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A novel Chern—Simons Eg gauge theory of gravity in D = 15 based on an octic Eg
invariant expression in D = 16 (recently constructed by Cederwall and Palmkvist) is
developed. A grand unification model of gravity with the other forces is very plausible
within the framework of a supersymmetric extension (to incorporate spacetime fermions)
of this Chern—Simons FEg gauge theory. We review the construction showing why the
ordinary 11D Chern—Simons gravity theory (based on the Anti de Sitter group) can be
embedded into a Clifford-algebra valued gauge theory and that an Fg Yang—Mills field
theory is a small sector of a Clifford (16) algebra gauge theory. An Eg gauge bundle for-
mulation was instrumental in understanding the topological part of the 11-dim M-theory
partition function. The nature of this 11-dim Eg gauge theory remains unknown. We
hope that the Chern—Simons Eg gauge theory of gravity in D = 15 advanced in this
work may shed some light into solving this problem after a dimensional reduction.
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1. Introduction

Exceptional, Jordan, Division and Clifford algebras are deeply related and essen-
tial tools in many aspects of Physics [3, 5, 8, 9, 14-20]. Ever since the discovery
[1] that 11D supergravity, when dimensionally reduced to an n-dim torus led to
maximal supergravity theories with hidden exceptional symmetries E,, for n <8, it
has prompted intensive research to explain the higher dimensional origins of these
hidden exceptional E, symmetries [2, 6]. More recently, there has been a lot of
interest in the infinite-dim hyperbolic Kac-Moody FEj9 and nonlinearly realized
FE4, algebras arising in the asymptotic chaotic oscillatory solutions of supergravity
fields close to cosmological singularities [1, 2].

The classification of symmetric spaces associated with the scalars of N extended
supergravity theories, emerging from compactifications of 11D supergravity to lower
dimensions, and the construction of the U-duality groups as spectrum-generating
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symmetries for four-dimensional BPS black holes [6] also involved exceptional sym-
metries associated with the exceptional magic Jordan algebras J3[R, C, H, O]. The
discovery of the anomaly free 10-dim heterotic string for the algebra Fg x Fg was
another hallmark of the importance of exceptional Lie groups in Physics.

The Eg group was proposed long ago [24] as a candidate for a grand unification
model building in D = 4. An extensive review of the Fg grand unified models may
be found in [26]. The supersymmetric Eg model has more recently been studied as a
fermion family and grand unification model [25] under the assumption that there is
a vacuum gluino condensate but this condensate is not accompanied by a dynamical
generation of a mass gap in the pure Eg gauge sector. A study of the interplay among
exceptional groups, del Pezzo surfaces and the extra massless particles arising from
rational double point singularities can be found in [38]. Clifford algebras and Eg are
key ingredients in Smith’s Dy — D5 — Es — E7 — E grand unified model in D = 8 [6].

An FEg gauge bundle was instrumental in the understanding the topological
part of the M-theory partition function [27, 32]. A mysterious Eg bundle which
restricts from 12-dim to the 11-dim bulk of M theory can be compatible with 11-dim
supersymmetry. The nature of this 11-dim Eg gauge theory remains unknown. We
hope that the Chern—-Simons Fg gauge theory of gravity in D = 15 advanced in
this work may shed some light into solving this question.

Es Yang-Mills theory can naturally be embedded into a CI(16) algebra gauge
theory [33] and the 11D Chern—Simons (super) gravity [4] is a very small sector of
a more fundamental polyvector-valued gauge theory in Clifford spaces. Polyvector-
valued supersymmetries [11] in Clifford-spaces [3] turned out to be more fundamen-
tal than the supersymmetries associated with M, F theory superalgebras [7, 10]. For
this reason, we believe that Clifford structures may shed some light into the origins
behind the hidden Eg symmetry of 11D supergravity and reveal more important
features underlying M, F theory.

The main purpose of this work is to develop a Chern—Simons Fg gauge theory
of gravity in D = 15 based on an octic Fg invariant expression in D = 16 recently
constructed by [23], and to propose a grand unification of gravity with all the
other forces within the framework of a supersymmetric extension (to incorporate
spacetime fermions) of the Chern—Simons Eg gauge theory. Our octic Eg invariant
action has 37 terms and contains: (i) the Lanczos-Lovelock gravitational action
associated with the 15-dim boundary M1 of the 16-dim manifold; (ii) five terms
with the same structure as the Pontryagin ps(F!”) 16-form associated with the
SO(16) spin connection €7 where the indices I,.J run from 1,2,...,16; (iii) the
fourth power of the standard quadratic Eg invariant [I2]%; (iv) plus 30 additional
terms involving powers of the Eg-valued F /f;,] and F, field-strength (two-forms).

In the final section, we explain how a Clifford algebra gauge theory (that
includes the Chern-Simons gravity action) can itself be embedded into a more
fundamental polyvector-valued gauge theory in Clifford spaces involving ten-
sorial coordinates xt1#2 gHir2is | in addition to antisymmetric tensor gauge
fields Ay, 10, Ay piopss s - - - - The polyvector-valued supersymmetric extension of this
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polyvector valued bosonic gauge theory in Clifford spaces may reveal more impor-
tant features of a Clifford-algebraic structure underlying M, F, S theory in D =
11,12, 13 dimensions. An overview of the basic features of the extended relativity
in Clifford spaces can be found in [3] and a polyvector-valued generalized super-
symmetry algebra in Clifford spaces was presented in [11].

2. A Chern—Simons Eg Gauge Theory of Gravity

2.1. Eg Yang—Mills in D = 4 and Clifford-algebra-valued
gauge theories

It is well known among the experts that the Eg algebra admits the SO(16) decom-
position 248 — 120 & 128. The Eg admits also a SL(8, R) decomposition [6]. Due
to the triality property, the SO(8) admits the vector 8, and spinor representa-
tions 8, 8.. After a triality rotation, the SO(16) vector and spinor representations
decompose as [6]

16 — 8, @ 8,. (2.1a)
128, — 8, © 56, ® 1 ©® 28 35,. (2.1b)
128, — 8, @ 56, @ 8, @ 56.. (2.1c)

To connect with (real) Clifford algebras [8], i.e. how to fit Es into a Clifford struc-
ture, start with the 248-dim fundamental representation Eg that admits a SO(16)
decomposition given by the 120-dim bivector representation plus the 128-dim chiral-
spinor representations of SO(16). From the modulo eight periodicity of Clifford alge-
bras over the reals one has C1(16) = Cl(2 x 8) = CI(8) ® CI(8), meaning, roughly,
that the 216 = 256 x 256 Cl(16)-algebra matrices can be obtained effectively by
replacing each one of the entries of the 2% = 256 = 16 x 16 CI(8)-algebra matri-
ces by the 16 x 16 matrices of the second copy of the C1(8) algebra. In particular,
120 =1x284+8x8+28x 1 and 128 = 8456+ 8+ 56, hence the 248-dim Fg algebra
decomposes into a 120 + 128 dim structure such that Eg can be represented indeed
within a tensor product of C1(8) algebras.

At the Eg Lie algebra level, the Eg gauge connection decomposes into the SO(16)
vector I,J =1,2,...,16 and (chiral) spinor A = 1,2,...,128 indices as follows

Ay = A X+ AYa, Xpp=-Xyi,
I,J=1,2,3,...,16, A=1,2,...,128,
where X7, Y4 are the Eg generators. The Clifford algebra (C1(8) ® C1(8)) structure
behind the SO(16) decomposition of the Fs gauge field AII;] X7+ AﬁYA can be

deduced from the expansion of the generators X; s, Y4 in terms of the C1(16) algebra
generators. The C1(16) bivector basis admits the decomposition

X" =al (v @ 1) + b (L @ vi5) + ¢l (vi ® ), (2.3)

(2.2)

where ;, are the Clifford algebra generators of the C1(8) algebra present in C1(16) =
C1(8) ® C1(8); 1 is the unit CI(8) algebra element that can be represented by a unit
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16 x 16 diagonal matrix. The tensor products ® of the 16 x 16 C1(8)-algebra matrices,
like v; ® 1, 75 ® 7j,... furnish a 256 x 256 Cl(16)-algebra matrix, as expected.
Therefore, the decomposition in (2.3) yields the 28 +28+8 x 8 = 56 + 64 = 120-dim
bivector representation of SO(16); i.e. for each fixed values of I.J there are 120 terms
in the right-hand side of (2.3), that match the number of independent components
of the Eg generators X!/ = —X 7! given by %(16 x 15) = 120. The decomposition
of Y, is more subtle. A spinor ¥ in 16D has 2% = 256 components and can be
decomposed into a 128 component left-handed spinor U4 and a 128 component
right-handed spinor ¥4; the 256 spinor indices are & = A, A; 3 = B, B,... with
A,B=1,2,...,128 and A- B =1,2,...,128, respectively.

Spinors are elements of right (left) ideals of the C1(16) algebra and admit the
expansion ¥ = U, £% in a 256-dim spinor basis £* which in turn can be expanded as
sums of Clifford polyvectors of mixed grade; i.e. into a sum of scalars, vectors, bivec-
tors, trivectors, ...Minimal left/right ideals elements of Clifford algebras may be
systematically constructed by means of idempotents e = e such that the geometric
product of Cl(p, g)e generates the ideal [22].

The commutation relations of Eg are [6]

X1/, XKL = (5IKXLJ _GILXKT | §IK XTL _ §IL 1K)
(2.4)
(X7, Y% = raﬁyﬁ, Yo, vP) = r‘;;?X” 9% = [0g,1,]%0

The combined Ey indices are denoted by A = [IJ], o (120 4 128 = 248 indices in
total) that yield the Killing metric and the structure constants

1 1
nAB _ @T’I‘T'ATB _ _@féADfBCD, (25&)
FIPRLMN — _gsTK sLJ 4 permutations;  f1] = ——Fag, (2.5b)
1
plIKL — _ — §l1J ¢KLCD,

We shall proceed with the Cl(16) gauge theory that encodes the exceptional Lie
algebra Eg symmetry from the start. The Fg gauge theory in D = 4 is based on
the Fg-valued field strengths

FlUX1y = (0, A — 0, AN X5+ AFEAYN [ X e, Xun] + ACAD Yo, Y3, (2.6)
Fi Yo = (0,A2 — 0,A%)Ye + ACAL [V, X1 ). (2.7)

The Eg actions are

S'opological|[Fg] = / d%—Tr[F,;‘LFpTTATB]eWT / d* e F\ FEnage’™

/d4 F”F kL + Fp FpTTlaﬁ +2F), LI pp enraple T,
(2.8)
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where €Y7 is the covariantized permutation symbol and
1 vT vT
Sym[Eg] = /d4x\/§@TT[Flﬁ,Fp€TATB]g”pg = /d4x\/§F/ﬁ,F£nAgg”pg
= /d4x\/§[F;£;/]FpI§L771JKL + F;uFfrnaﬁ + QFJ;]F,JBWIJB]QWQW~ (2.9)

The above Es actions (are part of) can be embedded onto more general Cl(16)
actions with a much larger number of terms given by

STOpological[Cl(lfi)] = /d4$<Fmej\,’{FMFN>€“VpT

T

= / e FN N G pane™ 7, (2.10)
and
Sy [CL(16)] = /d4x\/§<F,ijpﬁ/FMrN>gWg”
= /d%\/gF,j‘jF,{XGMNgWg”, (2.11)

where (T yI'ny) = Gl denotes the scalar part of the Clifford geometric product
of the gammas. Notice that there are a total of 65536 terms in
FNFNGpan = FuFpr + FLFL + Fl 2 FDE
+,,,_|_F1112~~116F1112m116 (2 12)
nv pT ) .

where the indices run as I = 1,2,...,16. The Clifford algebra C1(16) has the graded
structure (scalars, bivectors, trivectors, ..., pseudoscalar) given by

1 16 120 560 1820 4368 8008 11440 12870 2.13)
11440 8008 4368 1820 560 120 16 1 '

consistent with the dimension of the C1(16) algebra 26 = 256 x 256 = 65536.

The possibility that one can accommodate another copy of the Eg algebra
within the CI(16) algebraic structure warrants further investigation by working
with the duals of the bivectors X;; and recurring to the remaining Y genera-
tors. The motivation is to understand the full symmetry of the Eg x Eg heterotic
string from this Clifford algebraic perspective. A clear embedding is, of course,
the following

Fs x Es  CI(8) ® CI(8) ® C1(8) ® CI(8) C CI(16) ® CI(16) = C1(32), (2.14)
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where SO(32) C ClI(32) and SO(32) is also an anomaly free group of the heterotic
string that has the same dimension and rank as Fg X Ejs.

2.2. An Eg gauge theory of gravity based on an octic invariant

The action that defines a Chern—Simons Fg gauge theory of gravity in 15-dim is

S = (FF...F)g,
M16

N / (FMAFM A N FM)Y 0 0 My
M16

= / 82 (AL F). (2.15)
oM16

The Eg Lie-algebra-valued 16-form (F®) is closed : d({FM Ty, AN FM2Tppy A+ A
FMsTy)) = 0 and locally can always be written as an exact form in terms of
an Fg-valued Chern—Simons 15-form as I = dﬁ(clg) (A,F). For instance, when
M16 = §16 the 15-dim boundary integral (2.15) is evaluated in the two coordinate
patches of the equator S® = M6 of S16 leading to the integral of tr(g~'dg)*® (up
to numerical factors) when the gauge potential A is written locally as A = g~ ldg
and g belongs to the Eg Lie-algebra. The integral is characterized by the elements of
the homotopy group 715(Eg). S'¢ can also be represented in terms of quaternionic
and octonionic projectives spaces as HP* OP?, respectively.

In order to evaluate the operation (---)g, in the action it involves the exis-
tence of an octic Eg group invariant tensor Y s as,.. ., that was recently con-
structed by Cederwall and Palmkvist [23] using the Mathematica package GAMMA
based on the full machinery of the Fierz identities. The entire octic Eg invari-
ant contains powers of the SO(16) bivector X’/ and spinorial Y generators
X8, X0y2 X4Y* X?2Y% Y8 The corresponding number of terms is 6,11,12,5,2,
respectively, giving a total of 36 terms for the octic Eg invariant involving 36
numerical coefficients multiplying the corresponding powers of the Eg generators.
There is an extra term (giving a total of 37 terms) with an arbitrary constant
multiplying the fourth power of the quadratic invariant I = —%tr[(FJ{] X7)%+
(F/f‘uYa)Q].

The Euler-density in 16D corresponds to the Pfaffian associated with the 16 x 16
antisymmetric matrix F77 where the components F// can be read from Eq. (2.6).
The Euler (Born-Infled) action density is

Pfaffian(F) = VdetF = Lpyer = FI P22 plsds  plsTser 0 50 1oges
(2.16)
such that the exterior derivative of the gravitational 15-dim Lanczos—Lovelock
(LL) action E(le) corresponding to the 15-dim boundary ¥ = 9OM! 6 yields
the Euler-density 16-form dLr; = Lguier- Upon inserting the spacetime indices
[1, fho, - -5 16, the Euler characteristic class invariant e(7 M) of the SO(16)
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tangent bundle associated with M6 is given by

I1Jy o J IgJ,
SEuler:/ . etz i pinJy plads  plsJs €1y Ty Ioda. s Js
M

H1p2™ H3 4 HisH16
15)
= acs
/M16 LL

= / £ (2.17)
SOM16

Despite the higher powers of the curvature (after eliminating the spin connection
wl‘jb in terms of the ef, field) the L&i}elock furnishes equations of motion for the ej;
field containing at most derivatives of second order, and not higher, due to the

Topological property of the Lovelock terms

a1 g2 a13 o014
(15) wa, | €Me - JRIE .
d(LLovelock) = €ajas...ais R 2 4 Lo RMsore 4 Z — ) a1

12 12
= Euler density in 16D. (2.18)
The exterior derivative of the Lovelock terms can be rewritten compactly as
AL velock) = €nlpe g F2 L FIETE, (2.19)

where F112 is the curvature field strength associated with the SO(14,2) connection

Q/Ijb in 16D and which can be decomposed in terms of the fields ez,wl‘jb,a,b =
1,2,...,15 by identifying QZD = %ez and sz = w,‘jb so that the Torsion and

Lorenz curvature two-forms are

Tw,e) = FP = dQ*P + Qi A QPP =

o~ —

(de® — wi A eb),

1
—e* Neb, (2.20)

F = (A" + QI A Q) + (2 A Q") = R (W) +

R®(w) = dw® + w? Aw®,

where a length parameter [ must be introduced to match dimensions since the
connection has units of 1/1. This [ parameter is related to the cosmological constant.

Another invariant is the £ (Q/I;] ) Chern—Simons 15-form associated with the
SO(16) spin connection whose exterior derivative

d(Lcs) () = F};F}; ...F};F}f

= (Les)(2)
8M16

Iy 1 17 01
- /Mw 0 A S (2.21)

is one of the five terms contained in the definition of the Pontryagin ps(F!”) invari-
ant 16-form (up to numerical factors) for the SO(14,2) gauge connection in 16D.
As mentioned above, the SO(14,2) connection fo can be broken into the ej, field



1246 C. Castro

which gauges translations along the 15-dim boundary dM1'6 and the SO(14,1)
spin connection w,‘jb which gauges the Lorentz group SO(14, 1) associated with the
tangent space of the 15-dim boundary OM1'6 and such that the net number of
components is 15 + $(15 x 14) = 120 = £(16 x 15).

The relevant five terms contained in the octic Eg invariant found by [23] and
related to the five terms comprising the Pontryagin ps(F!”) invariant 16-form (but
with different numerical factors) are of the form

1J 8 pipz.pie plile pplels pplsly plals pplsle plelr I71g IsIy
tr{(F X1y)°] = € B i B Pt e Fum i Fus o P pins Friraiona Fins pne

(2.22)

which is the same term as (2.21), plus the other terms of the Pontryagin ps(F!7)
invariant 16-form given by

tr((F X 1))t = eraretne (R B (R F2T)

« (FK1K2FK2K1 )(FLle FL2L1 )7 (223)

H9H10 & MH11M12 H13H14™ H15H16

1J 412 H1p2.. .16 11[2 1213 1314 1411
t?"[(F XIJ) ] =€ (quzFusuleuwaqus)

« (FJ1J2 FJ2J3 FJ3J4 FJ4J1 )7 (224)

Hop10™ H11M127 H13H147 H15H16

and similar expressions for the remaining two terms
tT’[(FIJX[J)G]tT[(FIJX[J)2], tT’[(FIJX[J)4]tT[(FIJX]J)2]2.

The terms involving the fermionic generators F, (where the components Fg,
are given by Eq. (2.7)) in the octic Eg invariant are

tT’[(FaYa)S] = eHipz.pie Tilz.. . Iie (Fal F?;IilfghFﬁl )

K12 M3 e
B
te (F512M14F?1431i4115116F5145M16)’ (225)
214
tr[(FaYO‘) ] = ettt (F511M2F§31M4) T (F/?fsumFﬁ?ﬁauw)’ T (2'26)

The terms involving both fermionic and bivector generators in the octic Eg invari-
ant are

(Y X1 (FOYo)2) = evesne (FL LT Fle )

B
x (F/flsumriJ112J2...16J6F515M16)' (227)

1 Ny plaJs pplsda plad
tr[(F XIJ)4(FaYa)4] = 6“1“2 re (FNiH;FﬂiﬂiFﬂgﬂzFﬂiﬂz)

% (Fa1 1"0‘1/81 o ) (Foz2 Pazﬁz P2 );

mopro™ InJrlaJo™ paipa2 pizpras I3 JzlyJa™ pisiiie

(2.28)

2. 16 InJy pplade pplsJa pplada
€ (FNIHZFHSNALFNE)H(‘)FH?NB)

a a1 51 % % .
(FMQMOFHJ112J213J3I4J4FM11M12) (FM13M14FM15M16)’ o (2'29)
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tr[(FIJXIJ)G]tr[(FaYa)Q] = 6M1/~‘2---H16 (Fflfg F1213 FI3I4 FI4I5 FI5IG FIGIl )

Hip2™ p3pa™ ps5 e ™ HTH8T Hof10T H11H12

x (For  Fou ). (2.30)

H13M4147 15116

tr[(FIJXIJ)4]tr[(F()4Ya)4] = 6M1u2...,u16 (FIlI2 FIQI;; FI3I4 FI411)

H1p2™ (3 g 5 e T T 48

B 8 B B
x (FI?QIMloP?;leJst; F/hll Mlz) (F5123M14P3§J5J1 J2 FIJ«125M16)'
(2.31)
1J Iy I Ix 1
tr{(F XIJ)Z]tT[(FaYa)G] = elnhzie (FuiuzFuiulz;) (F/?51H6P311§21J3J4F/f71#8)
B &
x (F592M10F§§J412J5J6FM121M12)
B B
x (F§133M14F§53J§J1J2FM135M16) e (232)

Therefore, the Eg invariant octic action in 16D given by Eq. (2.15) with 36 +
1 = 37 terms contains: (i) the Lanczos-Lovelock gravitational action (2.17), (2.18)
associated with the 15-dim boundary OM!1C; (ii) five terms with the same structure
as the Pontryagin ps(F7) 16-form associated with the SO(16) spin connection QIIL‘];
(iii) the fourth power of the quadratic invariant [I2]*; (iv) plus 30 additional terms
involving powers of the Eg-valued F/f;,] and F7,, field-strength (two-forms) as shown
in Egs. (2.22)-(2.32).

The impending project is the supersymmetric version of the octic EFg invariant
action (2.15). A vector supermultiplet [24, 25] involves AJ', A" with 248 spacetime
fermions A™ in the fundamental 248-dim representation of Eg (m = 1,2,...,248)
and 248 spacetime vectors (gluons) A} in the 248-dim adjoint representation. The
fermions are the gluinos in this very special case because the 248-dim fundamen-
tal and 248-dim adjoint representations of the exceptional Eg group coincide. The
exceptional group FEjg is unique in this respect. In ordinary supersymmetric Yang—
Mills the superpartners of the fermions are scalars, however, in the supersymmet-
ric Eg Yang-Mills case, the fermions \™ (gluinos) and the vectors A" (gluons)
comprise the vector supermultiplet. For a thorough discussion of the unique phe-
nomenological features of the Eg group as a candidate for a (supersymmetric) grand
unification model of all fermion families in D = 4 see [24, 25]. An extensive review
of the Es grand unified models may be found in [26].

A generalized Yang—Mills action in D = 16 involving the Eg-valued two-form
field strength F = FI7X;; + F°Y, is

SGYM(ES)Z/ tr(FAFAFAF)AN" (FAFAFAF)). (2.33)
M16
The analog of a theta term in D = 16 is
Stheta(Es) = / tr[F¥]. (2.34)
Mlﬁ

Self dual configurations, Eg instantons in D = 16 obey Gy =" G(g) and turn
the action (2.33) into (2.34) when the self dual eight-form is defined by Gg) =
FAFAFAF.
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Related to the construction of instantons in higher dimensions, a SO(8) x
SO(7) € SO(16) invariant self-duality equation for a three-form in D = 16 was
studied by [29] who built Topological QFT on 8-dim manifolds with holonomy
group smaller than or equal to Spin(7) after a dimensional reduction from D = 16
to D = 8. A further dimensional reduction to D = 4 furnished new supersymmetric
theories in D = 4. The inclusion of gravitational interactions in D = 8 allowed the
construction of a D = 8 topological gravity and its correspondence with supergrav-
ity via an octonionic self duality equation for the spin connection [29].

A topologically nontrivial gauging of N = 16 supergravity in D = 3 based on
an N = 16 supersymmetric 3-dim nonlinear sigma model valued on the exceptional
coset Fg/SO(16) (128-dimensional) including a combination of a BF and Chern—
Simons term for an SO(16) gauge field was provided by [30]. It remains an open
problem to see if the supersymmetric version of the octic Eg invariant action (2.15)
upon dimensional reduction to D = 3 bears a relationship to the topological gaug-
ing of N = 16 supergravity in D = 3. The 128 scalars parametrizing the coset
E5/SO(16) fit into 16 copies of 128 scalars resulting from the decomposition of the
FEg-valued gauge field AY,, p = 1,2,...,16 and a = 1,2,...,128 where Y, are
the the SO(16) chiral spinorial generators of the Eg algebra.

Another dimensional reduction that is warranted to study is from D = 16 to
D = 11 because D = 11 supergravity with a local SO(16) invariance permits the
bosonic fields to be assigned to a representation of Es [31]. The D = 11 supergravity
four-form determines an Eg gauge bundle which was instrumental in understand-
ing the topological part of the M-theory partition function [27, 32]. A mysterious
Es bundle which restricts from 12-dim to 11-dim bulk of M-theory can be com-
patible with 11-dim supersymmetry. When M-theory is compactified on a man-
ifold with boundary the anomalies caused by the chiral gauginos and gravitinos
on each 10-dim boundary component cancels the anomalies in the 11-dim bulk if
each 10-dim boundary component supports 248 vector multiplets transforming in
the adjoint representation of Fg. The Casimir effect between the M-theory ana-
log of a D-brane/anti-D-brane system exhibiting an Eg x Eg symmetry living at
the 10-dim boundaries of the 11-dim bulk has been studied by [28]. The nature
of this bulk 11-dim Fg gauge theory remains unknown. We hope that the Chern—
Simons Fg gauge theory of gravity in D = 15 advanced in this work may shed
some light into solving this question. Another interpretation is to view the 10-dim
boundary component of the 11-dim bulk of M-theory as a topological defect in
12-dimensions.

The action for D = 4 Einstein gravity has been attained from a generalized
dimensional reduction of a Chern—Simons gravity action in higher D = 2n + 1
dimensions by Nastase [34]. This occurs after imposing a very strong constraint
which in the Schwarzschild space time case is tantamount of setting the ADM mass
to zero [37]. Hence, we may follow such generalized dimensional reduction of our
D = 15 Lanczos-Lovelock gravitational action (2.17), (2.18) to lower dimensions.
For example, the reduction of the D = 6 action (integral of the Euler density
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in D=6)

= al ,a2 as ,a4
d(ﬁiﬁvelock) - / €aras...as (Ra1a2 + ‘ 126 )(Ra3a4 + < 126 ) Ta57 (235)
M6 M6

to D = 4 leads to the standard action for Einstein gravity with the cosmological
constant (1/12) plus the Gauss-Bonnet topological invariant in D = 4 that coincides
with the MacDowell-Mansouri-Chamseddine-West (anti de Sitter group) SO(3, 2)
gauge formulation of gravity:

al ,a2 as a4
6a1a2a3a4 Ra1a2 + ¢ 26 Ra3a4 + ¢ 26 . (236)
MA l l

The so-called Born-Infield gravity in Eq. (2.41) is not invariant under SO(3,2)
unless one imposes the torsionless condition (the action is not off-shell invari-
ant) [37].

D = 4 Einstein gravity was shown by [35] to arise from a 6-dim gauge the-
ory of the conformal group SO(4,2) where the 4-dim spacetime was interpreted
as a 4-dim topological defect in D = 6 and obtained from a topological dimen-
sional reduction of the Euler density in D = 6. In view of these latest findings of
how to perform generalized and topological dimensional reductions [34, 35], it is
no longer implausible to propose a grand unification of gravity with all the other

forces within the framework of a supersymmetric extension (to incorporate the 248
spacetime fermions A™) of our Chern—Simons Es gauge theory in D = 15 based on
the octic Eg invariant action (2.15) after a judicious dimensional reduction. Work-
ing in particular with S$'6 and whose equator is S'° is very appealing since it allows
to accommodate quaternions and octonions into the picture HP* ~ OP? ~ S'6;
HP? ~ OP' ~ S® and HP' ~ S*. The four nonassociative (not Lie) supercon-
formal algebras with N = 5,6, 7,8 supersymmetries all share interesting properties
with the Cayley (octonions), covariant derivation of spinors on round and squashed
S7 and torsion on supercoset manifolds [36].

To finalize this section, we simply recall that in odd dimensions D = 2n — 1, the
Lanczos—Lovelock gravitational Lagrangian is

n—1
+1)P12e=D
’Cgovelockzzapr(D)v a‘p:"{((l))Tp)Cp 1) p=12...,n-1
p=0

(2.37)

C;}_l is the binomial coefficient. The constants k,[ are related to the Newton’s
constant G’ and to the cosmological constant A through k= = 2(D — 2)Qp_»G
where Qp_5 is the area of the D — 2-dim unit sphere and A = (D —1)(D —2)/2I?
for de Sitter (anti de Sitter) spaces [4].

The terms inside the summand of (2.42) are

Ly(D) = €ayay...ap RO R0 R920-1020 02041 | 0D (2.38)

where we have omitted the space-time indices pi1, 2, - ... Despite the higher pow-
ers of the curvature (after eliminating the spin connection wzb in terms of the
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e field) the Lf o furnishes equations of motion for the ef field containing at

most derivatives of second order, and not higher, due to the topological property
of the Lovelock terms

9 1 60‘1 €a2
n— _ a1az
d(LLovelock) = €ajay...a2n R + 12

<Ra2’n,—3a2n—2 + ea2n_3ea2n_2 > TG/Q’n,—l
o —
= Euler density. (2.39)

Therefore, the exterior derivative of the Lovelock terms can be rewritten com-
pactly as
d(ﬁQn_l ) = 6[1[2,”[27LF1112 . ..FIZ’HIIZ", (240)

Lovelock

where F1112 is the curvature field strength associated with the SO(2n — 2,2) con-
nection Qﬁl 2 in 2n-dim and which can be decomposed in terms of the fields
€5 wl‘jb, a,b=1,2,...,2n—1 as shown in Egs. (2.19), (2.20). Gauge theories based
on the Anti de Sitter group allowed us to derive the vacuum energy density of Anti
de Sitter space (de Sitter) as the geometric mean between an upper and lower scale
[17] based on a BF-Chern—Simons-Higgs theory. Upon setting the lower scale to
the Planck scale Lp and the upper scale to the Hubble radius (today) Ry, it yields
the observed value of the cosmological constant p = Lp°Ry* = Lp*(Lp/Ry)? ~
10_120]\41;1131101('

3. On Chern—Simons—Clifford Gravity

We end this work by reviewing Chern—Simons gravitational actions in Clifford
spaces [33] in order to point its relevance to future research related to Es gauge
theories of gravity. The 11D Chern—Simons supergravity action is based on the
smallest Anti de Sitter OSp(32]1) superalgebra. The Anti de Sitter group SO(10, 2)
must be embedded into a larger group Sp(32, R) to accommodate the fermionic
degrees of freedom associated with the superalgebra OSp(32|1). The bosonic sector
involves the connection [4]:

Au = AZFa + Azbrab + Azlwmasralag...as = ezra + wzbrab + A21a2ma51“a1a2ma5
(3.1)

with 11 4 55 + 462 = 528 generators. A Hermitian complex 32 x 32 matrix has a
total of 32+ 2(32531) = 992 4 32 = 1024 = 32% = 2'° independent real components
(parameters), the same number as the real parameters of the anti-symmetric and
symmetric real 32 x 32 matrices, respectively, 496 + 528 = 1024. The dimension
of Sp(32) = (1/2)(32 x 33) = 528. Notice that 2% = 1024 is also the number of
independent generators of the C1(11) algebra since out of the 2! generators, only
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half of them 2'°, are truly independent due to the duality conditions valid in odd
dimensions only:

eal‘”"'az”ﬂral ATu A-ee A Fap ~ Tar+1 A T9P+2 A ... A @20+ (3.2)

This counting of components is the underlying reason why the CI(11) algebra
appears in this section. The generators of the CI(11) algebra {I'®,T?} = 2,°1
and the unit element 1 generate the Clifford polyvectors (including a scalar, pseu-
doscalar) of different grading

I =1,T9T% AT T9 AT ATS, . T AT A ... AT, (3.3)

obeying the conditions (3.2). The commutation relations (see Eq. (3.4) below)
involving the generators 'y, 'ap, I'a,as...a5 do in fact close due to the duality condi-
tions (3.2). The Cl(11) algebra commutators, up to numerical factors, are

[[e, 1% =Tab, e, [%] = 25907 — 2peeT, (3.42)

[Falag’l"hbz] _ _na1b1 Tazb2 + nalbzr‘azbl —, (34b)

[Fa1a2a3,rb1bzbs] — T@1aza3bibabs _ (nalblazb2r‘asbs + .- .), (340)
[Fa1a2a3a4’rb1b2b3b4] — _(na1b1Pa2a3a4b2b3b4 4. ) _ (na1b1a2b2a3b31'\a4b4 + .. ,)7

(3.4d

[]_"alaz’]_"blbzb3b4] _ _na1b1Pa2b2b3b4 +on,
[Fth , Fb1b2b3] — Fa1b1b2b3’ [FGIGZ,FblebS] — _2na1blra2b2b3 4+
[rar, Fb1b2b3b4] _ _na1blrb2b3b4 4 (3.4g
[Falaz...a571‘\b1b2...b5] — 1‘\(11(12...(151)11)2...1)5 + (na1b1a2b2Fa3a4a5b3b4b5 + .. )
+ (na1b1a2b2a3b3a4b4ra5b5 4. )
...asbiba...b
araz...asbiba.bsep

= €

+ (nalblazbz€a3a4a5b3b4b50102~~~C51"6162m05 + .- )

+ (na1b1a2b2a3b3a4b4ra5b5 4. ,)7 ete (3.4h)
with
Naibrazby = TaibyNazbs — Tazbi Naibss (35&)
Naybrasbaasbs = Nayby NazbsMNazbs — NaybaNasby Nagbs T (35b)
1
Naibrazbs...anb, = ﬁeiliz---inejljznjnnailbjl Naiybjy - - - Nai, by, - (3.5¢)

The CI(11) algebra gauge field is

Ay = A% = A1+ AOT, + ABO2T, ) + AR,
4+ Azlaz'”a“ Falaz...a11~ (3.6)
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and the Cl(11)-algebra-valued field strength
FiTa = 0 Ayl + [0, A% + AR A Dy, + - Lo + [0, A5
+ A A?,] _AalaAblbnalbl o Aa1a2aAb1b2b77a1b1a2b2

e [k V] [w V]
_ AﬁjazasaAz]lebsbnalbla2b2a3b3 + .. ']Fab + [a[,qu]bc

+ AﬁjaA%bcnalbl + .. ']Pabc + [8[“A3?Cd
_ A[a;aAiidena1b1 4. ']Fabcd 4 [a[MAla;]la2...a5b1b2...b5

+ Aﬁjaz...asA%bQ...bs + .- ']Palaz...a5b1b2...b5 + .. (37)

The Chern—Simons actions corresponding to the Clifford group rely on Stokes
theorem

/ d(Lciiftord) =/ (Lciifford ) (3.8)
M12 OM12=x11
which in our case reads

d(Lctiftord) = (FAFA---ANFy = (FMNFA2N ANFAT 4 Ta,...Ta), (3.9

where the bracket (---) means taking the scalar part of the Clifford geometric
product among the gammas. It involves products of the dapc, fapc structure
constants corresponding to the (anti) commutators {L'4,Tp} = dapcl'® and
C4,Tp] = fapcl©.

One of the main results of [33] was that the Cl(11) algebra-based action (3.9)
contains a vast number of terms among which is the Chern—Simons action of [4]
L (e,w, As)

;Ccliﬂ‘ord(A;jFA) = Eéls (w,e, As) + Extra Terms. (3.10)
Scs(w, e, As) = / L& = L. (3.11)
8]»[12 Ell

The CI(11) algebra-based action (3.9), (3.10) can in turn be embedded into a
more general expression in C-space (Clifford space) which is a generalized tenso-
rial spacetime of coordinates X = o, z#, o, x#P, ... [3] involving a scalar ®(X)
and antisymmetric tensor gauge fields A, (X), A4, (X), A,,,,(X), ... of higher rank
(higher spin theories) [13]. The most general action onto which the action (3.9),
(3.10) itself can be embedded requires a tensorial gauge field theory [13] (general-
ized Yang—Mills theories) and an integration with respect to all the Clifford-valued
coordinates X = XMI'); corresponding to the 2P-dim C-space associated with the
underlying Cl(2n)-algebra in D = 2n dimensions

S:/[d2"X]<(fAfA...Af)>, [ X] = (do)(dz")(dz" ) (dz""?) . ... (3.12)

A different sort of generalized Yang—Mills theories have been studied by [12] without
the Clifford algebraic structure. Given a Lie algebra G like Eg with generators T, for
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a=1,2,3,...,dim G, it has for commutators [T,, T3] = f¢,T. and whose structure
constants f,pe are fully antisymmetric in their indices. The Lie-algebra-valued one-
form is A = (A%, (X)T,)dX™ and its generalized Lie-algebra valued field strength

F = [F§n(X)T.JdXM A dXx ™
= [0 AR (X) T + gAS(X) AN (X) o TeldX M A dX ™ (3.13)

has for components

F[([:Mlliz~~~ll«m][V1V2~~~Vn]] = 82?[“1“2'“‘"’”]A[CV1V2~~~V”] - 82?["1”2“"’"] fﬂlﬂ2~~~ﬂ7n]
b g
+gA[aHIHZ~~~N77L]A[V1V2~~~V7L] gb' (3'14)

The remaining components are of the form

Fion = Fiy 1= 0 AL, Oytorvaon AG + GAGAL Ly oy fie

[l/lllz.
(3.15)

V1V2...Un .Vp]

where A§ is the Clifford-scalar part ®(X) of the Lie-algebra-valued Clifford-
polyvector, and in general, we must consider the m = n and m # n cases resulting
from the mixing of different grades (ranks). The antisymmetry with respect to the
collective indices M N is explicit.

In order to raise, lower and contract polyvector indices in C-space it requires a
generalized metric GMY . In flat C-space it is defined by the components:

G = 77/41’7 GHperive nululnmw _ null’znlwl’l ete., (316&)

in addition to the scalar—scalar component G°? = 1. It can be recast as

1
e m V1V .., v — U T
GHiH2.fimV1V2 m — det GHIVI — %61112~~~im,ejljz--.jmn“zl _717]#7,2 o ...nlizm im
(3.16D)
where GHT¥7 is an m X m matrix whose entries are n#*s fori,j =1,2,3,...,m < D

and p,v=1,2,3,...,D.

As a result of the expression for the flat C-space metric, given by sums of
antisymmetrized products of n*¥, the Clifford-space generalized Yang—Mills action
is of the form

1 a ViV2....Um
Sym=—3 /[DX] > tracelFly v,y FL 2 pm vz ol 7
1
T2 /[DX] > traceFigy,, IO T, T, (3.17)

where the C-space 2P-dim measure associated with a Clifford algebra in D-dim is
[DX] = [do][IIdz][ITdzt #2 | [Thdatt#2He] | [dattie-Hd] (3.18)

and the indices are ordered as p1 < po < pz -+ < fim, etc.
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The action (3.17) is invariant under the infinitesimal gauge transformations

e Afy = ImE" + gfgbA?\l/ffb; 55‘4/31#2...% = Oryyy 0§ gfgbAZmzmunfb'
(3.19)

associated with a Lie-algebra-valued Clifford-scalar parameter {(X) = £%(X)Ty,.

In [3] it was explained why another alternative to define the transformations in
C-space was by writing the generators of polyrotations as R = exp(Q4B[E4, Ep])
where the commutator [E4, Ep] = F{zEc is the C-space analog of the i[y,, ]
commutator which is the generator of the Lorentz algebra, and the parameters Q45
are the C-space analogs of the rotation/boots parameters. This last alternative
seems to be more physical because a polyrotation should map the E4 direction
into the Ep direction in C-spaces, hence the meaning of the generator [E4, Ep]
which is the generalization of the ordinary i[y,, v, |Lorentz generator.

Therefore, when we recast the generators of polyrotations as Jap = [['a, 5],
an action of the form

. A1 B A2 Bs Aga—1Bya—1
S(CSPace) - /[DX]FMINIFMZNQ c 'FM2d_1N2d_1

M{Ni{MsNo...M_43_1 N, q_
X €A1B1AsBs.. . Ayq 1B, 1€ reE 2d-1 et (320)

is the natural generalization of the Euler density types of the D-dim (D = 2n)
actions in C-space. In particular, when D = 16, the action (3.20) is the C-space
generalization of the action (2.22). This action S(Cspace) (3.20) is more general
than the action SCHfford(AﬁPA) of Eq. (3.10), and which in turn, is more general
than the Chern—Simons gravitational action Scs(w, e, As) given in [4]. Therefore,
we have the inclusions

Scs(w, e, As) C 501(11)[Aﬁ($”)FA]
C S(Cupace) [ALE (o, att, whibz ghakzks ) 7up]  (3.21)

and similarly one would expect the C1(16) algebra gauge theory case in C-spaces
to includes the Eg Chern—Simons gauge theory formulated in the previous section

Scs(A,F) C Saiie) [Aﬁ(x")FA]
C S(Copace) [ALE (o, ah ghimz grrkzis - 7, p] (3.22)

which should be very relevant in future developments of M, F theory upon the intro-
duction of polyvector-valued supersymmetries in C-spaces [11]. These generalized
supersymmetries deserve to be investigated further since they are more fundamen-
tal than the supersymmetries associated with M, F theory superalgebras and also
span well beyond the N-extended supersymmetric field theories involving super-
algebras, like OSp(32|N) for example, which are related to a SO(N) gauge theory
coupled to matter fermions (besides the gravitinos). It is these polyvector-valued
supersymmetries in C-spaces [11] that will permit the supersymmetrization of the
most general action in C-spaces S(Cspace) given by (3.20).
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Finally, the results of this work may shed some light into the origins behind

the hidden Eg symmetry of 11D supergravity, the hyperbolic Kac-Moody algebra
F1o and the nonlinearly realized F;; algebra related to chaos in M theory and
oscillatory solutions close to cosmological singularities [1, 2, 6].
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