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Abstract

The Riemann’s hypothesis (RH) states that the nontrivial zeros of the
Riemann zeta-function are of the form sn = 1/2 + iλn. An improvement
of our previous construction to prove the RH is presented by implement-
ing the Hilbert-Polya proposal and furnishing the Fractal Supersymmetric
Quantum Mechanical (SUSY-QM) model whose spectrum reproduces the
imaginary parts of the zeta zeros. We model the fractal fluctuations of the
smooth Wu-Sprung potential ( that capture the average level density of
zeros ) by recurring to a weighted superposition of Weierstrass functions∑

p
W (x, p, D) and where the summation has to be performed over all

primes p in order to recapture the connection between the distribution of
zeta zeros and prime numbers. We proceed next with the construction of
a smooth version of the fractal QM wave equation by writing an ordinary
Schroedinger equation whose fluctuating potential (relative to the smooth
Wu-Sprung potential) has the same functional form as the fluctuating part
of the level density of zeros. The second approach to prove the RH relies
on the existence of a continuous family of scaling-like operators involving
the Gauss-Jacobi theta series. An explicit completion relation ( ”trace
formula”) related to a superposition of eigenfunctions of these scaling-like
operators is defined. If the completion relation is satisfied this could be an-
other test of the Riemann Hypothesis. In an appendix we briefly describe
our recent findings showing why the Riemann Hypothesis is a consequence
of CT -invariant Quantum Mechanics, because < Ψs | CT | Ψs > 6= 0
where s are the complex eigenvalues of the scaling-like operators.

1 Introduction

Riemann’s outstanding hypothesis that the non-trivial complex zeros of the
zeta-function ζ(s) must be of the form sn = 1/2± iλn, is one of most important
open problems in pure mathematics. The zeta-function has a relation with the
number of prime numbers less than a given quantity and the zeros of zeta are
deeply connected with the distribution of primes [1]. References [2] are devoted
to the mathematical properties of the zeta-function.

The RH has also been studied from the point of view of mathematics and
physics [22], [4], [5], [6] among many others. We found recently a novel phys-
ical interpretation of the location of the nontrivial Riemann zeta zeros which
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corresponds to the presence of tachyonic-resonances/tachyonic-condensates in
bosonic string theory. If there were zeros outside the critical line violating the
RH these zeros do not correspond to poles of the string scattering amplitude [8].
The spectral properties of the λn’s are associated with the random statistical
fluctuations of the energy levels (quantum chaos) of a classical chaotic system
[25]. Montgomery [9] has shown that the two-level correlation function of the
distribution of the λn’s coincides with the expression obtained by Dyson with
the help of random matrices corresponding to a Gaussian unitary ensemble.

Wu and Sprung [10] have numerically shown that the lower lying non-trivial
zeros can be related to the eigenvalues of a Hamiltonian whose potential has a
fractal shape and fractal dimension equal to D = 1.5. Wu and Sprung have
made a very insightful and key remark pertaining the conundrum of constructing
a one-dimensional integrable and time-reversal quantum Hamiltonian to model
the imaginary parts of the zeros of zeta as an eigenvalue problem. This riddle of
merging chaos with integrability is solved by choosing a fractal local potential
that captures the chaotic dynamics inherent with the zeta zeros.

In section 2 we will generalize our previous strategy [3] to prove the RH
based on extending the Wu and Sprung QM problem by invoking a judicious
superposition of an infinite family of fractal Weierstrass functions parametrized
by the prime numbers p in order to improve the expression for the fractal
potential. By a fractal SUSY QM model studied here we do not mean systems
with fractional supersymmetries which are common in the string and M -theory
literature, but a Hamiltonian operator that admits a factorization into two
factors involving fractional derivative operators whose fractional ( irrational )
order is one-half of the fractal dimension of the fractal potential. A model of
fractal spin has been constructed by Wellington da Cruz [21] in connection to
the fractional quantum Hall effect based on the filling factors associated with
the Farey fractions. The self-similarity properties of the Farey fractions are
widely known to posses remarkable fractal properties [23]. For further details
of the validity of the RH based on the Farey fractions and the Franel-Landau
[24] shifts we refer to the literature on the zeta function.

In section 3 we start by reviewing our previous work [7] based on a family of
scaling-like operators in one dimension involving the Gauss-Jacobi theta series
before introducing the novel completion relations ( ”trace formulae”) that have
not been discussed before (to our knowledge). The last part of section 2 is new
material which did not appear in [7]. The inner product of the eigenfunctions
Ψs(t; l) of these scaling-like operators is given by (2/l)Z [ 2l (2k− s

∗− s)]; where
Z(s) is the fundamental Riemann completed zeta function and (l + 4)/8 = k.
There is a one-to-one correspondence among the zeta zeros sm ( such that
Z[sm] = 0 ) with the eigenfunctions Ψsm

of the latter scaling-like operators that
permits to implement a resolution of the identity via the following completion re-
lation (”trace formula”) in QM and given by

∑
n ϕ

∗
n(t′; l′) ϕn(t; l) ∼ Cl,l′δ(t−t′).

The summation must be taken over all the ortho-normal basis elements ϕn which
are given by a superposition of the eigen-functions Ψsm

of the scaling-like op-
erators. If the completion relation is satisfied for those states ϕn given by a
superposition of Ψsm

, where sm belong to the zeros living in the critical line
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sm = 1
2 + iλm, this would imply that there are no missing nontrivial zeros.

However, if the completion relation is not satisfied, there must be other miss-
ing zeros that were omitted in the construction of ϕn and, consequently, there
must be zeros sm outside the critical line (and inside the critical strip) that
should have been included in the summation. This would be another test of the
Riemann Hypothesis.

In an appendix we briefly describe our recent findings [37] showing why
the Riemann Hypothesis is a consequence of CT -invariant Quantum Mechanics,
because < Ψs | CT | Ψs > 6= 0 where s are the complex eigenvalues of the
scaling-like operators.

2 The Operator that yields the Riemann zeros

Now let us turn to the fractal SUSY QM problem associated to the Riemann
Hypothesis. Armitage [14], considered that the RH can be expressed in terms of
diffusion processes with an imaginary time. In this way the Hamiltonian of some
QM system could be constructed, which in turn implements the Hilbert-Polya’s
original program.

A numerical exploration of the Hilbert-Polya idea was done by Wu and
Sprung [10]. The potential found in [10] has random oscillations around an
average value, the average potential allowed them to construct a conventional
Hamiltonian whose density of states coincides with the average distribution of
the imaginary parts of the Riemann’s zeta non trivial zeros. The fluctuations
are necessary in order to make the individual eingenvalues fit a set of such zeros
within a prescribed error bound. They found that the imaginary parts of the 500
lower lying nontrivial Riemann zeros can be reproduced by a one-dimensional
local-potential model, and that a close look at the potential suggests that it
has a fractal structure of dimension D = 1.5. The references [15],[16] deal in
particular with the spectrum of fractal strings and the zeros of the Riemann
zeta function.

Here, we construct an operator based on a Fractal SUSY-QM model. In
ordinary SUSY-QM two isospectral operators H(+) and H(−) are defined in
terms of the so called SUSY-QM potential. A SUSY-QM model was proposed
originally in [26] based on the pioneering work of B. Julia [17], where the zeta-
function and its fermionic version were related to the partition function of a
system of p-adic oscillators in thermal equilibrium at a temperature T . The
fermionic zeta-function has zeros at the same positions of the ordinary Riemann
function plus a zero at 1/2+0i, this zero is associated to the SUSY ground state (
see also the reference [29]). The fermionic version of the zeta functions is defined
by

Zf =
ζ(s)
ζ(2s)

=
∑

n

|µ(n)|
ns

, (1)

where µ(n) is the Mobius function. Spector [31] has shown why the Mobius
inversion function of number theory can be interpreted as the operator (−1)F (
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Witten index where F is the fermion number ) in QFT. Physical interpretations
of various properties of the Mobius function are provided due to the central role
played by Supersymmetry and the Witten index. Supersymmetry does have an
important place in our construction below.

Here we consider a fractal potential defined by a set unknown phases, to
be determined a posteriori after using the CBC formula (Comtet-Bandrauk-
Campbell) [13], associated with a Weierstrass function, continuous but nowhere
differentiable. A fractal SUSY-QM Hamiltonian, using fractional derivatives,
can be constructed in principe, whose eigenvalues coincide with the imaginary
parts of the nontrivial zeros of the zeta, λn. The fractal dimension of the
potential is D = 1.5 and the sought-after phases will be determined by solving
the inverse eigenvalue problem via the CBC formula..

Our previous ansatz for our fractal SUSY-QM potential was based on the
Weierstrass-Madelbrot fractal function, continuous and nowhere differentiable
functions

W (x, γ,D, αn) =
∞∑

n=0

1− eixγn

γn(2−D)
eiαn , (2)

n are integers, the powers γn are the corresponding set of frequencies and the
αn are the sought-after phases. The expansion (2) is convergent if 1 < D < 2
and γ > 1. For these values of the parameters the function W is continuous but
nowhere differentiable and has D for fractal dimension [18],[19]. In this work
we shall use for the frequencies suitable powers pn of a given prime p number
and perform a superposition of all the Weiertrass functions by summing over all
the primes p.

The aim is to relate the SUSY potential-squared Φ2 to the fractal poten-
tial. The choice for the Φ2(x) expression that appears in the fractal version of
the CBC formula will be comprised of a smooth part given by the Wu-Sprung
potential VWS(x) plus an oscillatory fluctuating Weierstrass part of the form

W (x,D, αm) = W0

∑
p

1
px/2

∑
m

1
p(2−D)m

sin (pmx + αm). (3)

where we must symmetrize the function W (x,D, αm) with respect to the x
variables and an additive constant φo has to be included also in order to have
a vanishing Φ2 at the origin x = 0. Supersymmetry requires that the Φ2 is
symmetric and vanishes at the origin.

In [10] it was shown that the smooth value of the potential VWS that repro-
duces the average level density of zeta zeros can be obtained as solution of the
Abel integral equation. The Wu-Sprung potential VWS(x) is given implicitly as:

x = x(V ) =
V

1/2
o

π

[
(y − 1)1/2 ln

Vo

2πe2
+ y1/2 ln

y1/2 + (y − 1)1/2

y1/2 − (y − 1)1/2

]
. (4)

where the rescaled variable is y = V/Vo, and Vo = 3.10073 π.
The inversion V = V (x) of the Wu-Sprung expression x = x(V ) for the po-

tential can be attained upon using the Interpolation command of Mathematica
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as show by [33] or by recurring to the series expansion [34]

VWS(x) = Vo +
∞∑

k=1

ak (πx)2k ω2k−1 (−Vo)1−k ; ω = [ ln (
Vo

2π
) ]−1 (5)

The asymptotic behaviour |x| → ∞ of the series expansion behaves as [34]

V (x) =
π2x2

4
[ LW (

√
π

2
|x|
e

) ]−2. (6)

where LW is the celebrated Lambert-W function, also called the omega function,
that is the inverse function of f(W ) = WeW .

With the SUSY potential Φ at hand one may construct the following fractal
SUSY Schrödinger equation associated with the Hamiltonian

[ (Dβ + Φ) (−Dβ + Φ) ] Ψj(x) = λj Ψj(x). and β =
D

2
=

3
4
. (7)

where one sets h̄ = 2m = 1 ⇒ h̄/mc = 2, a Compton wavelength of 2 units
means that excluding the primes p = 1, 2 the minimal spacing among primes is
2 units. The superpotential squared is finally given by

Φ2(x) = VWS(x) +
1
2
[ W (x) +W (−x) ] + φo. (8)

such that the turning points are defined by Φ2(x = xj) = λj . φo is suitable
constant to ensure that Φ2 vanishes at x = 0. The leading term VWS(x) is the
Wu-Sprung potential after performing the inversion procedure and the fractal
fluctuating part of the superpotential-squared Φ2(x) is given by a superposition
of weighted Weiertrass functions

W (x) = W0

∑
p

1
px/2

∑
m

1
p(2−D)m

sin (pmx + αm). (9)

that is based on the Riemann-von Mangoldt expression for the fluctuations

Nfluctuating(E) =
1
π
limε→0 Im ln ζ(

1
2

+ iE + ε) =

− 1
π

∑
p

∑
m

1
m pm/2

sin ( Em log(p) ).

The expression above is valid if the zeta zeros are simple. A standard form of
the Weierstrass function is

W (x,D, γ) =
∑
m

1
γ(2−D)m

sin (γmx + αm) (10)

where γ > 1 is an arbitrary parameter. Our ansatz for the fluctuating part of
the potential is based on replacing γ by a prime p and summing over all primes

5



p. One can notice that the fractal dimension of D = 1.5 is perfectly consistent
with the behavior of the powers of pm/2 of the denominators in the fluctuating
part Nfluctuating(E) because when D = 1.5, the Weiertrass function has the
correct matching powers p(2−D)m = p

m
2 as well in the denominator.

The reason we performed a weighted superposition of W (x,D, p) with pre-
factors of p−x/2 as explained by Tricot [32] was to modulate the amplitudes of
the fractal fluctuations (w.r.t the smooth part of the potential) in such a way
that these fluctuations will fit precisely the numerical behavior of the graphs
associated with the fitted zeta zeros by Wu and Sprung 1

The Riemann-Liouville fractal left and right derivatives are defined respec-
tively

Dβ
LF (x) =

1
Γ(1− β)

d

dx

∫ x

−∞

F (x′)
(x− x′)β

dx′. (11)

Dβ
RF (x) =

1
Γ(1− β)

(− d

dx
)

∫ ∞

x

F (x′)
(x′ − x)β

dx′. (12)

For consistency purposes, the kinetic terms must be given by fractal-like
operators since the shape of the potential was fractal . This is the reason why
fractal derivatives were introduced to reconcile the fact that the potential was
a fractal with dimension D = 1.5. The fractal derivative operators are not
Hermitian. Thus, strictly speaking, we are deviating from the Hilbert-Polya
proposal which assumed a Hermitian operator. The closest analog of Hermitian
operators involve a combination of both right and left derivatives.

[ (Dβ
L + Φ) (−Dβ

L + Φ) + L↔ R ] Ψj(x) = λj Ψj(x). β =
D

2
=

3
4
. (13)

The fractal analog of the CBC formula associated with the fractal SUSY-QM
equation

[ (Dβ
L + Φ) (−Dβ

L + Φ) ] Ψj(x) = λj Ψj(x). β =
D

2
=

3
4
. (14)

is given by the integrals

Ij(xj , λj) =
2

Γ(β)

∫ xj

−xj

[ λj − Φ2(x′) ]1/2

(xj − x′)1−β
dx′ = jπ. j = 1, 2, 3, .....∞ (15)

If we had used right fractal derivatives instead of left fractal derivatives, one
must use (x′−xj)1−β in the denominator. The turning points xj are defined by
Φ2(x = xj) = λj . Due to the oscillatory behavior of the

∑
pW (x, p,D) terms,

defining the fractal fluctuations of the potential, there are multiple turning
points 2 that solve the condition Φ2(x = xj) = λj . One can remove this

1We thank Paul Slater for referring us to Tricot’s observation
2We thank Michael Trott for pointing this out
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degeneracy in the number of turning points by selecting those particular values
which optimize the fractal analog of the CBC formula.

The unknown parameters to solve for from the coupled set of equations, given
by the CBC integrals and the turning points Φ2(x = xj) = λj , are the phases
αm, and the overall global scaling parameter Wo

3 . The additive constant
φo that ensures that Φ2(x = 0) = 0 is not an independent parameter since
it is given in terms of the αm and Wo. There is a one-to-one correspondence
among the (imaginary parts of) zeta zeros λ’s and the phases α’s. From the well
known relationship between the Spectral Statistics of Random Matrix Models
based on the Gaussian Unitary Ensembles ( GUE ) and the Montgomery-Dyson
nearest-neighbour-spacing correlations of the imaginary parts of the zeta zeros,
one would expect that the phases αm should obey similar correlation functions
associated (for instance) with Dyson’s Circular Unitary Ensemble.

It would be astonishing if the phases turned out to deterministic, namely
if they obeyed a relation like αm = F (m); in particular, a linear relationship
αm = mµ studied by Berry and Lewis [18] in their analysis of the Mandelbrot-
Weierstrass function . In this very unlikely case when φm = mµ one would
need to fit only two parameters µ and Wo in order to generate all the zeta
zeros for the spectrum. If this turns out to be the case it certainly would be
a truly remarkable finding. Whether or not a preferred set of values for the
phases, like αm = 0, π

2 occurs is unknown at the moment. In the analysis by
Slater [33] of our initial model, he found that the zero phases occurred with a
high incidence number that could have been due to the boundary chosen for
the domain of the values of the angles; i.e 0, 2π. Nevertheless, after a closer
study, it is our belief that the phases should be randomly distributed according
to Dyson’s Circular Unitary Ensemble, in the same fashion that the spectral
statistics of the zeta zeros obeyed the Montgomery-Dyson nearest-neighbour-
spacing correlation function associated with a GUE and given by the celebrated
expression

1− sin2(πx)
(πx)2

(16)

The smooth version of the Fractal QM wave equation is an ordinary Schroedinger
equation involving a truly Hermitian operator

[ − d2

dx2
+ VWS + Vfluctuating ] Ψn(x) = En Ψn(x) (17)

where the superposition of fractal Weiertrass functions is replaced now by a
non-fractal function Vfluctuating that is chosen to have the same functional form
as Nfluctuating(E) but with the inclusion of phases

Vfluctuating(x) =
Vo

2

∑
p

∑
m

1
m pm/2

sin ( m x log(p)+αm ) + x→ −x. (18)

3Paul Slater suggested to us to introduce this global scaling factor
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The open problem remains to verify whether or not we are able to reproduce
the λn for the eigenvalues without the need to solve the Fractal SUSY-QM wave
equation comprised of fractal derivatives and a fractal potential term.

We must reiterate once again that if one introduces a fractal potential based
on the ( superposition of ) Weiertrass functions one should also introduce fractal
derivatives corresponding to the fractal kinetic terms associated with the fractal
QM wave equation. This procedure must be clearly distinguished from the
procedure used by Wu and Sprung [10] in which they fitted the first 500 zeros
using an ordinary Schroedinger equation via a numerical Numerov method on
a grid. Zyl and Hutchinson [20] used the dressing transformation method (
well known in the study of nonlinear solitons ) involving an ordinary first order
nonlinear differential equation that allows to fit a larger number of zeros N =
40000 and all of these authors concluded that the fitted potential was a fractal
of dimension D = 1.5.

3 The Scaling Operators related to the Gauss-
Jacobi Theta series and the Riemann zeros

Our second proposal towards a proof of the RH begins with the introduction of
the appropriate generalized scaling operator D1 [7]

D1 = − d

d ln t
+

dV

d ln t
+ k, (19)

such that its eigenvalues s are complex-valued, and its eigenfunctions are given
by

ψs(t) = t−s+keV (t). (20)

D1 is not self-adjoint since it is an operator that does not admit an adjoint
extension to the whole real line and its eigenvalues are complex valued numbers
s. We also define the operator dual to D1 as follows,

D2 =
d

d ln t
+

dV

d ln t
+ k, (21)

that is related to D1 by the substitution t→ 1/t and by noticing that

dV (1/t)
d ln(1/t)

= −dV (1/t)
d ln t

,

where V (1/t) is not equal to V (t).
Since V (t) can be chosen arbitrarily, we choose it to be related to the

Bernoulli string spectral counting function, given by the Jacobi theta series,

e2V (t) =
∞∑

n=−∞
e−πn2tl

= 2ω(tl) + 1. (22)
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This choice is justified in part by the fact that Jacobi’s theta series ω has a deep
connection to the integral representations of the Riemann zeta-function [27].

Latter arguments will rely also on the following related function defined by
Gauss,

G(1/x) =
∞∑

n=−∞
e−πn2/x = 2ω(1/x) + 1, (23)

where ω(x) =
∞∑

n=1
e−πn2x. Then, our V is such that e2V (t) = G(tl). We defined

x as tl. We call G(x) the Gauss-Jacobi theta series (GJ).
Defining HA = D2D1 and HB = D1D2 we were able to show in [7], due

to the relation Ψs(1/t) = Ψ1−s(t) based on the properties of the Gauss-Jacobi
series, that

HA Ψs(t) = s(1− s)Ψs(t). HB Ψs(
1
t
) = s(1− s)Ψs(

1
t
). (24)

Therefore, despite that HA,HB are not Hermitian they have the same spectrum
s(1− s) which is real-valued only in the critical line and in the real line.

We have to consider a family of D1 operators, each characterized by two real
numbers k and l which can be chosen arbitrarily. The measure of integration
d ln t is scale invariant. Let us mention that D1 is also invariant under scale
transformations of t and F = eV since dV/(d ln t) = d lnF/(d ln t). In [30] only
one operator D1 is introduced with the number k = 0 and a different (from
ours) definition of F .

We define the inner product as follows,

〈f |g〉 =

∞∫
0

f∗g
dt

t
. (25)

Based on this definition the inner product of two eigenfunctions of D1 is

〈ψs1 |ψs2〉 =

∞∫
0

e2V t−s12+2k−1dt

=
2
l
Z

[
2
l
(2k − s12)

]
,

(26)

where we have denoted s12 = s∗1 + s2 = x1 + x2 + i(y2 − y1) and used the
expressions (22) and (28).

We notice that
〈ψs1 |ψs2〉 = 〈ψso |ψs〉,

thus, the inner product of ψs1 and ψs2 is equivalent to the inner product of
ψso and ψs, where so = 1/2 + i0 and s = s12 − 1/2. The integral is evaluated
by introducing a change of variables tl = x (which gives dt/t = (1/l)dx/x) and
using the result provided by the equation (23), given in Karatsuba and Voronin’s
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book [2]. The fundamental Riemann function Z in (28) can be expressed in
terms of the Jacobi theta series, ω(x) defined by (22)

∞∫
0

∞∑
n=1

e−πn2xxs/2−1dx =

=
∫ ∞

0

xs/2−1ω(x)dx

=
1

s(s− 1)
+

∫ ∞

1

[xs/2−1 + x(1−s)/2−1]ω(x)dx

= Z(s) = Z(1− s),
(27)

where the fundamental Riemann ( completed zeta ) function is

Z(s) ≡ π−s/2 Γ(
s

2
) ζ(s), (28)

which obeys the functional relation Z(s) = Z(1− s).
Since the right-hand side of (27) is defined for all s this expression gives the

analytic continuation of the function Z(s) to the entire complex s-plane [2]. In
this sense the fourth “=” in (27) is not a genuine equality. Such an analytic
continuation transforms this expression into the inner product, defined by (26).

A recently published report by Elizalde, Moretti and Zerbini [11] (contain-
ing comments about the first version of our paper [7]) considers in detail the
consequences of the analytic continuation implied by equation (27). One of the
consequences is that equation (26) loses the meaning of being a scalar product.
Arguments by Elizalde et al. [11] show that the construction of a genuine inner
product is impossible.

Therefore from now on we will loosely speak of a “scalar product” realizing
that we do not have a scalar product as such. The crucial problem is whether
there are zeros outside the critical line (but still inside the critical strip) and
not the interpretation of equation (26) as a genuine inner product. Despite this,
we still rather loosely refer to this mapping as a scalar product. The states still
have a real norm squared, which however need not to be positive-definite.

Here we must emphasize that our arguments do not rely on the validity
of the zeta-function regularization procedure [12], which precludes a rigorous
interpretation of the right hand side of (27) as a scalar product. Instead, we
can simply replace the expression “scalar product of ψs1 and ψs2” by the map
S of complex numbers defined as

S : C ⊗ C → C

(s1, s2) 7→ S(s1, s2) =
2
l
Z(as+ b),

(29)
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where s = s∗1 + s2 − 1/2 and a = −2/l; b = (4k − 1)/l. In other words, our
arguments do not rely on an evaluation of the integral 〈ψs1 |ψs2〉, but only on the
mapping S(s1, s2), defined as the finite part of the integral (26). The kernel of
the map S(s1, s2) = 2

lZ(as+b) is given by the values of s such that Z(as+b) = 0,
where 〈ψs1 |ψs2〉 = 〈ψso

|ψs〉 and so = 1/2+ i0. Notice that 2b+a = 4(2k− 1)/l.
We only need to study the “orthogonality” (and symmetry) conditions with
respect to the “vacuum” state so to prove why a + 2b = 1. By symmetries of
the “orthogonal” states to the “vacuum” we mean always the symmetries of the
kernel of the S map.

The “inner” products are trivially divergent due to the contribution of the
n = 0 term of the GJ theta series in the integral (26). From now on, we
denote for “inner” product in (26) and (29) as the finite part of the integrals by
simply removing the trivial infinity. We shall see in the next paragraphs, that
this “additive” regularization is in fact compatible with the symmetries of the
problem.

We can easily show that if a and b are such that 2b + a = 1, then the
symmetries of all the states ψs orthogonal to the “vacuum” state are preserved
by any map S, equation (29), which leads to Z(as + b). In fact, if the state
associated with the complex number s = x+ iy is orthogonal to the “vacuum”
state and the “scalar product” is given by Z(as+ b) = Z(s′), then the Riemann
zeta-function has zeros at s′ = x′ + iy′, s′∗, 1 − s′ and 1 − s′∗. If we equate
as + b = s′, then as∗ + b = s′∗. Now, 1 − s′ will be equal to a(1 − s) + b, and
1− s′∗ will be equal to a(1− s∗) + b, if, and only if, 2b+ a = 1. Therefore, all
the states ψs orthogonal to the “vacuum” state, parameterized by the complex
number 1/2 + i0, will then have the same symmetry properties with respect to
the critical line as the nontrivial zeros of zeta.

Notice that our choice of a = −2/l and b = (4k − 1)/l is compatible with
this symmetry if k and l are related by l = 4(2k − 1). Conversely, if we assume
that the orthogonal states to the “vacuum” state have the same symmetries of
Z(s), then a and b must be constrained to obey 2b + a = 1. It is clear that a
map with arbitrary values of a and b does not preserve the above symmetries
and for this reason we have now that s = as+ b = a(s− 1/2) + 1/2

Therefore, concluding, the inner product 〈ψs1 |ψs2〉 is equal to 〈ψso
|ψs〉 =

2
l Z[a(s− 1/2) + 1/2] = 2

lZ(s′) where s = s∗1 + s2 − 1/2. For example, if we set
l = −2, then k = 1/4, a = 1, b = 0, and consequently s′ = s in this case; i.e.
the position of the zeros (sn)′ = sn coincide with the location of the orthogonal
states ψsn to the reference state ψso .

To sum up, for states Ψs such that s = 1
2 + iλ lies in the critical line one

learns that

〈ψs1 |ψs2〉 = (
2
l
) Z [

2
l
(2k − (s∗1 + s2)) ] = (

2
l
) Z [

1
2

+
2i
l

(λ1 − λ2) ] (30)

and one finds that the states Ψs have equal norm

< Ψs |Ψs > =
2
l
Z [

1
2
] (31)
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Since Z[ 12 ] < 0 in order to have a positive definite norm one requires to
choose l < 0. Z(s) is real-valued along the critical line because when s =
1
2 + iλ⇒ 1− s = s∗ then as a result of the functional equation one must have
Z(s) = Z(1 − s) = Z(s∗) = (Z(s))∗ which implies that Z(1/2 + iλ) = real.
Let us follow the Gram-Schmidt procedure to construct an orthonormal basis
ϕn from the family of functions Ψsm

. We begin with the first state ϕ1 = Ψs1

associated with the first zero s1 = 1
2 + iλ1. The next orthonormal state is

ϕ2 = a21 Ψs1 + a22 Ψs2 (32)

such that

< ϕ2 | ϕ2 > = 1 = ( |a21|2 + |a22|2 ) (
2
l
) Z [

1
2
] + (33)

a∗21 a22 (
2
l
) Z [

1
2

+
2i
l

(λ1 − λ2) ] + complex conjugate

and

< ϕ2 | ϕ1 > = 0 ⇒ 0 = a21 (
2
l
) Z [

1
2
] + a22 (

2
l
) Z[

1
2

+
2i
l

(λ1−λ2) ] (34)

yield the defining relations for the coefficients a21, a22. One continues with

ϕ3 = a31 Ψs1 + a32 Ψs2 + a33 Ψs3 (35)

obeying

< ϕ3 | ϕ3 > = 1. < ϕ3 | ϕ1 > = 0. < ϕ3 | ϕ2 > = 0 (36)

that yield the defining relations for the coefficients a31, a32, a33. One continues
to follow this procedure

ϕn =
m=n∑
m=1

amn Ψsm
= a1n Ψs1 + a2n Ψs2 + a3n Ψs3 + .... + amn Ψsm

(37)

all the way to m → ∞. Since Z(1/2 + iy) = real this means there could exist
real-valued solutions for all the coefficients amn which simplifies enormously the
calculations.

The explicit form of the eigenfunctions, after using the relation l = 8k − 4,
is

Ψsm
(t; l) = t−(1/2+iλm)+(l+4)/8

√√√√ n=∞∑
n=−∞

e−πn2tl (38)

one can notice that the coefficients amn(l) and the orthonormal basis ϕn(t) must
depend explicitly on the values of l since the eigenfunctions depend on l. Hence,
one should write in general ϕn(t; l).

12



When l = −2 ⇒ a = −2/l = 1; b = 0 one has states of positive norm

< Ψs |Ψs > =
2
l
Z [

1
2
] = − Z [

1
2
] > 0 (39)

and the orthogonality condition with the reference ”ground ” state Ψ1/2+i0 is

< Ψ1/2+i0 (t; l = −2) |Ψsm
(t; l = −2) > = Z [sm] = 0 (40)

Despite the fact that we don’t have a true scalar product as such and that D1,D2

are not self-adjoint operators since they don’t admit an adjoint extension to the
whole real line, we may define a completion relation ( a ”trace formula”) based
on the resolution of the identity operator in QM and ask if the analog of the
following completeness relation holds in the case l = −2

∑
n

ϕ∗n(t′) ϕn(t) =
n=∞∑
n=1

m=n∑
m=1

a∗mn amn Ψ∗
sm

(t′) Ψsm
(t) ∼ δ(t− t′) (41)

where

Ψsm
(t; l = −2) = t−(1/2+iλm)+(1/4)

√√√√ n=∞∑
n=−∞

e−πn2t−2 (42)

In general for any given value of l one must have

∑
n

ϕ∗n(t′; l) ϕn(t; l) =
n=∞∑
n=1

m=n∑
m=1

a∗mn(l) amn(l) Ψ∗
sm

(t′; l) Ψsm
(t; l) = Clδ(t−t′)

(43)
where Cl is a constant whose value depends on l.

One could also study the completion relation for different values l, l′ defined
as

∑
n

ϕ∗n(t′; l′) ϕn(t; l) =
n=∞∑
n=1

m=n∑
m=1

a∗mn(l′) amn(l) Ψ∗
sm

(t′; l′) Ψsm
(t; l) (44)

and verify whether or not it is proportional to δ(l− l′) δ(t− t′) or to Cll′δ(t−
t′). The completion relations are not the same as a trace formulae in number
theory, nevertheless it would be instructive to explore the connections to Connes
hypothetical trace formula [6] related to the RH; the Deninger’s Lefschetz trace
formulae; the Selberg trace formulae; the Gutzwiller trace formulae, .... [29].

If the completion relations (41, 43) are not satisfied this could be a signal that
there should be missing zeros; i.e. zeros outside the critical line ( but inside the
critical strip ) that were not included in the summation in eqs-(41,43). Naturally,
one would need to include all of the infinite number of zeros in the critical line
to evaluate explicitly the above summations (41,43). However, despite this
technicality it does not preclude us from postulating and writing explicitly such
completion relation and performing a numerical analysis over the known zeros.
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Appendix : The Riemann Hypothesis is a consequence of
CT -invariant Quantum Mechanics

In this appendix we will briefly announce our recent findings [37] showing
the equivalence between the RH and CT -invariant Quantum Mechanics that
relies also on a family of theta series and their Mellin transforms. Given

G(x) =
∞∑

n=−∞
e−πn2x = 2ω(x) + 1. (A.1)

where ω(x) =
∞∑

n=1
e−πn2x. The Gauss-Jacobi series obeys the relation

G(
1
x

) =
√
x G(x). (A.2)

Then V is chosen such that e2V (t) = G(tl). One defined x as tl. Upon defin-
ing HA = D2D1 and HB = D1D2 we were able to show in [7], due to the
relation Ψs(1/t) = Ψ1−s(t) based on the properties of the Gauss-Jacobi series
G( 1

x ) =
√
x G(x), that

HA Ψs(t) = s(1− s)Ψs(t). HB Ψs(
1
t
) = s(1− s)Ψs(

1
t
). (A.3)

Therefore, despite that HA,HB are not Hermitian they have the same spectrum
s(1 − s) which is real-valued only in the critical line and in the real line. Had
HA,HB been Hermitian one would have had an immediate proof of the RH.
Hermitian operators have a real spectrum, hence if s(1 − s) is real this means
that 1− s = c s∗ , for a real valued c, and 1− s∗ = c s. Subtracting :

1− s− (1− s∗) = −(s− s∗) = −c (s− s∗) ⇒ (s− s∗) (1− c) = 0. (A.4)

If c 6= 1 then one has s− s∗ = 0 ⇒ s = real. And if c = 1 then s− s∗ 6= 0 such
that the Imaginary part of s is not zero. Therefore, the condition 1−s = c s∗ for
c = 1 leads immediately to s = 1

2 + iλ. From eq-(A.3) resulting from properties
of the Gauss-Jacobi series G( 1

x ) =
√
x G(x) it follows that under the ”time

reversal ” T operation t→ 1
t the eigenfunctions Ψs(t) behave as

T Ψs(t) = Ψs(
1
t
) = Ψ1−s(t). (A.5)

and the Hamiltonian operators HA = D2D1, HB = D1D2 transform as

T HB T −1 = HA, T HA T −1 = HB . (A.6)

If the Hamiltonians HA,HB are invariant under the CT operation, where under
the C ”charge conjugation” operation the eigenfunctions transform C Ψs(t) = Ψs∗(t),
one may prove the RH resulting from the condition < Ψs | CT | Ψs > 6= 0.
The invariance of the HA,HB operators under CT implies the vanishing of the
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commutators [HA, CT ] = [HB , CT ] = 0. When the operators HA,HB commute
with CT , there exits new eigenfunctions ΨCT

s (t) of the HA operator with eigen-
values s∗(1 − s∗). Let us focus only in the HA operator since similar results
follow for the HB operator. Defining

| ΨCT
s (t) > ≡ CT | Ψs(t) > . (A.7)

one can see that it is also an eigenfunction of HA with eigenvalue s∗(1− s∗) :

HA | ΨCT
s (t) > = HA CT | Ψs(t) > = HA | Ψ1−s∗(t) > =

s∗(1− s∗) | Ψ1−s∗(t) > = s∗(1− s∗) CT | Ψs(t) > = (Es)∗ | ΨCT
s (t) > .

(A.8)
where we have defined (Es)∗ = s∗(1− s∗). Given

[HA, CT ] = 0 ⇒ < Ψs | [HA, CT ] | Ψs > = 0 ⇒

< Ψs | HA CT | Ψs > − < Ψs | CT HA | Ψs > =

(Es)∗ < Ψs | CT | Ψs > − Es < Ψs | CT | Ψs > =

(E∗s − Es) < Ψs | CT | Ψs > = 0. (A.9)

From (A.9) one has two cases to consider.
• Case A : If the pseudo-norm is null

< Ψs | CT | Ψs > = 0 ⇒ (Es − E∗s ) 6= 0 (A.10a)

then the complex eigenvalues Es = s(1 − s) and E∗s = s∗(1 − s∗) are complex
conjugates of each other. In this case the RH would be false and there are
quartets of non-trivial Riemann zeta zeros given by sn, 1− sn, s

∗
n, 1− s∗n.

• Case B : If the pseudo-norm is not null :

< Ψs | CT | Ψs > 6= 0 ⇒ (Es − E∗s ) = 0 (A.10b)

then the eigenvalues are real given by Es = s(1 − s) = E∗s = s∗(1 − s∗) and
which implies that s = real ( location of the trivial zeta zeros ) and/or s =
1
2 + iλ ( location of the non-trivial zeta zeros). In this case the RH would be
true and the non-trivial Riemann zeta zeros are given by sn = 1

2 + iλn and
1−sn = s∗n = 1

2 − iλn. We are going to prove next why Case A does and cannot
occur, therefore the RH is true because we are left with case B.

In section 3 we established a one to one correspondence among the zeta zeros
sn with the states Ψsn

(t) orthogonal to the ground ( vacuum state ) Ψso
(t)

associated with the center of symmetry so = 1
2 + i0 of the non-trivial zeta zeros

and corresponding to the fundamental Riemann function obeying the ”duality”
condition Z(s) = Z(1−s). The inner products < Ψso(t) | Ψsn(t) > ∼ Z[sn] =
0 fix the location of the nontrivial zeta zeros sn since Z[s] is proportional to
ζ(s).
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To sum up, for states Ψs such that s = 1
2 + iλ lies in the critical line one

learns that

〈ψs1 |ψs2〉 = (
2
l
) Z [

2
l
(2k− (s∗1 + s2)) ] = (

2
l
) Z [

1
2

+
2i
l

(λ1− λ2) ]. (A.11)

and one finds that the states Ψs have equal norm

< Ψs |Ψs > =
2
l
Z [

1
2
] 6= 0, (l 6= ±∞). (A.12)

After this discussion, we are ready now to study cases A and B in eqs-(A.10a,
A.10b) respectively. From the explicit form of eq-(A.11) depicting the inner
product of two arbitrary states , by choosing for example that l = −2 ⇒ k = 1

4 ,
one concludes that the pseudo-norm is not null

< Ψs | CT | Ψs > = < Ψs || Ψ1−s∗ > = − Z[ − (
1
2
− (s∗ + 1− s∗)) ] =

− Z[
1
2
] 6= 0. (A.13)

and consequently case A of eq-(A.10a) is ruled out and case B of eq-(A.10b)
stands. Concluding, since the pseudo-norm (A.13) is not null this implies that
the eigenvalues Es, E

∗
s obey eq-(A.10b) and are real-valued Es = s(1 − s) =

E∗s = s∗(1− s∗) which means that the Riemann Hypothesis is true.
The results of eq-(A.13) and conclusions remain the same for other choices

of the parameters l, k so far as l, k are constrained to obey the condition l =
4(2k − 1) ⇔ a + 2b = 1 imposed from the symmetry considerations since the
orthogonal states Ψsn

(t) to the reference state Ψso
(t) must obey the same sym-

metry conditions with respect to the critical line and real line as the non-trivial
zeta zeros :

< Ψs | CT | Ψs > = < Ψs || Ψ1−s∗ > =
2
l
Z[

2
l
(2k − (s∗ + 1− s∗)) ] =

2
l
Z[

2
l
(2k − 1)] =

2
l
Z[

1
2
] 6= 0, (l 6= ±∞). (A.14)

as a result of l = 4(2k − 1).
Finally, we show that there exists an infinity family of potentials V2j,2m(t)

related to an infinite family of theta series [39], [38] where no regularization is
needed in the construction of the inner products and without the need to extract
the zero mode n = 0 divergent contribution. The infinite family of potentials is
defined by

e2V2j,2m(t) = Θ2j,2m(t) ≡
n=∞∑

n=−∞
n2m H2j(n

√
2πt) e−πn2t. (A.15)
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when m 6= 0, the zero mode n = 0 does not contribute to the sum and the
Mellin transform of Θ2j,2m(t) , after exploiting the symmetry of the even-degree
Hermite polynomials, is given by [38], [39]∫ ∞

0

[ 2
n=∞∑
n=1

n2m H2j(n
√

2πt) e−πn2t ] ts/2−1 dt =

2 (8π)j Pj(s) π−s/2 Γ(
s

2
) ζ(s− 2m); m = 1, 2, .... (A.16)

The polynomial Pj(s) has simple zeros on the critical line Re s = 1
2 , obeys

the functional relation Pj(s) = (−1)jPj(1− s) and in particular Pj(s = 1
2 ) = 0

when j = odd. It is only when j = even that Pj(s = 1
2 ) 6= 0 and when we

can implement CT invariance. In the j = odd case, one cannot implement CT
invariance and Pj(s = 1

2 ) = 0 . A Poisson re-summation formula leads to a
similar relation under t→ 1

t

(−1)j

√
t

Θ2j,2m(
1
t
) = Θ2j,2m(t). (A.17)

therefore, only when j = even in (A.17) one can implement CT invariance to
the new family of Hamiltonians HA,HB associated with the potentials V2j,2m(t)
of (A.15) because HAΨs(t) = s(1−s)Ψ(t) and HBΨs( 1

t ) = s(1−s)Ψs( 1
t ) would

only be valid when j = even. The inner products with respect to the shifted
state Ψ 1

2+2m(t) are

< Ψ 1
2+2m(t) | Ψs(t) > = − 2 (8π)j Pj(s+2m) π−(s+2m)/2 Γ(

s+ 2m
2

) ζ(s).

(A.18)
this result requires fixing uniquely the values l = −2; k = 1

4 . Thus, the non-
trivial zeta zeros sn would correspond to the states Ψsn

(t) orthogonal to the
shifted ”ground” state Ψ 1

2+2m(t). It remains to prove when l = −2, k = 1
4 and

s12 = s∗1 + s2 = s∗1 + (1− s∗1) = 1 that

< Ψs | CT | Ψs > = < Ψs || Ψ1−s∗ > =∫ ∞

0

[ 2
n=∞∑
n=1

n2m H2j(n
√

2πt) e−πn2t ] t
2(−s12+2k)

2l −1 dt =

− 2 (8π)j Pj(s =
1
2
) π−1/4 Γ(

1
4
) ζ(

1
2
− 2m) 6= 0; j = even, m = 1, 2, 3, .....

(A.19)
Hence, one would arrive at a definite solid conclusion based on a well defined

inner product : the RH is true because ζ( 1
2 − 2m) 6= 0 when m = 1, 2, .... and

Pj( 1
2 ) 6= 0 when j = even. This finding can be inferred from the nonzero

pseudo-norm < Ψs | CT | Ψs > 6= 0 in (A.19) and upon following our previous
arguments as in (A.10a, A.10b) that rule out case A , single out case B, and
that leads to Es = s(1 − s) = real ⇒ s = 1

2 + iλ ( and/or s = real ). The
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key reason why the Riemann hypohesis is true is due to the CT invariance and
the fact that the pseudo-norm < Ψs|CT |Ψs > is not null. Had the pseudo-
norm < Ψs|CT |Ψs > been null, the RH would have been false. It remains to
be seen whether our procedure is valid to prove the grand-Riemann Hypothesis
associated to the L-functions.
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