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Abstract: The thermal diffusion of a free particle is a random process and generates entropy 

at a rate equal to twice the particle’s temperature, R = 2kBT/ħ (in natural units of information per 

second).  The rate is calculated using a Gaussian process with a variance of (Δx0 + Δp·t/m)
2
.  One 

would be keen to notice that the solution to the quantum mechanical diffusion of a free particle is 

(Δx0)
2
 + (Δp·t/m)

2
, however we assume that concurrent to quantum diffusion, the center of the 

wavepacket is also undergoing classical diffusion which adds an addition variance in the amount of 

(ħ·t/m), making up the difference.  Derivations of the variance and subsequent entropy rate are 

given.   

I Primary Finding: When a free particle is at a non-zero temperature, it is composed of a 

spectrum of frequencies that interact with each other and cause the probability distribution of 

where one can find the particle to spread.  We will show that the entropy rate, associated with the 

probability distribution diffusing, is equal to twice the particles temperature. 

   /2 TkR B     (1) 

The rate, R, is calculated below using the natural logarithm and thus the units for the rate are 

natural units of information per second, when the temperature (T) is expressed in degrees Kelvin, 

Boltzmann’s constant (kB) is expressed in Joules per Kelvin and Planck’s constant divided by 2π (ħ) 

is in Joule-seconds. 

This equation tells us how much information we need, each second, on average, in-order to track a 

diffusing free particle to the highest precision that nature requires.  By quantifying this number, we 

are able to guarantee that a computer (with possibly large, but finite memory) can store a “perfect” 

replica of the particles trajectory.   

II Assumptions: We prove this primary result by making the following three assumptions: 

1) The diffusion of a free particle in a vacuum can be modeled as a discrete process with a 

small time step, dt << ħ/(2kBT), where T is the temperature. 

2) Knowing the particles location at time step n+1 allows one to determine the location of the 

particle at the previous time step n, i.e. conditional entropy is zero, h(Xn|Xn+1) = 0 where Xn is the 

random variable that represents where the particle can be found at time step n. 

3) Concurrent to the quantum diffusion of the wavepacket, the center of the wavepacket also 

undergoes classical diffusion with a diffusion constant D = ħ/2m, where m is the mass of the 

particle. 

III Setup: At t=0, a free particle in vacuum is initialized into a minimum uncertainty 

Gaussian wavepacket with a spatial variance equal to (Δx0)
2
.  As time increases so does its variance 

and thus its entropy. 

To calculate the entropy rate of this process, it is helpful to think of time as occurring in discrete 

units of a small size dt (assumption one).   
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We can look at a Venn diagram of this process, figure (1).  Xg,0 (or X0 in the figure) is a random 

variable, drawn from g(x,0), that describes the location of where the particle can be found at time 

t=0.  Xg,1 (X1) is a random variable, drawn from g(x,dt), that describes the location of where the 

particle can be found at time t=dt.  Xg,2 (X2) is drawn from g(x,2·dt) and so on up to Xg,n which is 

drawn from g(x,t) when t=n·dt.   

 

Figure (1) – Venn diagram of the conditional entropies of the diffusion process 

As hinted to in the diagram (but explicitly stated here as assumption two), we will assume that 

h(Xg,n|Xg,(n+1)) = 0, where h is the differential entropy of g(x,t), h = -g·log(g)·dx.  This essentially 

means that knowledge of the location of the particle at a given time allows one to calculate where it 

was in the previous time step.  This could hold true if there was a way to tell from which direction 

the particle previously came from. 

In section V, we show that using assumption three, a free particle diffuses with a variance in its 

position (if localized) of (Δx)
2
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Thus Xg,n (or simply Xn) is a Gaussian random variable with variance (Δx)
2
 = (Δx0+Δp·n·dt/m)

2
. 

IV Entropy Rate: The entropy rate of this process is calculated from the two 

definitions/methods of the entropy rate.  Both methods are used because the dual limit of the rate, 

as the number of steps goes to infinity and as the time step dt goes to zero, does not exist.  However 

we show that in one method the rate, R, is less than or equal to twice the temperature (when Plank 

units are used) and in the other method R is greater than or equal to twice the temperature.  Thus R 

is equal to twice the temperature. 

In the first case, the entropy rate, R, is calculated by taking the limit as the number of steps goes to 

infinity of the conditional entropy of the last step given all previous steps divided by the time step.
1
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To solve for R, we first notice that since h(Xn|Xn+1) = 0 (assumption two), thus we can show by 

induction that  
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Due to the symmetric nature of mutual information, we can prove the equation below.
2
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Brining us to the equation for R below  
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Since the Xn’s are Gaussian, we can easily calculate the differential entropy of each step using 

equation (2).
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Since dt is small, we can Taylor expand the logarithm giving the first term plus the terms that are 

O(dt) or smaller. 
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Ignoring the terms of O(dt) or smaller, and by observation that the denominator of the first term is 

greater than or equal to one, we see that for any non-negative n,  
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As solved for later in the paper, equation (31) and (32) can be use to show that, 

                   /2 TkR B      (11) 

To calculate the other constraint on R, we start with R being equal to the limit as n goes to infinity 

of the entropy of all the Xn’s divided by n times dt.  Since we are looking at the rate of generation 

of the entropy (not the initial conditions), we subtract the entropy of the initial state h(X0).  This 

also assures that R is in the correct units.  

      











 

 dtn

XhXXXXh
R nn

n

)(),,...,,(
lim 0011   (12) 

Since h(Xn|Xn+1) = 0 (assumption two), we know that h(Xn,Xn-1, … X1,X0)=h(Xn), thus  
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Plugging in for the differential entropy of the Gaussian distribution that describes Xn, and X0, 

equation (2), we arrive at 
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Expanding R using Taylor’s theorem  
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Even though the sum does not converge for dt going to zero while n goes to infinity at the same 

time, the sum is non-negative for all n>0 if dt≥0 (which it is).  Thus  
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Again plugging in equations (23) and (24)  

      /2 TkR B     (18) 

Putting equation (11) and (18) together reveals our primary result. 

      /2 TkR B     (19) 

This result is consistent with (and should be predicted by) the perspective gained from Information 

Mechanics.  Information Mechanics states that information is equal to twice energy times time 

divided by ħ, I=2/ħ.
 4
  In this view, the temperature acts as an average energy and generates 

information (or entropy) at a rate equal to twice the average energy divided by ħ. 

V The Variance of Xn:  Given the wave particle duality, which states that a free particle is both a 

wave and a particle, it is sensible to assume that our free particle undergoes both quantum 

mechanical diffusion of the wave and classical diffusion of the particle.  This is the essence of 

assumption three. 

Introducing Xp, Xf, p(x,t), and f(x,t) makes this more clear.  Xp is a random variable drawn from 

p(x,t), equation (40), the probability distribution associated with the quantum mechanical 

wavefunction which is the solution to the quantum diffusion equation, equation (33).  Xf, is a 

random variable drawn from f(x,t), equation (43), which represents the diffusion of the center of 

ψ(x,t) from its original center, and is the solution to real diffusion equation, equation (42).   
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If we were to make an observation of where the particle is located, Xg, our answer would be the 

sum of a sample Xp drawn from p(x,t) = ψ
*
(x,t)ψ(x,t) and a sample Xf drawn from f(x,t).   

                fpg XXX      (20) 

Thus the action of f(x,t) is to translate the center of the wavefunction, ψ(x,t), by a sample of Xf. 

As we know from probability theory, the resulting distribution, g(x,t) is equal to the convolution of 

p(x,t) and f(x,t) over the x variable (30).
5
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Since both p(x,t) and f(x,t) are Gaussian distributions, it is easy to show that the convolution of the 

two is again a Gaussian distribution with an expected value being equal to the sum of the two 

expected values (which in this case is zero) and a variance that is equal to the sum of the variances 

of the individual distributions.   

                0 fpg xxx     (22) 
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Shown in equation (41) the variance of p(x,t) is (Δxp)
2
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In this equation t is the amount of time that has pasted since the particle was initialized in the 

minimum uncertainty state, Δx0 is the standard deviation of the minimum uncertainty state, Δp is 

the standard deviation of the minimum uncertainty state in the momentum domain and m is the 

mass of the particle. 

Shown in equation (48) the variance of f(x,t) is (Δxf)
2
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Thus we get (Δxg)
2
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Multiplying the last term by the Heisenberg Uncertainty principle (32), 2Δx0Δp/ħ = 1, we can 

group. 
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It is helpful to the understanding of the model to look at equation (26).  (Δxg)
2 
is the sum of three 

variances.  The first is from the Heisenberg Uncertainty Principle, the second is from the thermal 

drift of the center of the minimum uncertainty wavepacket moving with a group momentum taken 

as a sample of the momentum domain, and the third is from the classical diffusion on top of the 

other two.   
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It is interesting and worthwhile to here note that the variance of g(x,t) would be the same if the 

classical diffusion term was not accounted for, but rather if there existed a perfect correlation 

between the (Δx0)
2
 term and the (t·Δp/m)

2
 term.   

VI The Imaginary Diffusion Equation:  The Kinetic Energy Hamiltonian characterizes the wave 

packet of a free particle in one dimension, where H is the Hamiltonian, p is the momentum along 

the x direction, and m is the mass of the particle.
6
 

   mpH 2/2      (28) 

Given that the momentum commutes with the Hamiltonian, [p,H] = [p,p
2
/2m] = 0, each eigenvalue 

of the momentum is a constant of motion and thus the variance in momentum space does not grow 

with time.  It is possible to learn the width of the variance of the momentum by looking at the 

equipartition of energy.
7
  Using the equipartition of energy we know to equate the degree of 

freedom associated with the average Kinetic Energy to one half the temperature times Boltzmann’s 

constant.   

mp 2/2
 = ½kBT    (29) 

Since we will assume that the average momentum is zero, we can solve for the variance of the 

momentum. 

        0p      (30) 
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Also from the Heisenberg Uncertainty Principal, we can solve for the standard deviation of the 

wavefunction in the spatial domain in terms of its width in the momentum space. 
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With these dependencies stated, we can move onto the imaginary diffusion equation, which takes 

the original Hamiltonian and rewrites it in terms of operators.  Interpreting the Hamiltonian as the 

imaginary time derivative operator and the momentum as the negative imaginary spatial derivative 

operator we can take equation (28) and arrive at the imaginary diffusion equation. 
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Don’t forget that we still have the eigenvalue equations (34,35) where H and p are the operators 

and ω and k are the eigenvalues. 
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We can equate the different eigenvalues, ω and k, through equations (28,34,35) and as we should 

expect arrive at the equation for kinetic energy. 
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To solve equation (33), we will begin in the momentum domain Ψ(k/2π) and take the inverse 

Fourier Transform to observe how ψ(x,t) evolves over time.
8
  We use k/2π (the wavenumber 

divided by 2π) as the independent variable because we want both Ψ(k/2π) and ψ(x,t) to be 

normalizable to one. 
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Our assumption that the wavefunction of the free particle in the momentum space is a Gaussian 

wavepacket is quite reasonable given the nice properties of the Gaussian.  Similarly this 

assumption is already implicit in the equipartition of energy which was used to find the width of 

the initial wavepacket.  Because the equipartition theorem is derived from the perfect gas law 

(where particles are modeled using the binomial distribution, of which the Gaussian is the limit) the 

Gaussian is the right distribution to start with. 

To properly account for the evolution of ψ(x,t) governed by equation (33), exp[i(kx-ωt)] is used as 

the kernel for the inverse Fourier Transform.   

              
   

  






2

exp
4

exp
2

),(
2

2

2

4

1

dk
tkxi

k

k

k
tx 




























 




 (38) 

Using equation (36) to substitute in for ω you can solve for equation (38) by completing the 

squares.
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Where Δp was inserted in place of ħΔk.   

To calculate the variance, we need to take the magnitude squared of the wavefunction and get the 

distribution of the particle. 
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This is of course the know result from quantum mechanics where the variance of the particle is the 

sum of the initial variance from the Heisenberg Uncertainty Principal and the associated variance 

of the momentum domain acting like a velocity of magnitude Δp/m.
10

 

                22

0

2

m
t

p pxx     (41) 

VII The Real Diffusion Equation: When the diffusion constant of a diffusion process is real 

and does not vary with position, the resulting diffusion equation is as below.
11
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Of course the solution to this real diffusion equation is the Gaussian with zero mean and variance 

equal to 2Dt.
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To find D, we will start with the imaginary diffusion operator and perform a Minkowski 

transformation.
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  The imaginary diffusion operator (33) is  

      2

2

2 dx
d

dt
d

m
i       (45) 

Upon applying the Minkowski transformation, imaginary time is replaced with real time, i·t  .
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Applied on the imaginary diffusion operator, the Minkowski transformation brings out the real 

diffusion constant we are looking for.
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By observation we see that 
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Thus we can calculate the variance of f(x,t). 
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The resulting diffusion constant, D, and the variance,  2fx , can also be derived by assuming the 

free particle undergoes a Bernoulli random walk as the source of the diffusion.
16

 

VIII Conclusion: We have seen that by making three assumptions about the thermal 

diffusion of a free particle, we are able to show that entropy is generated at a rate equal to twice the 

particles temperature (when expressed in the correct units).   

This result will be applicable to all studies on free particles and other environments that are 

governed by similar equations.  Also, as hinted earlier, a myriad of applications exist in computer 

modeling, including but not limited to: Finite Difference Time Domain methods, Block’s equations 

for Nuclear Magnetic Resonance Imaging, and plasma and semiconductor physics.   

To check the third assumption, one would measure the location of free particle, with time since 

initialization, as a parameter, and show that the variance of an ensemble of free particles includes 

the term linear in t.   
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To check the primary result, one would perform a quantum non-demolition measurement on the 

quantum state of an ensemble of free particles.  The minimum bit rate needed to describe the 

resulting string of numbers that describe the trajectory would be the entropy rate. 

In the experiment, the time step should be as small as possible but needs not go to zero because a 

sensitivity analysis on how the time step affects the entropy rate is possible and thus a verification 

of this result would not require the time step to actually go to zero. 

However even before an experiment needs to be conducted, this result is useful by suggesting the 

use of different information theoretical techniques to examine problems with de-coherence and 

might give a different perspective on the meaning of temperature. 
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