglocity on helix.

\\/

The actual speed of translation along the axib®ftaveguide is the gray arrow.
The speed of rotation in the circulation is thetelarrow.

Among the three velocitieg, +(%)2 =1 applies at all times (Note: ¢ = 1 is the speed

of light in the units used).

Among the omega, omega cutoff and k a similar i@iahip holds, namely
W =@’ +kS.

Formulas are consistent with waveguide propagation.

omega cuto omega

Kk

Accordingly, we interpret the effect f appearing in (25).

| will speak for brevity and more or less approfwiaf "weak interaction”.

Examine the emission of a TEM (from TE to TEM),“bow to free trapped light”, or
what makes a "horn antenna" in transmission.



| start from equations (22) which solution is afidtd that propagates in a
waveguide with cutofty,, =m-w and / or a TM that propagates in the same

waveguide always with cutotb,, =m-w..

Therefore (26) apply and also
o’ = (M=-W)? +k,*
Use this as a key to reading.

Before applyingwv the field was in a guide with omega cutoff equairt
(especially ife =m the field was at cutoff).
Let « =Cost. as it is for a TE in waveguide.
The drawings that represent the effect of the wetskaction for increasing values of

W are therefore these:

omega cutoff
(mass) .

k (momentum)

omegé cutoff
—
(mass)

omega (energy)

omega/xéutoff
(mass)

NS

-
-

omega (energy)

omega cutoff (mass) zgro

N k (mormentum)

If w=m the field becomes a TEM.
We note that the weak interaction does not yieltldgomes not absorb energy but
redistributes the energy which from energy in aleibecomes traveling energy.

k (mo,mlentum)

\ omega (energy)



Now examines the transformation from TEM to TE lsow to give mass” to a TEM,
namely what makes a receiving horn antenna.

| always start from the equations (22) with= 0 having as solution "before
treatment" (v =0 ) a TEM field.

"After the treatment”, i.e. after the applicatiohws switch to TE with "masstv

(note: to do so is to be understood that the hoteraa in reception to act opposite to
the transmission).

The key to understanding this tina =w? +k,> with constant omega.

W appears in the formula as "omega cutoff" and is f@rw =0.

The drawings below represent the effect of the wetgraction for increasing values
of w, fromw=0tow=c:

It starts from a TEM and you come to TE with omeg#off equal tow .

-
-

omega cutoff zero \Qmega

| — S
1 = 7
\
/
\

omega cutﬂ

If as extreme case& =« a TE forms at rest, at the cutoff frequency.
Even in this case the weak interaction does ndd yed does not absorb energy but
redistributes energy from traveling energy to epenga circle.



Another analogy: the y particle

We show that the TE (20) can be slowed or speeded waveguide through the
"electromagnetic force" represented by the gausjd Greated by theu (2)

transformationy - ¢'=ye™".

Because the field (20) satisfies (13) and this &l (2) and in particular accept the
transformationy - ¢'=¢e™", | can introduce this as a gauge field.

The introduction of a suitable "covariant derivatiVeads to:

(38) yW+imyT+Tyiu =0

and in extended form:

+Ezp3 (—+|mj W, +y,iu =0

z ( —-imy, +y,iU =0
(39)
e[ it =

—l//z (%+|mJ¢/4+z//4|U 0

As you will see as a posteriori justification, g@upling of componentg,,¢, with

the field created by - ¢'=¢e™ must be assumed through a " coupling charge” of
opposite sign. Under these conditions in (28 andy,iu changes sign and so the
equations "right":

(39)



We seek a solution in the form:

wl - e_i("t+ikzz wz — e+i(d—ikzz
(40)
lﬂs = Be—ia,t+ikzz ¢/4 =_Be+ial—ikzz

with B unknow.
Substituting with some passage we find that thetswl exists and has:

(41) g= V@)@
J@+0)+ @

In short, the field is proceeding in waveguide wltdtreased. .
I've interpreted in [15] this fact with the propéiga of TE in a guide 2, "equivalent
waveguide" with a different cutofd,, (i.e. sized,).

k; = (@-U)* -af

guida 1
d,,w,

guida 2
d2 ’ w0,2

For this we use the, :ST“, formula for the group velocity in the waveguide.

z

From (41) is obtained

(42) k, = (w-U)*-a? o)

z

(43) v, = 2= 1

44)  w,=-2




Rather than considering an "equivalent waveguidéi eutoff frequencyw,, , let's

instead to find according to (41) that the fielanseving in the same guide, which has
cutoff w,, but someone or something has changed is («-U ).

That something is detectable by the mathematicak b view in the operation

w - @'=ye™, who acted oy decreasing the..

From the electromagnetic point of view such anaaicis produced by the interaction
with an object in the waveguide that gives a Dopfseguency (here negative).

And 'certainly this interpretation is easier andenonmediate than the last.
Anyway , the resulting action is that of "electragnatic force” exerted by thg
particle.

We return to equations (39) and try to get a TMusonh.

From the electromagnetic point of view with the sgparameters,«, makes no

difference whetheritis a TM or a TE, in the setied the finale result of the
interaction with an object in waveguide that giegoppler frequency producing
(«-U), must be the same for a TE or a TM. However toee this is to be
assumed in place of (39) other equations in whichudt change of sign, as happens
with the change of sign of electric charge=(teVv ) in the Dirac equationfor the
positron.

Precisely the equations must become:

+i¢/3 +(i+|m W~ iU =0
0z 0

Oy, +(i—im W, +,iU =0

0z or
(45)
0 0 . .
+Ewl +[E—|m W, —,iU =0

d 0 .. ,
-—yY,+| —+imy,+y, iU =0
azl/lz (OT )‘/’4 v,

They actually have TM solution even with:

(46) Bzﬁ\'(w_ﬂ )~ k2 = (w-U) -
w-U)+w,

From this follows the same velocity in the guidattivould have a TE.



Visual interpretation

How can we "see" the effects of W apdonsidered above? How can we more
generally portray the effect of the various gaugkl$?

We take a few steps back.

From a mathematical point of view the relationdbhgtween the electromagnetic
interactions and weak interactions is expressethdéyact that all arise from gauge
fields generated bgu (2) O U (1)transformations.

For each transformation corresponds to a field.

The changes involved are those of the type:

Y- yp=ye™

Y- yp=ye™

W - yp=ye™

[/I . w.zwe—TjiZt

therefore exponential generators of rotatignsi, or ik = j, orij =k and where
necessaryjkT =Tji .

Now, as he says Hestenes [12] in the Weinberg Stdaary of electroweak
interactionssu (2) 0U (1) appears as an internal symmetry in an abssgzacte.
Instead, always says Hestenes (I translate freglfhbughts) should be possible to
give a geometric interpretation in resdacetime.

| have proposed this and something more: it mugtdssible to give a geometric
interpretation also on the TE, TM and TEM.

| mean to interpret the effect of the electroweakcé not only on elementary
particles (electrons, neutrinos, etc..) but alsmamal fields TE, TM and TEM.
Us refer now specifically to the action of the geers of rotationsj =i, or ik = j,
orij =k and where necessaiikT =Tiji .

Why the generator§ =i, ik = j, ij =k andijkT =Tji are involved?

Let's step back here, too, running frgiy” .

The expression

(47) Yty

provides the energy momentum vector of the bodyuiestion (here the modmder
consideration, TE, TM, TEM) as described by thexspiy .
We can interpret the action ¢f in (47) as that of "kick-start" the body, desantpi

both the correct values of energy and momentum.
We operate one of theu(2) Du (1)transformations, for example - ¢'=ye™.



The (47) become:

(48)  @Tyr=yEe " Te)y*

From this we understand that if the transformatsosuch that:

(49) (e°Te"™®) =T

i.e. "leaveT unchanged”, nothing has changed in (47) because:
(50) Ty =y(e™Te™ )y =yTy*

U(2)au(1) is precisely "the group of all transformations tle@veT unchanged”.
Specifically Su(2) which includes the generatoijs=i, ik=j, ij =k , is the group of
all spacelike rotations that leavaeinchanged.

As a result, they do not change anything in theggnand momentum of the body,
for all conditions of motion.

So you might think are useless?

The fact is that they do not change energy and mameof the body if they are
global changes, as in (47), i.e. with constant@ngkdependent from coordinates.
We interpret this fact graphically.

The unit vectors | k T are the unit vectors of the axes X, y, z and eftitme axis

but, following Hestenes, consider it as axes "staakhe body. So they are also a
trio of unit vectori | k which indicates the attitude, whife indicates the "proper
time". The spinoy determines the rotations on them. Particularly is unitary the
unit vectors

A

py =g

l//lAl// =8,
(51)

yky” =&,

Yy =& =

form a set of axes rotated with respecf t¢ k T.

(Note: if ¢ is a Lorentz rotation, "set in motion" the bodyhowever, is one of the
U (2)au()rotations, which is precisely "the group of allnséormations that leave
T unchanged, nothing happens, at leastrfpr



With reference to (47) and (48) a moment's reftecthows us that any of the
U (2)0uU(1) rotations, ege™®, can be interpreted as a rotation applied before

acting , and before has set in motion the body.
This aspect is very important.
Confine ourselves tsu(2) spacelike rotations , with generatéjsi, ik=j, ij =k :

we can identify any of theu (2)rotationsleaving T unchangedas a change in
attitude of the body at rest.

We proceed from here, for an explanation of coag®oximate, but which has the
merit to provide a visual picture of the actiongafuge fields and how they determine
the electromagnetic force and weak force.

Reasons for an electromagnetic field in circuldapmation.

We take a first image of the field as a body tochtit is stuck a system of axésj

k and especiallk represents the axis of rotation. Implicitly adntftat the body or
the field "whisk" around the axis. In the Hestenes interpretatianis the spin axis.

A figure representing the body as a small satélipenning" around its axis.

Consider the fixed angle rotations, global transaions ofsu(2).
We hypothesized to be able to assimilate th&sg) rotations leaving unchanged

(and then do not interact with the energy momentaator) to a "change in attitude"
of the body at rest.



Is quite reasonable to think that when the bodyn'fspg" has however changed
attitude

does not change its total energy, when it is statyp nor his momentum, when it is
iIn motion.

In practice will continue its motion with the congation of momentum, energy and
angular momentum.

But the situation changes (and changes to intexfpoe) when the angles are for
example a function of time.

Let us begin with the simplest that is .... thegtamagnetic force, in contrast to the
next we'll see who is the weak force.

It is generated by a transformatign.. ¢'=¢e™*® or more explicitlyy - ¢'=yge™".

This included in the Dirac equation produces ae&se ofe. to (w-U).

Neglecting to retrace all the technical detailsehalready been examined elsewhere,
in the end U appears as an energy additive oraalditive (or subtractive as here)
that someone has communicated to the field (thg)bod

(note: we should not simplistically think thatéo“ already present ir addition

e because that is written in the formula- ¢'=¢e™". In fact just this happens,

but tells us only the math solving the Dirac equali



So here we have an immediate interpretation thett @eeds to be done because .......
is ready.

An additional rotation, bringing the rotation to faster or slower, change the energy
of the body.

precisely what the effect of potential on a chargadicle in quantum mechanics, the
effect of photony on the electron.

Let now the generatori& = j andij =kj .

These, as stated Hestenes (I translate) "doesa# unchanged”.

We can clearly see the effects of a gauge transfiiomwith ik = j andij =kj .

We recall first that in the theory of weak interans to these two generators is
attributed to the action of the W patrticle and #fiere it is this fact that we explain.
Stresses that the action of the W patrticle is, gqraghers, can transform into electron
neutrinos, or vice versa.

In an analogy with TE, TM, TEM briefly and succilycas we would say "give mass
to TEM" or vice versa "bring TE and TM at the speétight”. From a purely
electromagnetic point of view is to provide a TEMad'cutoff" (which it did not), or
rather "free TE and TM" from its cutoff frequendtyeteby transforming them into
TEM.

Well let's see to interpret geometrically the atid e ™ = and e =e™ (the
signs are of convenience) &n still considered as the axis of rotation of tioelja

For p=v :g we see immediately that™ bringsk on (-f) ande™ bringsk on j.

ek =~ —



We can consider equivalent the action of two genesan that both lead in the
transverse plane (as well as would a combinatierettf).

Obviously for p,v sg an intermediate situation occurs..

For constanp,v these are constant changes in attitude and tks olat change the
total energy of the body, when it is stationary;, his impulse, when it is in motion.
The body continues its motion with the conservabbmomentum, energy and
angular momentum.

Let instead for example™ =e =e™ j.e. the angle of rotation around the axis x
becomes a function of time=wt .

We can see that something will happen more contplica

Mathematics provides us with the answer, whichuggested also by reasonably
intuition:

the satellite slows its movement along z and aeguirprecession motion bf
around z axis.

Essentially part of its energy of motion goes iet@rgy of rotation.

U

It's what happens to a field in a waveguide: tieédfihas gained mass or energy at
rest.

Forw =« motion stops completely and energy is all sebtatron (in the waveguide
the field is at cutoff frequency).

There is so explained, albeit in primitive form &=dl, as the transformation from
TEM to TE, TM and vice versa, due to a "horn an&énsa produced by the gauge
transformationsy - ¢'=ye™™ .

We have so highlighted a possible interpretatioterms of analogy with the action
of W on neutrinos.



Another analogy: the Z° particle

In the theory of weak interactions, the actionha&f Z ° particle is expressed through
the joint action of the gauge fields generatedragdformations with generatoirs
andTiji . | plan to see if there is a similar situationTdeM.

Consider on a TEM the action of a transformation

(47) W - w-:we—nia—iur

This involves the introduction of an appropriateaaant derivative that leads to the
equation:

(48) oW+ jiYZ+Tyiu =0

Developing in full you get the same terms in U athe calculated in (39), to which
you add new terms in Z. With the necessary calculatwe obtain:

0 0 : :
+E‘/l3 +E‘/’1 HY L+l =0

0 0 . .
_E‘/M +a_z_‘//2 +|¢’4Z —lﬂz'U =0
(49)

0 0 . .
+Ew1 +E¢/3 +|¢’12+¢/3|U =0

0 0 . .
_sz +E‘/’4 +”//22 _‘//4|U =0

These equations provide, in the absence of gaalgisfia TEM solution that can be
both right and left.

Let's see what possible solutions exist in thegires of gauge fields.

Seeking first a solution in the form (21) (TEM 'hig).

Substituting (21) in (49) withk, and« indeterminate there are actually solutions of
the form (21) with the condition:

(50) [k, +Z)" =(w-U)

So from an initial condition in the absence ofdeivith k, = w must happen thak,

and « e undergo a change as to satisfy (50).

From a physical point of view the of a TEM can increase or decrease through the
interaction with an object (or a "target”).



For example, consider the following situation: avl Bhat propagates around z
interacts with a moving target that communicat@oppler w, and continuing in
"forward scattering” with increasing frequency framto w+ w, .

However, if we consider the problem from a physmaiht of view thex of a TEM
can increase or decrease, kutmust do the same, maintaining the condition of
equality between. andk (which means speed ¢ = 1).

It follows from (50) that the action of U and Zniet permissible with the signs that
appear there, that is (for positive U and Z) withirecrease ok, and a decrease of

Q.
Therefore the only possible hypothesis is that uttteetransformation (47):

a) U and Z appear both and not separately, nottbelypne and only the other;
b) U and Z have equal value and opposite sign lael t

c) there are "coupling charges" to U and Z opposite

Let us appear in (49) the presence of "couplinggds! to U and Z in square
brackets.

Quite subtleand biased | use the following arbitrary names:

call [Y/zl the coupling charge to Z;

call [T3] the coupling charge to U.
(49) thus becomes:

0 0 )
t sttt [%} w,Z +[T3y,iu =0

_%(//4 +%1p2 + [Y/Z]I W,z —[T3]t//2iU =0

(51)
0 0 X .
e o [Y/2]| W,Z +[T3y,iu =0
) ) | .
_sz +§¢/4 + [Y/zllwzz _[T3]404|U =0
Solve with:
52) H =41
2 2
and:
(53) [T3]= 1



The solution is thus (TEM "right"):
1. 1,,)
(54) [kz +§Zj = (CL)'*’EUJ

This solution is physically compatible and is tlei@n a "moving target" which gives
a Dopplerw, with an increased frequency of TEM framto w+ w,. The action of

this object is so identified with the field prodddey the gauge transformation (47).
Now consider the solution TEM "left" in the absenddields:

l// — e+iax—ikzz l// =e—iax+ikzz

1 2

(55) l//3 :e+izd—ikzz ['04 = _e—ia,t+ikzz
k, =w

Interacting with the same target above and therutiek action of gauge field
produced by the transformation (47), under hypasn@=) (53) the following
solution of (51) is found:

(56) (kz —%zjz =(w-1uj2

2

This leads to the absurd situation where the sanget communicate a positive
doppler to TEM "right" and a negative doppler toM Heft", which is not physically
reasonable.

So we must suppose to "coupling charges" of the TEEM' to U and Z equal to:

o [g-

(58) 3= +%

therefore opposite to those of TEM "right".

This will find the correct solution (54).

The equations (51) with the relevant specificati(@®y (53) or (57) (58) allow a
classification of modes TEM "right" and TEM "lefity relation to their coupling
charges with respect to the gauge fields.



The following table of classification of modes appe

VA el

TEM “left”

TEM *“right” -

NI N
NI~ NP

which clearly recalls the classification of neutignn the Standard Model
(obviously without being able to assign any meanmthe symbols, which | chose to
art so subtle):

VA [r9

V. -

|
NI N
N~ NP

In conclusion, and distinguishing fact from inte{ation, we saw it as a fact what is
the action on the TEM of gauge transformations @) have revealed a possible
interpretation in terms of analogy with the actedrz® on neutrinos.



TE TM TEM modes classification

Consider on a TEM the action of a general transéion:
(59) ‘/’ N w-:we—TjiZt—iUt—ijvvt

This involves the introduction of an appropriateaaant derivative that leads to the
equation:

(60) o'W+ jiYZ +TyYiU +TyYijWw =0

Developing in full you get the same terms in W &hdlready calculated in (29) and
(39), to which you add the term in Z. With the resaey calculations we obtain:

d d , , .
+E‘/l3 +E‘/I1 +Ilﬂ32 'H//llu 'H//z*IW =0

—%l//ﬁ%l//ﬁi%z‘lﬂzm Y, *IW=0
(61)
+i¢/ +i¢/ +HiyZ+y iU+, *iW=0
62 1 GT 3 1 3 4

) ) . . .
T Wt FIZ ~ U~ * W =0

This is to all intents and purposes a single equdtat can represent all the possible
modes TEM "right", TEM "left", TM "right", TM "left, TE "right", TE "left".

Starts from (61) in the absence of gauge fieldschvas a solution TEM "right" and /
or TEM "left", you can reach all other modes depegan the presence or absence
of gauge fields and coupling charges relevant th @aode. This process not only
long, it also contains the degrees of arbitrarimessso | would simply mention the
possibility.

We can at least show that (61) despite their segignimpenetrable have solution.
We seek such a solution in the form (20) but witarsl k, indeterminate.
Substituting in (61) the first two give the commmndition:

_(a-U)-w
62)  B=T 7

The latter two both give the condition:



k, +Z

63 B=(  yew

For the solution must therefore be:
64)  (k+2) =(w-U)-W?
and you have a solution with:

(65) B Jiw-u)-w

Jw-U)+w

A further discussion is outside of what | proposthes time.



Conclusions

We interpreted the action of the gauge fieldso{2) TuU (1) on the e. m. modes TEM
“right”, TEM “left”, TM “right”, TM “left”, TE “rig ht”, TE “left”".

The interpretation was made by studying the follmywffects:

effect of U (2) transformations on equations:

(13 a) 'y, =-imiw. T —for TM “left”, TE “right”
(13 b) "y, =+miyw, T —for TM “right’, TE “left’:

effect of SU(2)0uU(1) transformations on the equation:
(13c) 9"y =0—for TEM “left”, TEM “right”.

Have identified the physical objects that impleméesse actions.

Were then shown similarities, all obviously queséible and require study, with the
action of y,w, z°.

| would insist and clearly distinguish the analysisthe TE fields etc. from the
similarities.

a - We saw it as a fact which is the action omtiogles TEM "right" TEM "left", TM
"right", TM "left", TE "right", TE "left of the U (2) and sU(2)OuU (1)transformations,
and have identified the physical objects that im@at these actions.

b - We have highlighted the possible similaritiathwhe action on neutrinos and
electrons.



Appendix 1
YTy invariance with su(2)ou(1)

Do to deserve extended passages that showTtpe invariance.
By:

(1) [T/ weTjiﬁHJV—i‘Dﬂ'p

iImmediately with some passage:

(2) @)HTW) =ge™T(e™)y’

To continue we note that the elemaiit enjoys the properties:

(3) (Tii) =Ti
(4) (Tii)* = -1

and thus for (3):

@HT@) =y Te"y’

SinceTji anticommutes withT still follows:
W)TW) =¢e"e™ Ty =gty

finally showing the invariance afTy".



Appendix 2

Relation between spinors and fields

Let:
1) ¢ =%(e‘i“ i) =g, + g,

or rather
(2) @=—(e+je“) =y, +ju,
J2

If ¢, and jy, represent opposite rotations as in (1), is redffiunimportant to
associate the vector

(3) E=w.i+y (-j)
or rather the vector
(4) E=y.i+y (i)

In fact in (3) and (4) changes only the initial pios of they_(-j) contribution
(alongi or alongj). This initial position is rapidly absorbed beoatise two vectors
is in (3) in (4) are counterotating, and then thie different choices are equivalent
only to a different initial position foE.

If insteady, and jy, represent the same direction of rotation as int{@&n the

initial position of the two vectors is maintainegeo time and therefore is not
irrelevant to their position: they must be in qusdre.

The choice to do is therefore (4), which is sugdil both cases.

Of course even in the presence of the magnetid @l reads:

(5)  E+TiH=¢. +y¢_(-])]

As an exercise calculate with (5) the field thatresponds to the solution (20) of text
(@ TER):



— A-lat+ik,z — Atiat=ik,z
W, = e W, ="

(20) wg = Be—ia,t+ikzz [//4 :_Be+ia1—ikzz

From:

Y=g+ Y, +TiY, + Ty,
we have:

W, =y, +Ti,
Yo=Y, +TyY,

and substituting expressions (20) yields:
E +Tj||:| :w+f +w- (_ J)I — (e—iax+ikzz +Tj Be—ia,t+ikZZ)i'\ + (je+i(d—ikzz _TBe+iaI—ikZZ)(_j)j\

From here, with some step, paying attention tacthramutative or anticommutative
property the various terms, we obtain

A

E +TJI|:|' — e—im+ikzzf _'_-l-jiBe—i(uHikzzJ + e—i(ut+ikzz I _TjiBe—i(uHikzzi'\

Recognize two terms of the electric field in quaoire

£ iatikyz ©

E = gia@tikez | g J

—)




and two terms of magnetic field:

A

TjiH = TjiBe “*?] —TjiBe™ “*k?{

Altogether we obtain an electric field and a magnild in circular polarization,
with amplitude (normalizing (20) witk’2 ) respectively 1 and B. The Poynting
vectorExH is directed toward positive z and the field haétripolarization (R) in
the IEEE conventions.

_.,
—_—
m

T

>\



Appendix 3

Gauge fields and covariant derivative
| recall briefly the way in which gauge fields "Ipdr
"If an equation that expresses a physical law adanglobal transformation that must
still be true after a transformation of the sanetput local.”
Consider as an example (13) of the text that | itevinere:
(1) QW +imyT =0
The equation admits the global transformation
(2) Y~ =gt
which means "ify satisfies (1), eveg' satisfies (1)".
(The verification is straightforward by replacir®) (n (1) and a simplification of an
exponential from right).
But suppose instead that the transformation bectooal especially a function of
time:
(3) Y - y=yget™
Now replace in (1) and being

0 =0 (™) =0+ P 4T() - =(0* P 4 Ty

T

the result (after simplification of an exponenfram right) is:

QW H+imyT +TYjW =0

So if (1) is true this is no longer true. To ensiina (1) is still satisfied we introduce
a suitable "covariant derivative"

4) 0*¢ —» D*y =0*y ~TYijW
that makes the extra teraTgijw simplify . The (1) becomes:
(5) o' +imigT - TYijw =0

The new term expresses the presence of a gaude fiel



Appendix 4
Normalizing ¢

We have seen that the TEM (28) with frequenay reported in a waveguide guide
with «, =W, transforming in TE (31).

For continuity reasons we believe that TE keepdrdtgiencyc .

Rewrite it in full in the complete

1) Y=g+ i, T + Ty,

and with the normalization:

(2) =1

Appears, with easy but lengthy calculations:

1+ BT] )e—iax+ikzz + j(l— BT )e+ia1—ikzz

_ N x =
Q) v N =1

The energy momentum vector, or four-velocity whk hormalization (2), results
with the same length calculations (takiG@) as four-velocity at rest):

1+B*: 2B -
gt Togk T wrel

(4) @y =

This can be further clarified.

From:
w—
5 B= 0
(5) v
1S
~ ~ k. o~
(6) w(—T)w*=—wﬂT+EZk — =1

This goes to» for w, - 0.



Con una moltiplicazione per With a multiplicatic% (see below) we could make

appear explicitly the group velocity of the waverd the z axis:

dw ok
7 V. = = 1-=2 =2
(7) ¢ dk, W w

We calculate also the position of:
8) & =gky*

namely that in the Hestenes interpretation of théion of a "small rigid body"
should be the position & while in motion or, on the Hestenes interpretabbthe
electron, the position of spin. It appears, agath ¥ong calculations:

A

(9) 2‘% :¢lkl//* — e—2iax+2ikzzi" N w* -1

difficult to interpret as spin.

This is all you get with a normalizatiomy* =1.

This type of normalization, seemingly intelligeistnot the most suitable. Just think
that in the limit situation of TEM fielduy* =0 and then dividing by * in order to

normalize is not possible.
It is more convenient the normalization:

.Y
(10)  wy .

so we have the four velocity:

(1) (e =T+
w

k
It varies betweer-T) at rest and<T +k ) in the extreme case of TEM speed ¢

(Note: ¢ = 1 in the units used).
Likewise the remaining formulas are best intergtete stated in the text.



Appendix 5
Clifford Algebra

Algebra here is based on 4 elemeht$ k T, unit vectors in spacetime (sometimes
referred to the authors,e,,e,,e,). They have the following properties:

(1) ?=1 j?=1 k®=1 T?=-1 ji=-] etc

(2) i=i] j=ik T=iT
All this, combined with the rule concerning the paates
(3) (AB) =B"'A’

generates all properties of interest.
In fact is enough to admit that factj k do not change by conjugation (as it is

intuitive that it should be) to derive for exampde rediscover, the usual rule for the
conjugatei” :

@) i ={) =T ===

() = T=T
Apply, as a consequence of (1) and (2),
6) i*=-1 j?=-1 T?=1

(7)  ij=-ji  iT=-Ti jT=-Tj

The 16 elements algebra

A

1, i k T (4 elements), ij iT etc. (6 elements)ijk etc. (4 elements), {jkT

contains a subalgebra of 8 elements ( "even subaged a Clifford algebra”,
Hestenes)

1, ij T etc. (6 elements), ijkT



rewritten at will as consisting of all possible guats between

1,0, j,T,ij ,iT, jT,Tiji
ElementTji hence the previous property benefits of:

(8) (Tii) =Tji

9) (Ti)* =-1

The complex

(10) z=x+iy ( x=iz=xi+yj)

generalizes in spacetime with

(11)  z=x+iy+jz+Tr (X=iz=x +yj+K+1T)

(not confuse z in first and second member, sorry).
We have

13) a=2-i%
oy

a:i+ii

ox oy

are, respectively, to express the derivative ardthuchy Riemann conditions.
These are generalized in

14) 9=9_9_;9 19
(
ox o0y "0z Or

*:i+ii+ji+Ti

ox ody "0z 01

and the property is



9> 0% 0% 0°
+ + -
ox> oy* 0z*> or’

(15) 99" =d'a=

Alternatively to the symbol or operatér used to express the analyticity one can use
the operator that is obtained by multiplying byrom left

(Note: if 8" f =0 alsoia” f =0 and vice versa).

The operator thus obtained

Is formally a four-vector, as.

So on.

This algebra differs from the STA for the choicelué base with the properties (1).
The STA choice is for spacelike unit vectgggk = 1,23) having square (-1). Thus

there is a basis in spacetime that instead ofg4 Xime properties:
(17) yi=-1y; =1

So doing to obtain a unit vector basis X, y, zspace should be defined three
bivectors (Hestenes, [3]):

(18) gy =VVo

Hestenes note explicitly the opportunities of aittteoice ([3], p.25):
“If instead we had choseyf =1, )7 =-1 we could entertain the solutian =y, ,

which may seem more natural, because...”,

because vectors in spacetime would also be vecteace.

| prefer to keep this option best suits to engisgenit vectors | k with square +1,
imaginary uniti, complex numbek +iy, etc.).

Plus (Doran, [2]) for any of the two choices thermwalgebras are isomorphic, so
working in even algebra there is no change in angth

| should also note that all the conditions thasédias a vector, complex number,
imaginary unit and so on recall mnemonically cons&b the past and we can
sometimes help but are materially misleading. Ad éntities we have introduced are
simply numbers, and we can correctly call "Cliffar@mbers", simple underlying
rules, sum product and division, of the Clifforgelbra. The same goes for symbols
such as asterisk or the arrow for vectors etce have the sole function of
mnemonic recall. What matters are only the propeif algebra | have briefly
summarized.
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