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Abstract

We offer evidence that the Trans Plankian hypothesis
about Dark energy 1is 1incompatible with necessary and
sufficient conditions for solving the cosmic ray problem
along the lines presented by Magueijo et al. We can obtain
conditions for a dispersion relationship congruent with the
Trans Planckian hypothesis only if we cease trying to match
cosmic ray data which is important in iInvestigating special
relativity . This leads us to conclude that the Trans
Planckian hypothesis 1is iInconsistent with respect to
current astrophysical data and needs to be seriously

revised .
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I. Introduction

We examine if an alteration of special relativity
presented by Magueijo and Smolin °3,assuming joining the
speed of light and Planck energy as a new invariant permits
a dispersion relationship which will set dark energy ? from
the “tail mode” of ultra high momentum contributions (of
the universe) markedly lower than the total energy of the
universe. We find that the answer is yes after modifying an
energy equation of E= MC? to obtain a highly non linear
dispersion relationship. However, this dispersion

relationship does NOT solve the cosmic ray problem for low

1

momentum values Our derived dispersion relationship

o, (k) matches the Epstein function used by Mercini et al 2

5

only if we cease trying to fit cosmic ray data which

3

lead to Magueijo proposing their alteration of special

relativity in the first place. We follow Mersini et al. ?
in their derivation of a Trans Planckian dark energy over
total energy ratio . Our results argue that we cannot
reconcile the requirements of a solution of the “cosmic
ray’ problem of special relativity In a manner congruent

2

with Mercinis ° ratios of dark matter energy to total energy

being calculated via a Bogoliubov coefficient* . The



dispersion relationship which we obtained which actually

permitted us to calculate the energy of the tail modes of

2

Trans-Plankian dark energy vs. total energy ratio ? to

have a value less than ten to the minus 30 power mimics the

2

Epstein function in a manner which contravenes necessary

and sufficient conditions ‘?

for solving the cosmic ray
problem of special relativity. Our calculations imply
that a Trans-Planckian dark energy depends upon initial
conditions which are too specialized and which do not match
up with known astrophysical data obtained as of the 1990s.

5

This 1s iIin tandem with Lemoine, Martin, and Uzan who

dispute the Trans Planckian hypothesis on different

grounds.

I1. Description of procedure used to obtain energy density

ratio .

2

What Mersini did was to use ultra low dispersion

relationship values for ultra high momentum values to

obtain “ultra low” energy values which were and remain

allegedly “frozen’ today 2

They found, using the Epstein
function for frequency dispersion relationships a range of
frequencies <H,, where H, is the present Hubble rate of

expansion. From there, they computed Trans-Planckian dark

energy modes which are about 122 to 123 orders of magnitude



smaller than the total energy of the universe assumed for

their expansion model. Note 1in this discussion that

tDK(k) refers to the dispersion relationship Mercini °?

derived, while CDM(k) will be a dispersion relationship

3

derived from Magueijo and Smolin’s ° modification of special

relativity . Mersini ?

changed a standard linear dispersion
relationship to one which has a modified Epstein function
with a peak value for frequency given when k = kc and where

we have 1T we can set k<<k,

2 2
i (k) =~k (€D
which means for low values of momentum we have a Ilinear
relationship for dispersion vs. “momentum” in low momentum

situations. In addition we also have that

i (k >> k. )= exp(-k/ke )——0 (@)

k—o

We also have a specific “tail mode” energy region picked

by :
g (ky)=H; ©)
to obtain k, . We then have an energy calculation for the

“tail “ modes:

1 =
22 K_[ kdewK (k) day |ﬂk

<pTAIL>K = 5. |2 @)

which is about 122 orders of magnitude smaller than



1 7 2
K = — . .
<pTOTAL> 2_72_2 jkdkij(k) da)K |:Bk| (5)
0
allowing us to write
<pTA”—>K ~ kﬁ 2 ~ H02 10122
o, @)~ g <10 ®©

Here, the tail modes (of energy) are chosen as “frozen’
during any expansion of the universe. This is for energy
modes for frequency regions ;(k)<H? so that we have

resulting “tail modes” of energy obeying equation 5 above.

I1I. Forming a dispersion relationship from Magueijo and
Smolins Energy values and then subsequently modifying it.

We shall next determine what sort of dispersion
relationship we can obtain by the revision of special

3 proposed. Magueijo ® states that the

relativity Magueijo
energy of an 1independent particle will not exceed E, 1n

value, which 1s the Planck energy. This Planck energy is

the inverse of the Planck length defined by I, =%-G/c® ~10™

cm , where G is the gravitational constant and c is the

3

speed of light. Specifically, Magueijo and Smolin state

that E.uqe =E, 1T and only if the rest mass of a particle
obtains an infinite value. IT we set h=c=1, we

have [M=M,]=[E,] as an upper bound. This upper bound with



respect to particle energy 1is consistent with respect to
four principles elucidated by Magueijo and Smolin 3, which
are as fTollows:

(i): Assume relativity of inertial frames: When
gravitational effects can be neglected, all observers in
free, 1nertial motions are equivalent. This means that
there 1s no preferred state of motion.

(i1): Assume an equivalence principle: Under the effect of
gravity, freely fTalling observers are all equivalent to
each other and are equivalent to inertial observers.

(iti): A new principle 1is introduced: The observer
independence of Planck energy. l.e. that there exists an
invariant energy scale which we shall take to be the Planck

energy.

(iv): There exists a correspondence principle: At energy
scales much smaller than E,, conventional special and
general relativity are true: that i1s that they hold to
first order in the ratio of energy scales to E,. We ask now
how can these principles be fashioned into predictions as
to energy values, which we shall use to obtain dispersion

3

relationships. Magueijo and Smolin obtained a modified

relationship between energy and mass :



E,=—2—— €

which 1f m=y-m, and ¢ set = 1 becomes:

E=—0" Q)
m
1+ —
P
We found it useful to work with , instead:
m m
= |1-— €©))
m Ep
1+ 8- —
EP

with a power of 11 put in the denominator due to string
theory dimensions which gives us preferred numerical values

we are seeking for the ratio of dark energy over total

cosmological energy .If E e <E, and m=a-k, then
Eﬂs k£<1 permits a re write of equation 9 above as (if
P P

4 =1000 ):

o (k)=“—’kn-(1—ﬂ (10)
(1+ﬂkk] i

P
where we used #=c=1 and [E]=[r-0]=|o. (k)] which if k<<k,
will lead to the same result as spoken of with the modified

2

Epstein function 2, assuming that |a|2; 1, so:

o} (k)= k? (11)



Furthermore, if k—k,—-¢, , equation 10 will give us

+ 9

wf (k, —s, )= e, a2)
which if o,(k)=0, (k) gives the values seen in figure 1 below

Note how the cut off value of momentum k, is due to

[1—£LJ as a quantity in dispersion behavior leads to the
P

results seen iIn figure one .
{ place figure 1 about here }

We can contrast this dispersion behavior with :

wl(k)=“—'kn-exp(—ﬂ2 i} (13)

k Ke
1+ 8, —
en ]
We set p,=1 and p,=100, leading to figure 2 as given

below. Note, 1if [, =1000 and pg,=0 we recover equation 9
{ place figure 2 about here }

So we used a tail mode energy expressions as given by

1 '
<pTAIL>M = 2 12 : IkdeC‘)M (k)'da)M '|ﬂk|2 (14)
Ky
and
> 1 “e 2
4= . .
<pTOTAL 2 2 J.kdewM (k) dey |:Bk| (5)
0

2

SO we obtain a “frozen® tail mode energy vs. total

energy ratio of



o) fkdkjwM (k)-deo,, |8, |°

<pTOTAL > M )

= < 10% and # 107% (16)
[kdk[ oy, (k)-deoy, -|B,]"
0

k

7" .Equation 16 has a lower bound

when we are using k, <

2

~ 10"* as stated by Mersini in equation 6 if we use

o, (k,)~H,. Detuning the sensitivity of this ratio to exact

k, <(M)k, for any M< 1 is extremely important to the

viability of our physical theory about how dark matter

plays a role in inflationary cosmology.

IV. The Bogoliubov function used in this paper.

We fTollowed Mercinis 4 assumption of negligible
deviations from a strictly thermal universe, and we proved
it in our bogoliubov coefficient calculation. This lead to

us picking the <“thermality coefficient” * B to be quite

small . In addition, the ratio of confocal times as given
. n n k

by 1 had little impact upon equation 16. Also, xO:E—gl-
77C P

Therefore,

Sinhz(ﬂ-.B.l.
|ﬂ|2= 2 k
=

n

e
sinhz[ﬂ-(Z—-B)-i

]+co§(§~V1—4~B-€“°J

an




We derive this expression in the 15 appendix entry. In
addition, we should note that Bastero-Gil ° has a website
which delineates the size of tail energy density from Dark
matter as p, ~10"?M; which is consistent with our findings

that our Bogoliubov function as given by equation 17 may be
often approximated by a constant with small effects on
calculating the ratio of energy for the tail vs. total

energy 2 given in equation 6 above.

V. Analytical and numerical evaluation of equation (16)
We evaluate o, (k)-do, (k) in light of equation 12 in

our equation 16 integrand. We then obtain:

o) () e b
w,, (k)-da,, (k) = _L Ke) KN K] g kLK) g (18)

22 k o 22 k o 23
@+ﬂ!(] @+ﬁ;j @+ﬂrj

and set up a numerical parameterization of

kadkja)M (k)-de,, -8 (19)

with /%< chosen by considerations presented in Mercini’s

4 2" paper.

Vi. Why we still were unable to match cosmic ray data and

found our dispersion relationship not physically tenable.

10



£=1000 in equation 10 was picked so ky could have a

wide range of values. This permitted f&@&l&_ to be bounded
<pTOTAL > M
below by a value <10*for K4g%§ in line with de tuning

the sensitivity of the ratio results 1If we use f=1000 in

the equation 10 dispersion relationship. We obtain

Mercini’s main result 2

at the expense of not matching
cosmic ray data . We should note that equation 13 lead to
a far broader dispersion curve width as given in figure 2,

which also necessitated a far larger ky value needed to have

the frequency o, (k,)~H, as used by Mercini 2. This in turn

leads to a much bigger value for a lower bound for equation
16 than what would obtain numerically 1f we used equation
10 for dispersion . Detuning the sensitivity of this ratio
to be kst(M)-kP for any M < 1 is extremely important to the
viability of our physical theory about how dark matter
plays a role iIn inflationary cosmology. We find that this
result i1s still not sufficient to match the cosmic ray

1

problem * since equation 10 gives us :

w,, (k) > K (20)

K<<K
’ k
1+ 8, —
v

The p,=11.10"whereas we would prefer to find g, =11.10" .

11



VIlI. Can B, =11.10"° with a modified dispersion
relationship?

The answer i1s no even after a modification of our

dispersion relationship :

L
a-k k
a)z(k)= L\1L [1{k_j J 21)
k P
1+ 6] —
)]
With L = 2, then 3 put in. However, even with a value of

L=2 put in equation 21 we obtained, for £=225 and kHsz%§

Kp

o) [ kdk[ o, (k)-do, -8, |
Py _ & < 6.425-107° (22)
<pTOTAL>2

kadkja;z(k).dwz 18J

which has a very different lower bound than the behavior
seen in equation 16. If we pick f=10" as suggested by T.
Jacobson ! to try to “solve” the cosmic ray problem, we then
find that equation 22 approaches unity which thereby
throws 1Into question the Trans-Planckian dark energy
hypothesis. |Indeed, we believe that the entire trans-
Plankian model of Dark energy makes initial conditions,

which contravene known astrophysical cosmic ray data ! that

12



has been collected in the last decade. Graphically, having
even =225 for equation 21 in figure 3
{ place figure 3 about here }
creates a dispersion versus momentum graph, which Is much
greater iIn width than figure 1 which has a much larger

£=10° value. Appendix entry 2 shows us that we still

1

could not match the beta coefficient values needed to

solve the cosmic ray problem of special relativity.

VI1l. Conclusion

We found that the dispersion relationship given 1in
equation 10 and i1ts limiting behavior shown in equation 20
gives the lower bound behavior as noted iIn equation 16
above for a wide range of possible k, <M-k, values if M<

1 above. This was, however, done TfTor a physically

1

unacceptably large p=10° value while we wanted, instead

1

£=10" in order to solve the cosmic ray problem Our

additional modifications of dispersion relationships as
noted i1n appendix 2 still lead to unacceptably large dark
energy versus total energy values . We then conclude that
the Trans-Planckian dark energy hypothesis contravenes
known solutions to the cosmic ray problem of special

relativity and is thereby In need of substantial revision.

13



Appendix entry 1 : Deriving the Bogoliubov coefficient
for section 111
Part 1, initial assumptions.
We derive the Bogoliubov coefficient, which is used in
equation 16 of the main text. We refer to Mersini’s article

4 which has a Bogoliubov coefficient which takes into

account a deviation function TI(k,,B), which is a measure of

4

deviation from thermality in the spectrum of co moving

frequency values Q (k) over different momentum values. Note
that 7 is part of a scale factor a(7)=|7./n| and k=n/a(7) so
that “momentum” koly|. Also if we are working with the

conformal case of £=1/6 appearing * in

o
Qﬁ = az(ﬂ)'wrior\l—LlN (k)_(1_6'5)'; = az(n)'a)liON—LlN (k): a2(77)' F z(k) (@D
then for small momentum :

a)lleN—LIN (lzo )z l202 @)

it  “momentum” k,<<k,, where we use the same sort of linear

approximation used by Mercini 2, as specified for equation

17 of their article ? if the Epstein function specified in
equation 1 of the main text has a linear relationship . We
write out a full treatment of the dispersion function F(k)

4 since it permits a clean derivation of the Bogoliubov

14



coefficient which has the deviation function T(k,,B). We
begin with * :

. sinh?(2-7-Q )+T(k,,B)
B sinhz(z-n-si)—sinhz(z-ﬂ-fz_)

18" =8, 3)

where we get an appropriate value for the deviation

function T(k,,B) % based upon having the square of the

dispersion function F(k) obey equations 1 and 2 above for

ko <<k,. Note, k, 1s a maximum momentum value along the

lines Magueijo 3

suggested for an E, Plank energy value.
Part Il . Deriving appropriate F(kO,B) deviation function

values
We look at how Bastero- Gil * obtained an appropriate

I'(k,,B) value. Basterero-Gil wrote:

r'(k,, B):coshz[%-\m- B-e % —1) ()

with
Ko

X, =—> << 1 &)
kP

and

Fz(k): (k2 _lzlz)'VO(X’ Xo)+k2 'Vl(X_XO)_'_IZlZ (6)

where |’<‘1 <k, and where k, is iIn the Trans-Planckian regime
but is much greater than k,. We are determining what B

should be 1in equation 16 of the main text provided that

15



F(k)xk as X=1—2% which will lead to specific restraints
P

we place upon V,(x,x,) as well as V,(x-x,) above. Following

Bastero-Gil #, we write :

C E-e”
V. (X, X, )= + 7
o) T e e ) ™
and
(%) °
V. (x=%X,)=-B-——— (3)
' ’ @4—ex’x°)z
K 2.8
When x=—-—>x, << 1 we get “-
P
c E c E B
Fz(ko)Ea)riON—LlN (ko) = —k/ '(l_g_zj"'kéz (E"‘Z‘Z =k, (€))
which then implies 0<B~xrg, <<1 . Then we obtain :
rﬂ%,B;e;);coﬁﬁ([§+1adezg+<<1 (10)
and
smhz@-ﬂ-ﬁ }+g
Bl =18, == T (11)
Al =1 smhz(Z-7r.§2+)—smh2(2~7r-Q_)
Part 3 . Finding appropriate ﬁ+ and -Q values
We define, following Bastero-Gil *
A 1 (-~ A
Q. =E'(QOUT iQIN) (12)

where we have that

16



QT =122 50 (7=00) (13)
and
Q" =—2=50, (=) (14)

whereas we have that

Q. :Tk (15)

where k denotes either out or in. Also :
QYT =™ =1 (16)

which lead to:

B, 1 B, 1 1
Q, =(1-2)—=@-2) | H= an
2"k |nc| ko|nc
as well as
a6 =21 (18)
2 n

Appendix entry 2 : How equation 16 of text changes for
varying pf values and different dispersion relationships.

Starting with equation 21 of the main text.

17



If B =1.05 and L = %, (LJ—) L, then M;.eﬁl
ko ) VKo {

ProTaL > M

If f§ = 1.05 and L=1, (LJ%(LJ, then <’OTA#>M;.263
k k <pTOTAL>M

2
If § = 1.05 and L= 2, (L]—{Lj . then \Pmthu L 1
ke Ke <pTOTAL>M

IT g = 10.5 and L = %, (%J—) /ki’ then <</OTL>M;1.935-10‘5
P P

pTOTAL>M
If # = 10.5 and L=1, K15[X], then <’)T’*#>M;7.347-10-6
Kp Kp <pTOTAL>M
k k ? <pTAIL>
If p = 10.5 and L=2, | —|—>|—| , then ——M ~67448.10"°
Kp Kp <pTOTAL>M
<pTAIL>

We need A=10" with M _<10® to get our results via

<pTOTAL > M
this trans-Plankian model to be consistent with physically

verifiable solutions to the cosmic ray problem.

Figures
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1, Graph of 15t dispersion relationship o,(k) against
momentum. This gives the desired behavior in line with the
trans planckian dark energy hypothesis. However, 3=10°!

2. Graph of 2" dispersion relationship (k) against
momentum which has too broad a width to be useful

3. Graph of 3" dispersion relationship o,(k) against

momentum which is still too broad in width , and has =225
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