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Abstract: We present analytic evidence that the distribution of hadron masses follows from

the universal transition to chaos in non-equilibrium field theory. It is shown that meson and

baryon spectra obey a scaling hierarchy with critical exponents ordered in natural progression.

Numerical predictions are found to be in close agreement with experimental data.
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1. Introduction

As integral component of the Standard Model for particle physics, quantum chromody-

namics (QCD) is a gauge field theory that successfully describes the coupling of quarks

and gluons. Due to its rich dynamical content, QCD leads to many complex phenom-

ena and exhibits a number of remarkable features at both ends of the energy scale:

asymptotic freedom, chiral symmetry breaking and color confinement [1, 2]. Strong in-

teractions lead from free quarks and gluons in the high-energy limit (UV) to bound states

forming mesons and baryons in the low-energy limit (IR). A unique manifestation of non-

equilibrium QCD is the production of quark-gluon plasma (QGP) in collisions of heavy

ions. QGP behaves like a strongly coupled liquid and unveiling its real-time dynamics

outside lattice simulations remains a nontrivial task [3, 4].

Due to strong coupling at low energies, IR QCD is notoriously difficult to calculate

with [3-5, 27-31]. It is for this reason that formulating analytic predictions directly from

the equations of gauge field theory presents an ongoing challenge. Current understand-

ing of QCD stems from several approximation tools such as weak-coupling perturbation
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methods (exclusively valid in UV), so-called “holographic” techniques inspired by the

AdS/CFT correspondence, Euclidean lattice methods and effective formulations through

phenomenological models [5]. The object of this work is to suggest that the hierarchy of

hadron masses may be derived from a conceptually different baseline, that is, from the

transition to chaos in non-equilibrium field theory. There are two basic premises that

underlie our approach, namely:

1) a generic field theory can be modeled as a statistical system distributed on a space-

time lattice [6].

2) universal transition to chaos in nonlinear dynamics, on the one hand, and critical

behavior of statistical systems, on the other, share a common foundation [7].

Elaborating from this baseline, we find that the spectrum of hadron masses emerges

from the universal scaling behavior of nonlinear maps near fully developed chaos. The

paper is organized as follows: next section surveys the nonlinear behavior of field theory

and its replica in non-equilibrium statistical physics; in section 3 we generalize the evo-

lution of critical exponents and introduce the concept of flow in the space of universality

classes. The link to observed fermion masses in the Standard Model as well as hadron

masses in IR QCD forms the topic of section 4 and 5. Conclusions and open questions

are elaborated upon in the last section.

We emphasize from the outset the introductory nature of this work (see also section

6). Its goal is strictly limited to exploring a new research avenue which, to the best of our

knowledge, has received virtually no attention in previous publications. Given this rather

modest goal, ideas discussed here are far from being the final word in understanding the

puzzling physics of IR QCD. Independent studies are needed to reinforce or refute our

preliminary findings.

2. Chaotic Dynamics in Non-Equilibrium Field Theory

The starting point of our analysis is the framework developed in [8] which is applicable to

fields that evolve in far-from-equilibrium conditions. Under some general assumptions,

a quantum field theory in steady contact with its environment can be modeled as a

distributed ensemble of coupled components, each representing a nonlinear dissipative

system. In discrete time, the field dynamics may be formulated as

un+1 = F̂ [un(x)] = ĝf(un(x), λ) (1)

Here, x is the spatial coordinate, n is the time index, f(u, λ) stands for a generic nonlinear

function, λ a control parameter and ĝ a linear operator that defines the coupling. If x is

continuous, ĝ is given by the convolution

ĝu(x− y) =

∫
g(y)u(x− y)dy (2)

where the coupling constant g satisfies the set of constraints listed in [8]. Tuning λ near

a set of critical values triggers transition to chaos in (1) whose universal signature is that
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it starts with a cascade of period-doubling bifurcations [9, 26]. In the basin of attraction

of fully developed chaos (λ = λc), the correlation length diverges according to

ξ ∼ Δ(λ− λc)
−ν (3)

Here, Δ is a finite reference length and ν the critical exponent of the correlation length

[10]. An infinite correlation length is physically equivalent to component fields having

vanishing masses (μ = 0). Away from λc, masses flow with the control parameter as in

μ ∼ ξ−1 ∼ Δ−1(λ− λc)
ν (4)

This picture is compliant with the postulated symmetries of equilibrium quantum theory

(QFT) whose action functional involves only massless fields [7]. QFT in general (and

gauge field theory in particular) approaches conformal behavior at the fixed point λ = λc

and may be regarded as the asymptotic manifestation of the flow embodied in (4).

It is known that the sequence of parameters leading to the emergence of period-

doubling bifurcations satisfies the so-called Feigenbaum scaling [8, 11, 26]

λn − λc = Knδ
−n

(5)

where λn denotes the value of λ where a cycle of period 2n first appears, Kn is a scaling

factor and δ a constant. We note that δ is in general different from the standard Feigen-

baum constant δ = 4.669... involved in the transition to chaos of quadratic maps. The

scaling constant no longer depends on n for n � 1 and the asymptotic form of (5) is

λn − λc ∝ δ
−n

(6)

Replacing (6) in (4) yields

μn ∝ δ
−nν

(7)

where μn = μnΔ. In section 4 we consider the case n = 2p, p ∈ {N} for which scaling

(7) becomes

μ2p ∝ (δ
−ν
)2

P

(8)

3. Generalized Behavior of Critical Exponents

To an arbitrary scale transformation of the correlation length ξ → ξ/s with s 	= 1,

Renormalization Group theory associates a corresponding flow in parameter space λ →
f(λ) [12]. Let f(λ) represent an analytic function. Since λc is a fixed point of this flow,

the following condition holds

λc = f(λc) (9)

Using the language of iterated maps we write

λm+1 = f(λm) = f(f(λm−1)) = .... (10)
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in which m stands for the number of iteration steps. As it is known, critical exponent ν is

intimately related to the behavior of the correlation length under the scale transformation

ξ → ξ/s. It is given by [12]

ν =
log s

log f ′(λc)
for λ → λc (11)

where

f ′(λc) =
df

dλ

∣∣∣∣
λc

(12)

Relations (11) and (12) indicate that ν depends only on the slope of function f near λc

and are insensitive to the details of the underlying field equations (1). For this reason, all

systems that are characterized by the same ν are said to belong to the same universality

class, regardless of their specific dynamics on the microscopic scale. As a result, the

standard viewpoint is that ν = νc is solely fixed by the properties and dimensionality of

(1). The ansatz assumes, however, that there are no arbitrary perturbations acting on the

system that arise from dimensional instability [13] or large deviations from equilibrium

[14]. If this is no longer the case, ν is allowed to either drift away or towards the fixed

point νc. We call this trajectory a flow in the space of universality classes (ν → νc).

Then,

λm+1 = f(λm, κ) (13)

represents a generic one-dimensional map that generates the flow ν → νc with κ being

the corresponding control parameter. Let κN denote the value of κ leading to the birth

of a cycle of period 2N in (13). We are naturally led to assume that ν reaches its fixed

value νc when κN lands on its fixed point κ∞, that is, when N → ∞. A different way to

phrase this hypothesis is to state that, for sufficiently large N ,

(ν)N+1 − (ν)N ∝ 1/N (14)

4. Connection to Experimental Data

For the sake of clarity, let us summarize results obtained so far. If critical exponent ν is

constrained to assume a fixed value νc, the ratio of two consecutive mass values derived

from (8) is given by
μ2p

μ2P+1

∝ (δ
−ν
)2

p

(15)

If, on the other hand, if we assume that ν flows in the space of universality classes at a

higher rate than the flow described by (6), combined use of (7) and (14) yields:

μn,N

μn,N+1

∝ δ
−(n/N )

(16)

with n ≤ m and n ≤ N .

These are our main results. It is instructive to note that (15) recovers the mass ratios

of quarks, leptons and gauge couplings if δ = 3.9 and ν = 1/2 in four-dimensional space-

time [14-16]. Proceeding along the same path, we now explore if (16) may be linked to

the observed spectrum of hadron masses. This is the topic of the next section.
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5. Hadron Spectrum

Despite being free and unbroken in UV, QCD is known to develop a non-vanishing energy

scale in the infrared limit (ΛQCD). The emergence of ΛQCD is representative for field

theories that are asymptotically free in the UV sector and is believed to be tied to

the mechanism of mass generation in strong interactions [1, 2]. The current section is

developed according to the following plan:

1) We interpret ΛQCD as setting the natural resolution scale in the distribution of

hadron masses. Meson and baryon spectra are partitioned in shells whereby the gap

separating the shells is chosen to exceed ΛQCD, that is, Δ ≥ ΛQCD. Observed hadron

masses are taken from the latest reports issued by the Particle Data Group [17].

2) The QCD scale is set to be equal to the confinement scale and computed using the

so-called MS scheme ΛQCD = ΛMS = 130MeV [18].

3) Grouping of hadrons is captured in Tab. 1 and Tab. 2. The average mass for a

given shell represents the arithmetic mean of that shell and is denoted by
〈
m(n)

〉
and〈

M (n)
〉
, respectively2.

Results tabulated in Tabs 3, 4 and Figs 1, 2 show that:

a) the ratio of consecutive masses in the hadron spectrum also comply with (16) for

δ = 3.9 and,

b) setting the lowest-lying value in (16) (n = 1), the group of numerical values for N

that best fit observational data fall in the sequence N = 1 ·11; 1 ·21; 2 ·21; 2 ·22; 1 ·31; 2 ·31.
In condensed form this series may be presented as

N =

⎛
⎜⎜⎜⎜⎝

i · 1k

i · 2k

i · 3k

⎞
⎟⎟⎟⎟⎠ for i, k = 1, 2 (17)

Conclusions and Open Questions

Many authors have stressed the fact that understanding the physics of IR QCD remains

an outstanding challenge [3, 27-31]. The analytic computation of hadron masses at the

level of experimental data precision is hampered by major technical obstacles related to

color confinement and chiral symmetry breaking. For instance, rigorous lattice simula-

tions suffer from artifacts that prevent reliable results in the hadronization region [28].

The Schwinger-Dyson formalism contains an infinite tower of equations which require

truncations that are not gauge-independent and implicitly affect outcomes [29]. Models

based on analytical confinement have led to some satisfactory results but are far from

being confirmed as a realistic picture of QCD in the low-energy limit [30, 31].

2 Averaging within shells is not unique and may be performed according to a different scheme such

as, for example, the use of weighted sums. Arithmetic averaging has been selected here for the sake of

simplicity and clarity.
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Shell definition Makeup
〈
m(n)

〉
m(1) π+, π−, π0 138

m(2) K+,K−,K0
S,L, η

0 505

m(3) ρ+, ρ−, ρ0, ω0 777

m(4) ϕ, η0
′
,K∗+,K∗−,K∗0,K∗0

925

m(5) D+, D−, D0, D+
s , D

−
s 1888

m(6) J/ψ 3097

m(7) B+, B−, B0, B0
s 5301

m(9) Υ 9460

Tab 1: Structure of meson mass shells

Shell definition Makeup
〈
M (n)

〉
M (1) p, n 939

M (2) Λ0,Σ+,Σ−,Σ0,Δ++,Δ+,Δ−,Δ0 1203

M (3) Ξ0,Ξ−,Ξ∗0,Ξ∗−,Σ∗+,Σ∗−,Σ∗0 1408

M (4) Ω− 1672

M (5) Λ+
c 2286

Tab 2: Structure of baryon mass shells

Mass shell ratio Exponent Predicted scaling behavior Relative error (%)〈
m(1)

〉
/
〈
m(2)

〉
1 δ

−1
6.5〈

m(2)
〉
/
〈
m(3)

〉
1/3 δ

−1/3 2.25〈
m(3)

〉
/
〈
m(4)

〉
1/8 δ

−1/8 0.40〈
m(4)

〉
/
〈
m(5)

〉
1/2 δ

−1/2 3.20〈
m(5)

〉
/
〈
m(6)

〉
1/3 δ

−1/3 4.10〈
m(6)

〉
/
〈
m(7)

〉
1/3 δ

−1/3 8.65〈
m(7)

〉
/
〈
m(9)

〉
1/2 δ

−1/2 9.75

Tab 3: Predicted versus actual mass ratios for mesons

Technical difficulties associated with the physics of IR QCD have prompted us to take an

alternate route. To avoid a direct plunge into the intricate dynamics of gauge field theory,

we have decided to start by exploring a straightforward yet sufficiently general model.

The model consists of a distributed ensemble of coupled components, each representing

a nonlinear dissipative system. Using this baseline, we found that universal transition
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Mass shell ratio Exponent Predicted scaling behavior Relative error (%)〈
M (1)

〉
/
〈
M (2)

〉
1/6 δ

−1/6 2.07〈
M (2)

〉
/
〈
M (3)

〉
1/8 δ

−1/8 1.28〈
M (3)

〉
/
〈
M (4)

〉
1/8 δ

−1/8 0.16〈
M (4)

〉
/
〈
M (5)

〉
1/4 δ

−1/4 2.78

Tab 4: Predicted versus actual mass ratios for baryons

Fig. 1 Actual versus predicted mass ratios for mesons

Fig. 2 Actual versus predicted mass ratios for baryons

to chaos in non-equilibrium dynamics (as discussed for example in [8]) suggests a simple

explanation of the pattern of hadron masses. It is instructive to note that the mechanism

of mass generation discussed here is consistent with the conceptual framework of [19-20]

and [25]. Needless to say, much remains to be done for a satisfactory clarification of quark

and gluon physics in the low-energy sector. As pointed out in section 1, our arguments
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are introductory in nature and inevitably lack the depth expected from a rigorous and

comprehensive analysis. Among the many issues in need for further clarification we

mention the following:

a) how is our model related to individual hadron masses and not to their shell aver-

ages?

b) can our model explain the angular momentum and parity of hadron states?

c) can our model be expanded to include the glueball spectrum and the spectrum of

light mesons?

d) how do various nonlinear effects induced by (1) contribute on observed hadron

properties?

e) how does transition to chaos applied to a full quantum context impact our conclu-

sions?

Interestingly enough, the contents of (17) seem to match the so-called Sharkovskii’s

ordering of periodic orbits in unimodal maps [11]. It is also surprising that the pattern

of masses does not appear to be directly related to the quark content of hadrons but

rather to the universal behavior of correlation length near criticality. Concurrent work

is needed to confirm, expand or disprove these tentative conclusions. It is our hope that

similar techniques inspired by transition to chaos and non-equilibrium dynamics will play

an increasingly important role in understanding the physics of IR QCD [21-24].
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