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ABSTRACT 

―Dark‖ particles, a candidate theory to explain dark matter and dark energy, are 

hypothesized.  A change in one of the assumptions of Langevin’s equation of statistical 

mechanics (namely making the noisy driving force anti-correlated with the particle’s location 

instead of un-correlated, justified by the gravitational potential of the particle) results in an 

exact solution shared by Freidmann’s equation of general relativity.  The anti-correlated force, 

or spring force, places the ―dark‖ particle in the ground state of the harmonic oscillator, 

consistent with the interpretation of it being the vacuum energy density.  A density of black 

body radiation is found gravitationally bound to the ―dark‖ particle.  When hydrogen atoms 

are present (e.g. near Galaxies) the ―dark‖ particles can exchange heat with ordinary energy, 

making the radiation pressure positive,      , similar to dark matter.  But when no coupling 

mechanism is available, the ―dark‖ particles’ temperature is frozen with a negative radiation 

pressure,     .  If the temperature of ―dark‖ particles in intergalactic space was frozen after 

re-ionization (       when hydrogen atoms were lost), the bound BBR density is well within 

the tight confidence levels of the accepted relic density of dark energy. 

I.  INTRODUCTION 

A. Background  

Cosmological observations early last century indicate 

the Universe is expanding.  These observations came 

by measuring the speed at which objects are moving 

away from Earth and noticing the strong correlation 

with their distance, known as Hubble’s Law.  

However it was not until the end of the last century 

when we had observations of Type Ia supernova that 

indicated the Universe is also accelerating [Liddle 

2003].   

The most popular explanation for these findings is an 

elusive energy density with an equation of state, 

       [Peebles & Ratra 2003] coined ―Dark 

Energy‖ making up ~73% [Larson, Dunkley, et al. 

2010] of the energy of the Universe.  Despite many 

attempts to explain dark energy’s origin [Rugh & 

Zinkernagel 2002], those attempts have fallen short 

[Peebles & Ratra 2003, Greene 2004]. Yet there are 

still many theories under review [Papantonopoulos 

2007]; with the most accepted being the Lambda 

Cold Dark Matter model,      where the Lambda, 

the Cosmological Constant provides a negative 

pressure      [Peebles & Ratra 2003].   

Another set of observations (that seem to be 

independent of the expansion and acceleration 

observations) show a discrepancy between the 

amounts of luminous matter we can visually account 

for and the amount of mass we can infer from 

gravitational effects, such as speed of galaxy rotation 

[Liddle 2003], even if we triple the number of stars.  

―Dark Matter,‖ the explanation for this discrepancy, 

is a positive pressure energy density that clumps near 

other baryonic matter, is devoid of interactions with 

photons [Liddle 2003], and makes up ~22% of the 

energy of the Universe [Larson, Dunkley, et al. 2010].  

We hypothesize that under different conditions 

experienced in the Universe, ―dark‖ particles can 

explain both dark energy and dark matter.  A ―dark‖ 



particle is hypothesized by introducing a spring force 

that acts to keep the particle in the ground state of the 

harmonic oscillator.  Justification for the ―dark‖ 

particle being the vacuum energy density is found by 

uniting Langevin’s equation from statistical mechanics 

(which governs the microscopic diffusion of particle) 

and Freidmann’s equation from general relativity 

(which governs the gravitational length scale of a 

system) through a solution that is common to both 

equations. 

We will see that despite the high gravitational fields 

of the ―dark‖ particle, which come from it carrying 

the reduced Planck mass, the effects are cancelled by 

curvature of space around the particle.  Yet a hidden 

(bound) density of black body radiation remains 

who’s behavior mimics that of both dark matter and 

dark energy depending on if the temperature of the 

black body radiation is variable or constant, 

respectively. 

B.  Ansatzs and Definitions 

Two Ansatzs are used in this paper.  The first one 

was already introduced, i.e. the anti-correlated spring 

force.  Defining the proportionality of the spring force 

is the classical mass times acceleration (i.e. 

displacement over the time squared).  

        
   

  
 

The time   will later be shown equal to one over twice 

the temperature by applying the equipartition theorem 

to the energy. 

The second Ansatz is ―dark‖ particles come in pairs.  

This assumption is used to define two length scales, a 

general relativistic length scale,  , and a quantum 

mechanical length scale,  .    is defined by the 

distance the pair of particles can cover if they travel 

in opposite directions at the speed of light for time  . 

      

  is defined by the square root of the variance of the 

distance between pair.  As long as the pair has 

independent wavefunctions we can write, 

              

We will find that when the mass of the ―dark‖ particle 

is the reduced Planck mass, these two length scales 

will be equal if   is the solution to Freidmann’s 

equation and   is a solution to Langevin’s equation. 

II.  DERIVATION OF SOLUTION 

A. Energy Density 

Before we solve the Freidmann equation, we need to 

first derive the energy density.  While a thorough 

derivation is available in Appendix A, a 

straightforward derivation is here. 

With the introduction of a spring force,         

        
   

  
 

And it’s associated potential energy,  

    
 

 
 
 

 
 
 

 

We find the harmonic osscilator with 1-D groud state 

energy,     [Feynman 1965]. 

    
   

 
 
 

 
 
    

 
 

 

  
 
  

 
 

In Appendix A we find          by using the 

equipartition theorem to show         ; leading to 

        

Looking at all three dimensions         we have,  

             

This shows us that with the introduction of the 

proposed spring force, the particle has just the right 

amount of thermal energy (not more, nor less) to exist 

in the in the ground state of the harmonic oscillator.  

Being in the ground state is consistent with an 

interpretation of this density as the vacuum energy. 

Diving by the volume in question,     , the energy 

density is,  

  
  
 
 
      

 

    
 

  

     
 

In Appendix B, we show the details how this energy 

density has three terms; one where the temperature   

is variable with an equation of state      , one 

where the temperature    is constant with an  



equation of state     , and a third term with 

equation of state        that can be traced back 

to the curvature of space.  This third term is from the 

gravitational potential energy and is shown to be the 

source of the resistive spring force.   

We confirm the correct form for each term of the 

density by showing the corresponding solution to 

Friedmann’s equation is shared by a solution to 

Heisenberg’s uncertainty equation when the mass of 

the ―dark― particle is the reduced Planck mass.   

With details found in Appendix B, the resulting 

holistic density for ―dark‖ particles is, 

         
  

       
 
      
       

 
        

 

  
  

B. Friedmann Equation 

(General Relativistic Solution) 

Directly substituting        into Friedmann’s equation, 

 
    

 
 

 

 
  

         
 

     
        

 
      

 

  
 

The three terms have an equation of state,   
 

 
  

 

 
    respectivly.  This equation is easily solved.  

    

 
  

 

   
 
    
 

  

With a little calculus the solution is 

   
  

     
    

       
 
   

With              and the diffusion constant from 

appendix B,         , this is re-written, 

           
  

     

C.  Langevin Equation  

(Statistical/Quantum Mechanical Solution) 

The Langevin equation begins with Newton’s 2nd Law 

(the force equation) with a resistive force proportional 

to the velocity and a noise driving force [Kubo 

1966]. 

       
 

 
            

In the classical case        is uncorrelated with x.  

However here the force is anti-correlated with x and 

is proportional to the mass times the acceleration 

where acceleration is the change in position over the 

change in time squared.   

               
   

  
 

       
 

 
     

 

  
    

Detailed in Appendix B we have,  

              
  

   

Where C is a constant of integration. 

Again we break from the classical derivation in the 

initial condition,                 .  Classically this initial 

condition is zero, however this would lead to a trivial 

result.  Plus we want the Langevin equation to be 

quantum mechanically correct and obey the 

Heisenberg uncertainty relation. 

                 
     
 

 
 

  
 

            
 

  
 
  

   

Calculus and substitution of the diffusion constant, 

         completes the derivation, 

                
         

  
    

              
         

  
    

We can clearly see that   (the solution to Langevin’s 

equation) is equal to   (the solution to Freidmann’s 

equation, giving justification that ―dark‖ particles 

obey both statistical & quantum mechanics and 

general relativity in the same way. 

III.  BLACKBODY RADIATION 

 A.  Balanced (Zero) Density 

One amazing feature of the density inclusive of all 

three terms is that it approaches zero as time passes.  

When time first starts out, the density is huge given 



the inverse dependence on the fourth power of the 

length scale. 

         
  

       
 
      
       

 
        

 

  
  

However at     asymptotic value the three separate 

densities perfectly cancel each other. 

   
          

         

One might ask however if this energy density is a 

candidate for the missing energy of the Universe: i.e. 

dark matter under the the temperature is variable 

where       [Liddle 2003]; and dark energy when 

the temperature is constant where      [Peebles & 

Ratra 2003].  The answer is not directly.  As we just 

argued the density approaches zero as time passes.  

However indirectly we find that the strong local 

gravitation fields produce a radiation density of 

bosons that separately adds to the density.   

B. RADIATION FIELD 

Due to the high mass of the ―dark‖ particle, it will be 

dominated by gravitational effects if its charge is less 

than,                      .  In this environment, 

one would expect the particle to be coupled to a 

radiation field [Hartle & Hawking 1976]; and this is 

what is found (as detailed in appendix C).   

We implicitly assumed in the beginning of the paper 

that the dark particles have a non-zero mass.  

However a density of photons will have zero mass.  

In this case only the first term in the ―dark‖ particle 

energy density remains. 

           
  

        
 

Furthermore when the probability distribution on the 

energy of the harmonic oscillator hypothesized in 

appendix A is associated with bosons instead of 

fermions (where multiple particles can occupy each 

mode), the density needs to be summed over these 

multiple states.  Doing so and further accounting for 

time dilation and red-shift effects of radiating in the 

high gravitational fields of the particle, the resulting 

radiation density bound by the gravitational fields is 

exactly the black body distribution (as detailed in 

appendix C).  When     is the temperature of the 

radiation trapped by the dark particles we have:  

                
   

    
 

  
  

    
 

   
   

                           
 

 

 
         

 

      
 

In normal black body radiation, a macroscopic cavity 

provides the confinement of the radiation [Reif 1965].  

Here it is the gravitational effects from the mass of the 

particle that confines the radiation as illustrated in 

figure 1 below.   

 

Figure 1 – Black Body Radiation trapped within the gravitational 
potential defined by the Schwarzschild metric. 

IV. DARK MATTER AND DARK ENERGY 

The density and length scales discussed above are 

associated with individual dark particle pairs.  

However with their theoretical derivation behind us 

we can get to a discussion of their application to the 

open questions of dark energy and dark matter by 

extrapolating to the density and length scale of the 

Universe.  

We hypothesize that under different conditions 

experienced in the Universe, dark particles can 

explain both dark energy and dark matter. 

A. Two Regimes 

Now hypothesize that a local group of dark particle’s 

are able to exchange heat with the local surroundings 

when hydrogen atoms or other sinks are nearby to 

capture the radiation from its gravitational binding.  

In this case the temperature of the dark particles is 

variable and thus inversely proportional to the length 

scale of the local Universe leading to an aggregate 

energy density local to the hydrogen atoms with an 

equation of state,      . 



Dark particles randomly walk as they exchange heat 

with available local hydrogen atoms, thus allowing 

the temperature of its trapped radiation to equilibrate 

with the external radiation field.  Figure 3 below is 

an artist rendition of what this process might look like. 

However when the dark particles are isolated away 

from any sinks, no radiation can escape and the dark 

particles radiation has no way to release heat or 

change their temperature.  In this case the particles’ 

radiation density is constant and the equation of state 

is     .  The total energy scales linearly with the 

volume (which is exponentially increasing) as work is 

done on the system as it expands.  The radiated 

photons in turn exponentially generate new dark 

particles to fill the space as expressed in Figure 3. 

 
Figure 3 – Artist radiation of “dark” particles with constant 
temperature 

B. Dark Energy in Our Universe 

(Constant Temperature Regime) 

During the dark ages, the time between decoupling 

and re-ionization [Barkana & Loeb 2001], the 

Universe was filled with hydrogen atoms that 

provided the coupling mechanism between the dark 

particles and regular matter.  In these conditions the  

dark particles were coupled to the Cosmic 

Microwave Background (CMB).  However after re-

ionization the hydrogen was ionized and the dark 

particles and its associated radiation energy density 

became frozen.  The red-shift of re-ionization and the 

current temperature of the CMB provide an estimate 

of the temperature of the dark particle before they 

moved into the dark energy regime after re-

ionization.    

                                      

If we know the temperature of the dark particles at re-

ionization, then we should have an idea for the total 

energy that contributes to the Cosmological constant.   

                    
  

  

       
 

    

 
  

  

                            
 

    

          

Because we have estimates of today’s z value of re-

ionization and today’s temperature of the CMB we 

can estimate the density,        .  Without going 

into the details, the Lambda Cold Dark Matter model, 

    , provides a completely independent estimate 

of the density of dark energy,       [Liddle 2003], 

which we can estimate using the parameter,   , and 

today’s Hubble constant.  

                      
   

   
 

The source of our estimates will be from the 7 year 

Wilkinson Microwave Anisotropy Probe [Larson, 

Dunkley, et al. 2010].  However we must keep in 

mind that these estimates are best fit parameters and 

come with confidence ranges.  The 68% confidence 

ranges and estimates are compiled below in Table 1 

and shown in Figure 1 for the Dark Particles BBR 

model and the Lambda Cold Dark Matter model. 

 Low Average High 

  

Low Average High 

        
        

5.22E-27 8.12E-27 1.21E-26 
 

      
        

6.21E-27 6.95E-27 7.74E-27 

       
          

2.725 2.725 2.725 
 

  

 
  

       
  

68.5 71.0 73.5 

               

 
9.3 10.5 11.7 

 
   0.705 0.734 0.763 

Table 1 Estimate and confidence rages of Dark Energy from the Dark Particles BBR model and the Lambda Cold Dark Matter model using 

7 year WMAP data 

Figure 2 – Artist radiation of “dark” particles with variable 
temperature 



 

Figure 2 Visualization of estimate and confidence rages of Dark Energy from the Dark Particles BBR model and the Lambda Cold Dark 

Matter model using 7 year WMAP data 

With this development we can explain the previous 

      discrepancy between theory and observation.  

In previous theory the energy cutoff was set at the 

Planck temperature, however we see that if ―dark‖ 

particles are the cause of vacuum density there is a 

temperature associated with that density.  In the case 

of our Universe, that temperature was frozen in at re-

ionization which is      times smaller than the Planck 

temperature.  As the density is to the fourth power of 

temperature, the discrepancy is explained. 

It is also supportive to examine how this theory holds 

up to the inflationary period just after the big bang.  

The inflationary period that follows the grand unified 

period lasts for        seconds and during this time, 

the scale factor of the Universe grows exponentially 

by a factor of      [Liddle & Lyth 2000].  Assuming 

that dark particles where able to release heat thereby 

maintaining equilibrium with the rest of the Universe’s 

energy during the time of grand unification 

(immediately preceding inflation), but that once the 

inflation period began the dark particles became 

isolated, then the dark particles will have a constant 

energy density during inflation leading to exponential 

expansion.   

The theory presented here allows us to be precise in 

the relationship between the temperature of Grand 

Unification and the inflation ratio during the inflation 

period.  Plugging in accepted estimates of the 

duration, temperature and inflation ration we find it is 

consistent [Liddle & Lyth 2000]. 

               

              
      

    
        

 

      
  
 

The theory also provides insights into reheating, the 

period after inflation.  If you imagine the dark 

particles were at the temperature of grand unification 

at the beginning of the inflationary epoch only to 

become isolated, the dark particles would remain 

constant during the inflation while the rest of the 

energy would cool by a factor of      
 
.  If quarks, 

anti-quarks or gluons (which became available at the 

end of the inflationary period) are able to couple 

dark particles to the rest of the Universe’s energy, 

heat could flow from the hot dark particles back into 

the rest of the Universe, reheating it.   

C. Dark Matter in Our Universe 

(Variable Temperature Regime) 

After re-ionization, the majority of the dark particles 

became isolated and the temperature was frozen in 

as discussed above; however the argument continues 

for dark matter in local regions near other baryonic 

matter.  For example, the dark particles near galaxies 

still to this day has have access to neutral hydrogen 

or other sinks that allow the dark particle to have an  

equation of state,     , or perhaps even       

if a preponderance of hydrogen atoms (or other 

sinks) are available.   

If       , the Freidmann acceleration equation 

shows the gravitation effects of these dark particles to 

be positive resulting in attractive gravity [Liddle 

2003].  If this environment were experienced in our 

Universe, it would be an explanation for dark matter 

and why dark matter clumps near other baryonic 

matter. 

We have an observation of a region of space with a 

preponderance of neutral hydrogen, VIRGOI21, 

where we can test this hypothesis.  In this case a 

preponderance of neutral hydrogen would imply a 

preponderance of dark matter, which we see.   



We can go even further by using this theory to 

estimate the temperature of the dark particles (which 

would be in equilibrium with the neutral hydrogen 

atoms).  First the gravitational energy density for the 

cloud is found by taking its theorized gravitational 

mass of the cloud and dividing by its volume.  

Minchin et al. [2007] estimate the mass of the cloud 

at       solar masses by looking at the clouds effects 

on a nearby system and other considerations.  The 

actual volume of the cloud is not available, but it is 

argued that the cloud is a spinning disk which is seen 

side on with a radius of       .  If the width of the 

disk is 1/3 the radius, the mass density is 

     
 

     
 
  

      
  

  
 

 Using the expression for the energy density of dark 

particles’ radiation we have 

             
         

 

      
 

The temperature of the hydrogen cloud needs to be, 

T=~1000 Kelvin and in equilibrium with the dark 

matter particles for the density of the radiation 

associated with the dark particles to be equal to 

observed and estimated density of VIRGOI21.  While 

the Hydrogen 21 line does not provide a precise 

estimate of the temperature of the hydrogen atoms, 

the temperature must be greater than a few tens of 

Kelvin to radiate and less than a few thousand Kelvin 

to remain neutral [Minisch 2010].  Fortunately, we 

find an order of magnitude consistency. 

The opposite extreme also provides insight.  For 

example Globular Clusters provide a region of the 

Universe where starlight is very prevalent.  In this 

case we would expect any atoms, or other loose 

baryonic matter to be fully ionized and thus not able 

to provide the coupling mechanism to allow the local 

―dark‖ particles to cool.  In this example the energy 

density of dark particles would remain constant, the 

equation of state would be w = -1 and we would not 

see the effects of any additional positive pressure.  

Again if this reasoning is correct, it could explain 

why we don’t measure any dark matter within 

Globular Clusters (Mashchenko & Sills 2005). 

Given that current attempts to discover dark matter 

particles as WIMPS or MACHOS are looking at 

either way too small an energy scale or way too big, 

respectively, we have not had much luck in finding 

observational evidence of dark matter.   

V. CONCLUSION 

1. Recap 

A framework and correct values for the physical 

parameters necessary to join Freidmann’s equation to 

Langevin’s equation and Heisenberg’s Uncertainty 

equation is presented.  These equations leverage 

existing accepted models of the Universe.  

Mathematics then shows us how these models of 

general relativity and quantum and statistical 

mechanics share a unique solution.  Astrological 

observation is then used to test the hypothesis that this 

theory explains the behavior and magnitude of dark 

matter and dark energy. 

The only Ansatzes used are 1) a spring force that 

resists motion and 2) dark particles coming as pairs.   

Given that this simple development requires no major 

change to quantum mechanics or general relativity 

and has the potential to explain dark matter or dark 

energy, more investigation is justified under Occam’s 

razor [Cover & Thomas 1991].   

2. Discussion 

This is only the beginning as much more investigation 

is needed. For example, Bertone and Silk [2010] 

outline a list of questions that a dark matter particle 

must answer before it becomes a good candidate,‖ 

(i) Does it match the appropriate relic density? 

(ii) Is it cold? 

(iii) Is it neutral? 

(iv) Is it consistent with Big Bang nucleosynthesis 

(BBN)? 

(v) Does it leave stellar evolution unchanged? 

(vi) Is it compatible with constraints on self-

interactions? 

(vii) Is it consistent with direct DM searches? 

(viii) Is it compatible with gamma-ray constraints? 

(ix) Is it compatible with other astrophysical 

bounds? 

(x) Can it be probed experimentally?‖ 

Some of these questions are already answered, like is 

it consistent with direct DM searches, while other 

questions are still to be answered by further research.   
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APPENDIX A – ENERGY DENSITY AND 

PROCESS 

This analysis hypothesizes that a ―dark‖ particle 

comes into existence with its pair and the two will 

independently diffuse in space in each of the three 

position dimensions.  To start with, the magnitude 

squared of the wavefunction will be the Gaussian 

distribution 

         
 

      
  

 
  

       

We can now calculate the distribution on the 

momentum   ,   ,and   .  The distribution on    will 

also be a Gaussian with a variance that satisfies the 

Heisenberg uncertainty principle [Shankar 1994]. 

     
  

  

      
 

            
 

       
  

 
  

 

    
 
    

Thus the probability distribution on   and    (with   & 

  and    &    being respectively equal), will be the 

Gaussian distribution with mean zero and variance 

      and      
  respectively.   

The total energy of the particle will have both position 

and momentum components.  The additon of the 

kinetic energy should be familiar      
 

  
    

 .  

However there is also a potential energy term 

    
 

 
  
 
 
 
 resulting from the inertial mass.  

Assuming the particle is at rest relative to a reference 

frame, the particle will originate at rest and begin to 

move a total displacement, x in time  .  From 

Netwon’s second Law [Newton 1995] the force on 

the particle will be 

              
  

  
  

  
  
  

 
  

    
 

With the particle being at rest on average we can 

look at Newton’s third Law [Newton 1995] or stating 

Newton’s first Law [Newton 1995] backward, i.e. 

given a particle at rest, the sum of the forces acting 

on the particle is zero, we have 

                   
   

    
 

Here we see Hook’s Law which has an associated 

potential energy     
 

 
  
 
 
 
 leading to the harmonic 

osscilator with 1-D groud state energy,     [Feynman 

1965]. 

    
   

 
 
 

 
 
    

 
     

Considering the   and   dimensions as well, we are 

led to the three dimensional harmonic oscillator. 

                               

      

          
 

 
 
 

 
 
 

 
 

  
    

  
 

 
 
 

 
 
 

 
 

  
    

 

 
 

 
 
 

 
 
 

 
 

  
    

  

If we assume the process is ergodic and that the 

particle is at a equilibrium temperature   the 

equipartition theorem can be evoked where, the 

average energy is equal to       for each quadratic 

dimension [Feynman 1965]. 

 

 
 
 

 
 
          
 

 

  
    

 
            

 
   

 
 

Since the average of   and    is equal to zero, the 

average of    and   
  is equal to the variance       

and      
  

     
        

      
  

      
 

  
 

    
 

       
     

 
 



After   seconds, the particle will be found in phase 

space in each of the three dual dimensions:       , 

      , and       . 

Given the relationship              and with 

      ) as above, the distribution on    is [Pan 

2007], 

            
 

         

 
   
         

Thus from the probability distributions on  ,  , and   

given above the distribution on   is derived 

             
 

      
 
    
       

Fortunately the distribution on    , given   , 

  ,and    above, is the same 

                
 

       
 
     

        

Since   is simply the sum of the independent 

variables   ,   ,    and    ,    ,     we can solve 

for the distribution on   as the convolution of the 

other distributions [Bracewell 1986]. 

                                      

        

         
    

      
  

   
      

To find the average energy density, integrate over 

frequency and divide by the volume of space that the 

particle and it’s pair could possibly fall within.  The 

volumes should be the space a photon can traverse in 

time   in either direction, i.e.        

  
 

  
  

 

 
      

 
 
 

  
  

 

 
    

      
  

   
     

        
 
      

 

    
 

APPENDIX B – SOLUTIONS 

1. Equation of state       

a. Quantum Mechanical Solution 

Solving for      begins with the Heisenberg 

uncertainty relation [Shankar 1994]. 

                                
 

 
 

Solving the differential equation gives the known 

result of quantum diffusion as studied in [Belavkin 

2005, Nelson 1966]. 

                             
 

 
   

             
 

 
  

 
 

 

Leading to the quantum mechanical length scale, 

                    
  

 
  

 
 

 

This diffusion is also called imaginary diffusion as it 

can be derived by taking the quantum mechanical 

kinetic energy Hamiltonian and making a Minkowski 

transformation to imaginary time.   

  
  

  
 

  
 

  
  

  

  

  

   
 

     

 

  
 

 

  

  

   
 

  
 

  
 

D is also be derived from Einstein’s kinetic theory 

[Kubo 1966]. 

       
 

 
    

 

      
    

 

  
 

Plugging into the variance we have 

          
      

 

 
   

b. General Relativistic Solution 

Solving for   when the temperature is variable and 

inversely proportional to the length scale we can 

write the density as, 

     
  

        
 



Simple calculus solves the Freidmann equation when 

the density is dominated by this equation of state, 

     .    

 
    

 
 

 

 
   

 
     

    

        
 

Solving for       

      
     

 
 

 
  

   

The above is the general relativistic solution for the 

scale factor of one particle pair.   

Equating the general relativistic length scale,     , to 

the quantum mechanical length scale,     , solves for 

the square of the mass of the particle. 

   
  

   
 

The obvious solution is the positive reduced Planck 

mass.  This solution is interesting as a fundamental 

particle with this mass simplifies many of the 

expressions in general relativity [Einstein 1956].   

2. Equation of state      

a. Quantum Mechanical Solution 

In this regime the temperature is constant and we can 

write 

   
 

     
 

In this case we have,  

      
  

 
   

 
 

     

And 

        
 

 
 
  

   
 

 
 

     

Where      is a function to be determined.  Thus we 

have 

              
  

Solving the differential equation we have, 

      
  

 
   

 
 

 
 

    
 

      
 
    
 

  

b. General Relativistic Solution 

To solve the dual solution to Friedmann’s equation we 

need to solve for the value of the constant density.  

We do so by directly inserting    which can be 

evaluated by taking the solution of   from the   
 

 
 

solution evaluated at   . 

    
  

 
 

     
 

      
 

        
  

     
 
 

With this replacement and substituting in the reduced 

Planck mass, the Friedmann equation becomes  

 
    

 
 

 

 
   

 
  

      
 

  
 

Solving for      and inserting    at     yields, 

     
 

      
 
    
 

  

Which is equal to     . 

3. Equation of state    
 

 
 

a. Quantum Mechanical Solution 

The quantum diffusion described above in the first 

term has a variance that is linear in time; A second 

type of quantum diffusion occurs due to multiple 

frequencies evolving at different rates.  While this 

derivation will follow the method outlined by Bohm 

[1951], the precise result is found in Shankar 1994]. 

      
 

       
 

  
 

  
 

    
 
 

                           
 

  

    

Where 

      
  

 

  
 



Solving the integral and taking the magnitude 

squared results in a probability distribution with a 

variance that is grows in quadratic time. 

          
 

        
    
 

   

  

 
  

      
    
 

      

Considering only the quadratic term            
  we 

have 

           
     

    
 

   

b. General Relativistic Solution 

Using a variation of the derivation of Friedmann’s 

equation as given by Liddle [2003], we equate the 

average gravitational potential energy of a sphere 

with radius   to the three dimensional potential 

energy of the harmonic oscillator with        per 

degree of freedom hypothesized in appendix A  

                      
    

 

         
                             

     
 

 

When                

    

 

         
 
            

    

 
 

We can re-write       in terms of our length scale where 

          

                               
   

 
 

If the temperature is kept constant at    we can re-

write this in the form of the Freidmann equation. 

 
    

 
 

 

 
   

 
        

     
 

 
 

 
 
 

 

It is not yet clear how to handle the negative sign 

(however later when        is added to the other 

densities it all balances out and the solution is real). 

   
      

 
  

Looking at the absolute value we have as we should, 

                             
      

This regime is interesting as it provides the 

explanation for the hypothesized spring force. 

   
 

  
       

 

  

            
 

 

 
         

 
    

     
 

 
 

 
 
 

   

Plugging in for the magnitude of         evaluated at 

           we derive         from appendix A 

and thus validate our 1st Ansatz. 

         
 

  
  

The thermal energy curves the space around the 

particle which provides the resistive spring force 

which places the ―dark‖ particle in the ground 

(vacuum) state. 

4. Holistic Solution 

a. Langevin’s Statistical Mechanics Solution 

The Langevan equation begins with the force 

equation with both a resistive force that opposes and 

is proportional to the velocity and a noise driving 

force [Kubo 1966]. 

       
 

 
            

Einstein’s relation can be used to show that   

       as we defined above [Kubo 1966].  

Multiplying by x and using the product rule of 

differentiation yields, 

        
 

  
               

 
  

 

 
              

With the substitution of the spring force, 

               
   

    
 

 
 

  
         

 

 
             

   

    
 

Taking the time average and using the equipartition 

theorem [Feynman 1965] on the kinetic and potential 

energy leaves, 



 
 

  
               

 

 
                    

              
  

   

Setting the initial condition to obey the Heisenberg 

Uncertainty equation, 

                 
 

  
 

            
 

  
 
  

   

From here the rest of the derivation is the same as the 

classical Langevin derivation 

 

  
                     

 

 
 
  

   

                
   

 

 
 
   

    
 

 

 
 

 
     

  
   

        
  

    

b. General Relativistic Solution 

Solution provided in main body. 

APPENDIX C – BLACK BODY RADIATION 

The energy density in appendix A was related to 

fermions.  In the fermions’ case, there can be only 

one particle per quantum state.  However radiation 

can have more than one particle per quantum state.  

The energy will be radiated by a photon of energy 

  ; since there can actually be M photons per mode 

(as a photon is a boson) the total energy is    .  

Again enlisting the help of the equipartition theorem, 

we solve for M [Feynman 1965]. 

           

 
 

 
 
 

 
 
 

 
 

  
    

  
 

 
 
 

 
 
 

 
 

  
    

 
 

 

 
 
 

 
 
 

 
 

  
    

  

         
     

 
 

  
 

 
 
 

 
 
          
   

 

  
    

 
            

 
   

 
 

     
  

     

 
 

      
   

      
 

  
  

    
 

Plugging these into our equation for the probability 

the energy is  ,                  

                
      

      
  

    
      

Next to find the density we need Poynting’s theorem.  

The energy    built up by the particle’s diffusion is 

transferred to the photon field every   seconds.  As 

the radiation moves away from the particle, general 

relativistic effects red-shifts the energy and dilates the 

cycle duration.  Using Poynting’s theorem as a form 

of conservation of energy [Bittencourt 1995], the 

delta in radiated power between when the photon is 

emitted in the high gravitational fields near the 

particle and the radiation power a distance    away 

from the particle is found.  This delta can be thought 

of as the energy density trapped by the gravitational 

fields.    

When there is no current we have, 

  
 

  
       

In figure 4 below, the inner circle has a radius equal 

the particle’s spatial step as defined by Heisenberg 

uncertainty principle. 

       
 

   
 

When the particle radiates the power flowing through 

this hypothetical inner circle is equal to the energy of 

the photon divided by the cycle time of the diffusion 

process,     . The outer circle has a radius equal to 

the extent of a photon traveling for   seconds which if 

        is beyond the range of the particle’s 

general relativistic effects.  

The power flux at this point in space is reduced by 

the factor                              , 

where    is the Schwarzchild radius.  This reduction in 

power flux is due to the energy being gravitationally 

red-shifted by the amount                  , 



and the time being dilated by the factor, 

                  [Schutz 1985].  If         

      
  

 
 

      
  

 
          

The power between the inner radius and the outer 

radius (the grey area in figure 4 above) is  

                  
  

 

  
  

 
  

   
 

      divided by the area of the outer radius, 

represents the power flux.  Thus             divided 

by the speed of light and multiplied by the probability 

distribution on the radiated energy is the average 

energy density of the radiation field gravitationally 

trapped by the mass of the particle.   

                  
  

   

               

         
 

 
   

     
 
    
      

Lastly sum over all states M from 1 to ∞, and both 

degrees of polarization [8] since all are possible. 

                                   
 
            

 
     

    
  

    
   

 

   

 
   

    
 

  
  

      
   

One will recognize the energy density of Black Body 

radiation, and of course integrating over   gives the 

total average energy density [Reif 1965] 

                           
 

 

 
       

 

      
 

 

  

A2=4π(cτ)2

Power2

P2=S2A2=(1-rs/dx)ħω/τ

P1

A1=4πdx2

P1=S1A1=ħω/τ

Figure 3 Poynting Vector between inner cutoff and distant 
outer boundary 
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