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Abstract:  

This paper argues a hypothetical “dark” particle (a black hole with the reduced Planck mass) gives a simple explanation to 

the open question of dark energy and has a relic density of only 17% more than the commonly accepted value.  By 

considering an additional near horizon boundary of the black hole, set by its quantum length, the black hole can obtain an 

arbitrary temperature.  Black body radiation is still present and fits as the source of the Universe’s missing energy.  Support 

for this hypothesis is offered by showing a stationary solution to the black hole’s length scale is the same if derived from a 

quantum analysis in continuous time, a quantum analysis in discrete time, or a general relativistic analysis. 

PACS  numbers: 03.65 -w, 04.20 -q, 05.40. –a 

INTRODUCTION 

Cosmological observations early last century indicate the 

Universe is expanding.  These observations show the speed at 

which objects move away from Earth have a strong correlation 

with their distance, known as Hubble’s Law.  However it was 

not until the end of the last century when we had observations 

of Type Ia supernova that indicated the Universe is also 

accelerating [Liddle 2003].   

The most popular explanation for these findings is an elusive 

energy density with an equation of state,        [Peebles & 

Ratra 2003] coined ―Dark Energy‖ making up ~73% [Larson et 

al. 2010] of the energy density of the Universe.  Many attempts 

have been made to explain dark energy’s origin [Rugh & 

Zinkernagel 2002], yet those attempts have ultimately been 

unsatisfying [Peebles & Ratra 2003, Greene 2004]. Many 

theories are still under review [Papantonopoulos 2007, 

Amendola & Tsujikawa 2010]; with the most accepted being 

the Lambda Cold Dark Matter model,      where Lambda, 

the Cosmological Constant, provides a negative pressure 

     to the Universe [Liddle 2003, Peebles & Ratra 2003].   

By hypothesizing a ―dark particle‖ we begin to answer the 

question of the missing dark energy density.  We will see a dark 

particle is a black hole with the reduced Planck mass.  At this 

mass, the original assumption in Hawking’s work on black hole 

radiation [Hawking 1975] breaks down and I show how a 

quantum boundary, set by the width of the wavepacket, is larger 

than the event horizon.  The surface gravity at this new quantum 

boundary is such that the temperature is arbitrary.  Still the 

distribution of kinetic and potential energy is shown to be that 

of the black body. 

We now have a source of a black body energy density that 

contributes to the energy density of the Universe.  One might 

conclude that dark particles are in thermal equilibrium with the 

Cosmic Microwave Background, however I will argue the 

coupling mechanism between the dark particles and the 

background radiation field has been turned off since after the 

Dark Ages when re-ionization happened.  If this is the case and 

if the dark particles temperature is frozen, they have an equation 

of state of      and the right relic density to explain dark 

energy. 

It is also shown how the dark particle’s cool via a stationary 

diffusive process where the quantum solution to width of the 

wavepacket (the near horizon quantum boundary) is derived.  I 

present this analysis in both continuous and discrete space-time 

and use a computer model to show the two give the same 

solution.  A linkage between quantum mechanics and gravity is 

gained by considering three energy density terms of the dark 

particle.  The resulting length scale, as solved by Friedmann’s 

equation, is identical to solution of its quantum length.   

Section 1) argues a black hole with the reduced Planck mass (a 

dark particle) has an arbitrary temperature and that it’s density 

explains dark energy.  Section 2) confirms that a dark particle’s 

energy is still in the form of black body radiation.  Section 3) 

solves the length scale of a dark particle from a continuous 

quantum derivation and explains the mechanism by which the 

dark particle cools. Section 4) validates the solution to the 

length scale derived in section 3) by modeling the diffusive 

process in discrete space-time.  Section 5) shows an identical 

solution to the length scale can also be derived from 

Friedmann’s equation when appropriate densities are 

considered.  Section 6) discusses other similar work and how 

dark particles might solve other open questions as well. 

1. MISSING ENERGY 

1.1 DUAL GAUSSIANS  

We begin by setting the context on a particle of mass m in 

equilibrium with a heat bath at temperature T.  We assume a 

particle is in the dual Gaussian ground state.   

         
 

        
 
  

 
  

      
 
   

            
 

      
 
  

 
  

 

    
 
    

Using the equipartition theorem on the kinetic energy 

[Feynmann 1965], one has 

           



And using Heisenberg’s Uncertainty equation [Feynmann 

1965], 

     
  

  

      
 

  

     
 

Making use of the equipartition theorem implies the particle is 

coupled to an ensemble of particles or heat bath [Gardiner & 

Zoller 2004].  The bath in this case is an external radiation field 

(for example the Cosmic Microware Background).  However as 

we will see the coupling between the dark particles and the heat 

back can be turned on or off with the presence or absence of 

neutral hydrogen atoms.  We will use the temperature at the 

time of last coupling, and the particle’s mass to define the width 

of the wavefunction.   

1.2 BLACK HOLES 

We will now apply these lengths to our understanding of black 

holes, specifically holes with a mass equal to the reduced 

Planck mass. 

    
  

   
 

A number of special conditions arise at this value of mass.  

First, the quantum limit,          is equal to a circle’s 

circumference with the Schwarzschild radius, Figure 1.   

   
 

   
           

Indeed this is a small cross sectional area for the black hole. 

Second, the Hawking temperature is equal to the mass of the 

black hole, 

           
   

    
                        

Third, it is not clear that the Hawking temperature is valid at 

this value of the mass.  Specifically Hawking stated in his 

seminal paper from 1975 [Hawking 1975], ―Eventually, when 

the mass of the black hole is reduced to      , the quasi-

stationary approximation will break down. At this point, one 

cannot continue to use the concept of a classical metric. 

However, the total mass or energy remaining in the system is 

very small.‖   

Even more recent derivations of Hawking’s work still 

breakdown at this mass [Barcelo et al 2011].  I will argue that 

when a black hole has the reduced Planck mass, the Hawking 

temperature breaks down because a secondary quantum 

boundary is greater than the Schwarzschild radius and it is this 

boundary that defines the near horizon’s surface gravity.  The 

length of the boundary is such that its surface 

gravity/temperature is arbitrary.  I will also argue that even 

though ―the total energy in the system is very small,‖ it has just 

the right density (given the history of our Universe) to explain 

dark energy. 

1.3 QUANTUM BOUNDARY 

As the event horizon is defined by quantum limit,   , the outer 

quantum boundary is defined by the square root of the 

position’s variance      .  If     defines the circumference of 

the boundary (like    defines the circumference of the event 

horizon), the radius of the outer boundary will be    , see 

figure 1. 

Figure 1: Event horizon and quantum boundary of black hole 

    
   
  

 
 

       
 

The surface gravity at radius   is [Hayward 1998], 

     
  

 

 

  
    

   

   
  

  

    
 

The effective temperature [Hawking 1975] for surface gravity at 

radius     will thus be, 

               
       

     
 
      

  
   

The width of the black hole’s wavepacket (which is set by the 

temperature of the heat bath) that defines the outer quantum 

boundary is just the right size to define a surface gravity such 

that the temperature is arbitrary and not a function of mass or 

other defining feature of the black hole.  The temperature is its 

own independent parameter of the black hole.  Thus I will call a 

black hole with the reduced Planck mass and arbitrary 

temperature a dark particle. 

When the mass of a black hole is greater than the reduced 

Planck mass, the quantum boundary,     is necessarily smaller 

than                and thus it is                that defines the 

surface gravity.  When the black hole is a dark particle it can’t 

lose any more mass lest it quantum limit will be larger than 

               and it will cease to be a black hole.  If the dark 

particle looses radiation it must shed its non-massive energy and 

thus decrease in temperature.  On the flip side if the dark 

particle is in a heat bath at a higher temperature than the dark 

particle, it will match that larger temperature (assuming a 

coupling mechanism is in place) without gaining mass.    

1.4 DARK ENERGY 

Now hypothesize that a local group of dark particle’s are able 

to exchange heat with the Cosmic Microwave Background when 

neutral hydrogen atoms or other sinks are nearby to capture the 

RS
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radiation from its gravitational binding but that they become 

frozen (constant temperature) when neutral hydrogen atoms are 

not nearby. 

This hypothesis rests on the idea that positive virtual particle 

that leaves its pair becomes trapped by the outer quantum 

boundary even if it escapes the event horizon unless a sink is 

around to capture it.  See figure 2.  With no sink the net energy 

to escape is zero.  However if a sink is around, like a neutral 

hydrogen atom, the sink can absorb radiation at one energy and 

release radiation into the dark particle at another energy, 

keeping it in thermal equilibrium.   

 

Figure 2: Without a coupling mechanism, the radiation can’t obtain an 

escape trajectory thereby not allowing the dark particle to cool.  

However with a hydrogen atom or other sink the dark particle can 
equilibrate with the background radiation field.  

During the dark ages, the time between decoupling and re-

ionization [Barkana & Loeb 2001], the Universe was filled with 

hydrogen atoms that provided the coupling mechanism between 

the dark particles and regular energy.  In these conditions the 

dark particles were coupled to the Cosmic Microwave 

Background (CMB).  However after re-ionization, the hydrogen 

was ionized and the dark particles and its associated radiation 

energy density became frozen.  The red-shift of re-ionization 

and the current temperature of the CMB provide an estimate of 

the temperature of the dark particles at the time of re-ionization 

where it remains constant up to today.    

                                          

If we know the temperature of the dark particles at re-

ionization, then we should have an idea for the total energy 

density that contributes to the Cosmological constant today.   

                    
  

  

       
 

    
 

Because we have estimates of today’s z value of re-ionization 

and today’s temperature of the CMB we can estimate the 

density,        .  The Lambda Cold Dark Matter model, 

    , provides a completely independent estimate of the 

density of dark energy,       [Liddle 2003], which we can 

estimate using the parameter,   , and today’s Hubble constant.  

                      
   

   
 

Using the 7 year Wilkinson Microwave Anisotropy Probe 

[Larson et al. 2010] as a source for our estimates Table 1 and 

Figure 3 shows how our model’s estimate of dark energy is 

higher by 17% but well within the confidence range defined by 

              . 

Table 1 Estimate and confidence rages of Dark Energy from the Dark 

Particles BBR model and the Lambda Cold Dark Matter model using 7 

year WMAP data 

 

Figure 3: Visualization of density of dark energy from two models 

1.5 INFLATION 

It is also supportive to examine how this theory holds up to the 

inflationary period just after the big bang.  The inflationary 

period that follows the grand unified period lasts for        

seconds and during this time, the scale factor of the Universe 

grows exponentially by a factor of       [Liddle & Lyth 

2000].  Assuming that dark particles where able to release heat 

thereby maintaining equilibrium with the rest of the Universe’s 

energy during the time of grand unification (immediately 

ω2

No coupling 
mechanism

Coupling mechanism 
through hydrogen atoms

Hydrogen atoms
ω1

4.0 6.0 8.0 10.0 12.0 14.0 1e-27 kg/m3

ρ(Dark Particles’ BBR)

ρ(ΛCDM)

Table 1 Low Average High 

        
        

5.22E-27 8.12E-27 1.21E-26 

       

          
2.725 2.725 2.725 

               
 

9.3 10.5 11.7 

      
        

6.21E-27 6.95E-27 7.74E-27 

  

 
  

       
  

68.5 71.0 73.5 

   0.705 0.734 0.763 



preceding inflation), but that once the inflation period began the 

dark particles became isolated, then the dark particles will have 

a constant energy density during inflation leading to exponential 

expansion.   

The theory also provides insights into reheating, the period after 

inflation.  If you imagine the dark particles were at the 

temperature of grand unification at the beginning of the 

inflationary epoch only to become isolated, the dark particles 

would remain constant during the inflation while the rest of the 

energy density in the Universe would cool by a factor of 

        .  If quarks, anti-quarks or gluons (which became 

available at the end of the inflationary period) are able to couple 

dark particles to the rest of the Universe’s energy (like we 

hypothesized neutral hydrogen atoms are able to do), heat could 

flow from the hot dark particles back into the rest of the 

Universe, reheating it.   

2. BLACK BODY RADIATION 

With the derivation of the Hawking temperature breaking down 

at the reduced Planck mass, the derivation of black body 

radiation is also in question.  However as we see below, a black 

hole with the reduced Planck mass still radiates a density of 

energy with the black body distribution. 

2.1 RESISTIVE FORCE 

We begin by assuming a quadratic potential energy term.  If the 

equipartition theorem and Heisenberg Uncertainty principle 

hold [Feynmann 1965] we can derive the potential energy term.  

We have for one dimension, 

       

From the equipartition theorem, 

              
   

 
 

       
     

  
 
   

 
 

If         and if          , one can deduce the potential 

energy and the associated force 

   
   

   
 

  
   

  
 

Where         . 

In section 3 we show how this force is related to kinetic motion.  

Further in section 5 we show this resistive force can also be 

derived from the self gravitational potential of the particle and 

thus only acts over the distance defined by the Schwarzschild 

radius.  Since the Schwarzschild radius is much smaller than the 

quantum step size of any particle we have experimental data on, 

we have never directly observed this effect. 

2.2 ENERGY DESNITY 

Pulling together the kinetic and potential energy terms for all 

three dimensions we have the energy  of the 3-D oscillator 

   
 

   
           

 

  
   

    
    

   

Again as the harmonic oscillator is in the ground state, we see 

our starting point with dual Gaussian wavefunctions is justified.  

Again solutions for position and momentum in the ground state 

are,   

         
 

        
 
  

 
  

      
 
   

            
 

      
 
  

 
  

 

    
 
    

Where      
           and    

       obey 

Heisenberg’s Uncertainty relation, and the Equipartition 

theorem [Feynmann 1965].   

Thus the particle’s wavefunction is isomorphic to a Wigner 

function of a point particle at           squeezed to assure 

the equipartition theorem holds for both the kinetic and 

potential energy [Walls & Milburn 1994]. We can solve for the 

probability distribution on   [Pan 2007]. 

           
    

      
  

   
      

The average energy of this distribution is the three dimensional 

ground state energy of the harmonic oscillator,         

                            .  However before we 

can associate this probability distribution with the internal 

radiation density, we must account for the fact that multiple 

photons can occupy the same state [Feynmann 1965].  Thus if 

 is the number of photons we have, 

         
     

 
 

  
 

 
 
 

 
 
          
   

 

  
    

 
            

 
   

 
 

  
 

 
 

And  

                    
 

 
    

      

      
  

    
      

To deduce the radiation density from the probability distribution 

on the photons, one must divide by the surface area at   , 

          and multiply by     times the power which in 

this case is    divided by one period of the harmonic oscillator, 

               

                  
  

       
                

 
   

     
 
    
      



Lastly sum over all states of photons M from 1 to ∞, and both 

degrees of polarization [Reif 1965] since all are possible. 

                                   

 

           

 

 
     

    
  

    
   

 

   

 
   

    
 

  
  

      
   

One will recognize the energy density of Black Body radiation, 

[Reif 1965].   

3. QUANTUM SOLUTION (CONTINUOUS SPACE-

TIME) 

3.1 FREE PARTICLE DIFFUSION 

We begin with the quantum diffusion of a free particle, which 

can be derived from the equations of motion [Gardiner & Zoller 

2004].  With zero force and        one can deduce, 

        
 

 
  

Calculating the variance and using Heisenberg’s Uncertainty 

          we have, 

              
  

 

 
  

     

      

3.2 RESISTIVE FORCE 

In section 2 we assumed a quadratic potential energy term and 

derived a resistive spring force.  Here we will derive the same 

force but from kinematic arguments.  If we look at the variance 

term that is linear in time from section 3.1 and compare it 

classical diffusion with a solution of                      .  
We see an associated diffusion constant of          which 

can also be derived from Einstein’s kinetic theory where 

          [Kubo 1966]. 

Exploring this diffusion constant further, we know   can also 

be represented as        where      .  If we consider 

that F is a viscous force retarding motion instead of driving 

motion then we have       . 

Consider the value of this classic linear diffusive term at      

    
 

 
  

  

     
 

Next rearrange the diffusion constant 

           
    

 
    

Replacing      and equating     to     we have, 

  
   

  
 

3.3 MODIFIED LANGEVIN EQUATION 

With a particle no longer free we must re-solve for the variance 

using the Langevin equation.  However contrary to the ordinary 

Langevin equation [Kubo 1966, Walls & Milburn 1994] we will 

change the assumption that the noisy driving force is 

uncorrelated with the particle’s location.  As we just derived, 

the force is anti-correlated with the position         .  The 

    equations of motion become, 

       
 

 
     

 

  
  

This equation can be used to solve        if one assumes the virial 

theorem [Feynmann 1965] where the average quadratic 

potential energy is equal to the average kinetic energy.  The 

initial condition                       is also assumed ensuring 

the equation’s boundary conditions obey Heisenberg’s 

Uncertainty.  With calculus and the chain rule, one has, 

      
  

     
    

      
           

  
    

This version of the Langevin equation has the familiar     term 

however it represents a stationary process where the ordinary 

Langevin equation is non-stationary.   

3.4 STATIONARY DIFFUSION 

The quantum solution from the modified Langevin presented in 

section 3.3 is very interesting for two reasons.  First off it has a 

finite asymptotic value which is what we would expect for a 

quantum solution to a black hole.  We would expect that a black 

hole has a finite width to it and the outward diffusive pressure is 

balanced by an inward gravitational pressure. 

Secondly we notice the asymptotic variance of position is twice 

that of      
 .  This represents the dark particle cooling.  As 

the particle diffuses out to       
  the temperature cools to 

    and the total energy in the oscillator goes from      to 

      . This is also where the particle gets the energy needed 

to radiate.  The energy transfers over to the radiation field when 

the dark particle’s wavefunction collapses as the photon is 

created.  After the photon releases, the dark particle begins to 

diffuse again now at temperature of    .   

To remain consistent with our analysis above, if the photon is 

not collected by a neutral hydrogen atom before the next cycle 

of the harmonic oscillator begins, the photon will be re-

absorbed, the dark particles’ position will become fuzzy again 

and it will regain its energy and maintain its original 

temperature  .   

4. QUANTUM SOLUTION (DISCRETE SPACE-TIME) 

4.1 DISCRETE SPACE-TIME 

Adding credibility to the modified Langevin equation, I 

simulate the outcome.  Discrete space-time has been around for 

a while [Forsythe & Wasow 1960] and is becoming even more 

important  [Mecklenburg & Regan 2011].  To derive the correct 

model and the correct parameters for the model we will start 

with what we know. 

4.2 STANDARD BERNOULLI PROCESS 



The standard Bernoulli process is thoroughly reviewed by Reif 

[1965] and Chandrasekhar [1943] .  In the standard Bernoulli 

process a particle steps to the left or steps to the right a distance 

   with probability       respectively at every time step   .  
To derive the spatial step size,   , we look at the variance as a 

function of the number of steps,  , and compare it to the 

continuous solution. 

     
       

From Dirac’s solution to the eigenvalue of the velocity [Dirac 

1958] of a particle we know,       , and since      , we 

have, 

     
         

From the continuous linear solution               one 

deduces, 

   
 

  
 

4.3 BERNOULLI PROCESS WITH RESISTIVE FORCE 

We can now proceed to modify the standard Bernoulli processes 

to account for the resistive force we found in the continuous 

case.  We will find this discrete solution is equal to the modified 

continuous Langevin equation.   

To begin with we need to match the continuous 1-D force,   
       with the ensemble average force experienced by the 

discrete case.  The ensemble average force felt in the discrete 

case is the probability the particle experiences a positive change 

in momentum times the impacted force       plus the 

probability the particle experiences a negative change in 

momentum times       .  We can solve for the probability   

as a function of   by examining the ensemble average discrete 

force on the particle felt at the location   during time  . 

                  
  

  
          

   

  
 

However before we can compare              to          

we have to account for a factor of 2 that arises because in the 

continuous case the force is constant but in the discrete case the 

force is delta function impact to the momentum.  As shown in 

figure 4 the distance a particle moves under the continuous 

force   is           , however the distance a particle 

moves under the discrete force           is 

              
   .  Thus we need to set             .   

 
Figure 4: Shows the difference between a continuous constant force and 

a discrete impulse force.  If the distances displaced are equal, the 

discrete force only need be half as strong.  
 

Solving for      we have, 

     
 

 
   

     

      
  

We can reduce this further since we know    and   .  Since we 

are dealing with the harmonic oscillator the only energy 

transition can be in multiples of the quantized energy of the 

oscillator,        .  Thus a change in momentum    must 

be equal to       ;     can also be replaced by       as 

described above. 

     
 

 
   

     

  
  

This is saying that the probability a particle steps to the right is 

a function of the distance the particle is away from the center 

position    .  We can see why the dark particle is stationary 

or why a photon released from the dark particle can’t escape 

unless it is a distance    away from the center.   

The best way to show how this works is through a model where 

we show the variance of the position is equal to that of the 

modified continuous Langevin equation. 

4.4 COMPUTER MODEL 

The following Matlab code shows the discrete model gives the 

same solution as the continuous modified Langevin.  See figure 

5 and 6 

G=6.67e-11;   %Constants 
hbar=1.05e-34; 
c=3e8; 
m=sqrt(hbar*c/8/pi/G);  %Mass 
dt=hbar/m/c^2;   %Time step  
dx=c*dt;       %Spatial step 
D=hbar/2/m;  %Diffusion constant 
kT1=m*c^2/72;    %Arbitrary Temperature #1 
kT2=m*c^2/97;     %Arbitrary Temperature #2 
tau1=hbar/2/kT1;    %Thermal time #1 
tau2=hbar/2/kT2;    %Thermal time #2 
t=0:dt:2*pi*max(tau1,tau2); %Time vector 
  
N=100000;    %Number of trials 
x1(:,1)=zeros(N,1);     %Initial conditions 
x2(:,1)=zeros(N,1); 
for k=1:length(t)-1 
     %Determine probability 
     B1=.5*(1-kT1*x1(:,k)/hbar/c);   
     B2=.5*(1-kT2*x2(:,k)/hbar/c); 
     %Sample the probability and step 
     x1(:,k+1)=x1(:,k)+dx*(2*floor(rand(N,1)+B1)-1);  
     x2(:,k+1)=x2(:,k)+dx*(2*floor(rand(N,1)+B2)-1); 
end 
  
figure(5) 
%Calculate variance from discrete model 
xvar1=mean(x1.*x1)-mean(x1).^2;   
xvar2=mean(x2.*x2)-mean(x2).^2; 
%Calculate variance from Langevin 
langevin1=2*D*tau1*(1-exp(-t/tau1));   
langevin2=2*D*tau2*(1-exp(-t/tau2)); 
plot(t,xvar1) 
plot(t,langevin1,'r') 

time

velocity

Constant Force

time

Discrete Impulse

δt δt

Fδt/m Fdδt/m

velocity



plot(t,xvar2,'g') 
plot(t,langevin2,'k') 
  
figure(6) 
sigma=sqrt(2*D*tau1);  %Asymptotic variance 
x=-4*sigma:dx/10:4*sigma;   %Position vector 
P=hist(x1(:,length(t)),x)/N;  %Calculate probability mass 
%Calculate probability density 
p=1/sqrt(2*pi*sigma^2)*exp(-x.^2/2/(sigma^2))*dx;  
plot(x,P) 
plot(x,p,'r') 

 

 

 

5. FRIEDMANN’S EQUATION SOLUTIONS 

We now show that by combining the energy density with three 

different equations of state,                  we arrive 

at the same solution as what was derived in both the continuous 

and discrete quantum solutions.  The solutions to Freidmann’s 

equation with the densities standing alone for two out of the 

three equations of state also correspond to the solutions to the 

linear and quadratic time terms of the variance when the particle 

is free.  We need to assume the particles comes as pairs such 

that we can define a general relativistic length scale   and a 

quantum mechanical length scale  . 

5.1 LENGTH SCALES 

We define   as twice the light time  , the maximum distance 

two particles can traverse in time  . 

      
  

   
 

We define   as the variance between the two particles.  If the 

two have independent wavefunctions we have 

         

Using these two definitions we will show that under three 

different equations of state   (the solution to Freidmann’s 

equation) will be equal to   (the variance of quantum diffusion).  

5.2 EQUATION OF STATE,       

First for the equation of state      , we have the energy in 

the 3-D oscillator 

   
 

   
           

 

  
   

    
    

   

We begin with the probability distribution on            

from section 2.2  

           
    

      
  

   
      

Since we are no longer talking about photons/bosons like above, 

but are talking about fermions we don’t have to account for 

multiple particles.  The average energy of this distribution is the 

three dimensional ground state energy of the harmonic 

oscillator,     .   

If we consider a volume      the energy density is 

          
    

      
 

  

     
 

The Freidmann equation when the density is dominated by this 

equation of state,       becomes,     

 
    

 
 

 

 
   

 
          

    

     
 

Solving for       

      
   

     

 
 

 
  

  
  

 
         

  

5.3 EQUATION OF STATE,        

In deriving the density and solution for this equation of state we 

turn to a derivation of Freidmann’s equation [Liddle 2003].  We 

will start by deriving the gravitational explanation of the 

resistive spring force.  Equating the average gravitational 

potential energy to        for 3 dimensions gives,  
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When           

    

 

         
 
           

 
 

Due to symmetry we can re-write       as 3     
  

          [Feynmann 1965] to arrive at, 

     

 
 
      

 

  
 

Plugging this back into the relationship between potential 

energy and force [Feynmann 1965] and with time constant 

         we have, 

   
  

  
   

  

  
 
    

 
  

  

  
 
        

 
  

      

 

 
        

 

  
  

   

  
 

When a particle moves within the space curved by the black 

hole, a resistive spring force is in play.  Here we see a 

gravitational explanation for the spring force.   

Going back to solve for   we have,   

           

 
 
     
 

 

Where    is constant.  With              
        and m the 

reduced Planck mass, the density is 

        
       
      

 

Freidmann’s equation when     and its solution are, 

 
    

 
 

 

 
   

 
             

      
     

 

      
   

     

 
               

  

Notice the solution of         is imaginary because of the 

positive curvature associated with this equation of state [Liddle 

2003].  Yet we still have         .  In the next two paragraphs 

we derive the holistic energy density,                which is 

always positive and thus                is real. 

The last term we need is a constant energy density,     .  

To solve for the constant density, we insert             

(which we show is the asymptotic value of the solution) into the 

density of the oscillator.   

                   
  

     
 
 
         

 

   
 

The solution to Freidmann’s equation with this density is 

exponentially increasing, however if we add this density term to 

our other two densities we see the solution is equal to the 

solution of the Langevin equation. 

                                    

       
 

  
 

  

       
 
      
       

 
        

 

  
  

With a little calculus the solution to Freidmann’s equation with 

this density is 

 
    

 
 

 

 
   

 
        

 

   
 
    
 

 
 

 

   
  

  

     
    

       
    

With              and the         , this is re-written, 

   
          

  
              

  

We see the solutions to Friedmann’s equation and the equations 

of quantum diffusion behave in the same way.  It is interesting 

to note that the density vanishes at the asymptotic value 

          so we don’t have to worry about this fermionic 

density contributing to the cosmological constant. 

6.0 DISCUSSION 

A similarity one might find with other current work would be 

Primordial Black Hole Remnants (PBHR).  Chen uses PBHRs 

to nicely explain dark matter [Chen 2004].  Interpreted here the 

density of state is determined by how the density scales as a 

function of the length scale. We have suggested that when the 

dark particles cannot couple to ordinary matter the temperature 

and thus density is frozen, implying a density of state of 

     and explaining dark energy.  However if the dark 

particles are near neutral hydrogen atoms (i.e. near galaxies), 

allowing them to couple and release heat, the density of state 

could be positive and the acceleration equation would be 

positive, more in line with dark matter [Liddle 2003].   

A test of the hypothesis that if neutral hydrogen atoms are near, 

dark particles act like more like dark matter than dark energy 

would be to look for cosmological observations where we 

observe either bountiful or scanty amount of neutral hydrogen.   

Perhaps Virgo21 (where we observe neutral hydrogen atoms 

and possibly a high density of dark matter) [Minchin et al. 

2007] or global clusters (where any neutral atoms would be 

ionized and almost no dark matter) [Mashchenko & Sills 2005] 

could serve as a first validation.   

A further validation of this hypothesis might be experimentally 

possible on Earth.  A team led by Perl [Adler & Mueller & Perl 

2011] has suggested two identical side by side atom 

interferometers could reveal a dark energy density by measuring 

the time it takes for atoms to fall through gravity, respectively 

between the two interferometers.  One could build on this 

approach and artificially alter the density of the dark particles 

by surrounding each interferometer in a bath of neutral 



hydrogen atoms (or other suitable sink that is not dangerous at 

high temperatures).  One bath could be kept at a low 

temperature and the other at a high temperature.  If the bath was 

large enough to allow the neutral hydrogen and the dark 

particles to couple and exchange heat before the dark energy 

reference frame moves past the interferometers [Adler & 

Mueller & Perl 2011], the density of dark particles that interacts 

with the falling atoms would be different between the hot and 

the cold interferometers and the difference would be measured.   

Questions still remain, like the exact mechanism for how the 

dark particle exchanges heat, and more analysis is needed for 

dark particles to fully answer the questions of dark energy 

[Peebles & Ratra 2003, Green 2004] or for that matter other 

open questions like dark matter [Bertone & Silk 2010].  Yet this 

initial brief report is intended to set the physical parameters and 

give guidance for how the forces of gravity and quantum 

mechanics work together and have complementary solutions in 

a simple straightforward way. 

While it is not possible to artificially create a particle with the 

reduced Planck mass, it would explain why prior experiments 

have been unable to locate the missing energy. 

As a note, the dark particle was built out of research in Finite 

Difference Time Domain (FDTD) modeling of diffusive motion 

[Forsythe & Wasow 1960, Haerendell 1968].  By noticing a 

connection between Bernoulli’s process [Reif 1965, 

Chandrasakhar 1943] and black body radiation [Reif 1965] it 

was possible to derive the continuous version of the theory.  

Application to Friedmann’s equation followed a need to explain 

the resistive spring force that keeps the particle stationary.  

When the theory suggested a density of black body radiation 

was hidden (because the cross section of the dark particle is on 

the order of the Planck length) the tie to dark energy was made. 

Mountain View, CA – March 2011 
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