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ABSTRACT 

This paper relates Freidmann’s equation of general relativity to Heisenberg’s uncertainty 

equation and Langevin’s equation of quantum and statistical mechanics.  The connection is 

made by showing their solutions are equal when a hypothesized ―dark‖ particle carries a 

reduced Planck mass.  The solutions are found by defining a general relativistic length scale   

and a quantum mechanical length scale   and deriving the energy density   under three 

regimes (equation of state,   
 

 
  

 

 
      ).  The density is solved via the introduction of a 

spring force that places the particle in the ground state of the harmonic oscillator with energy 

equal to the temperature of the particle.  Black body radiation is found trapped by the strong 

gravitational fields of the particle and has the right relic density and behavior to explain the 

open questions of dark energy and dark matter.  While more questions remain, further 

investigation seems justified under Occam’s razor. 

PACS  numbers: 03.65 -w, 04.20 -q, 05.40. –a, 98.80 -k  

I. INTRODUCTION 

By solving Freidmann’s equation next to Heisenberg’s 

uncertainty equation and showing the solutions are 

equal in three different regimes, a robust theory unites 

the two and comes together in a holistic solution 

known as the Langevin equation.   

We intend for the approach to be simple and thus 

preferred over other more complicated explanations 

of observed physical phenomena like the acceleration 

of the Universe and its missing matter. 

A. Definitions 

The Freidmann equation relates a length scale   to 

the energy density,   [1]. 

 
    

 
 

 

 
   

 
     

Similarly, the quantum mechanical length scale   

defined below as                       is related 

to          through the Heisenberg uncertainty relation 

[2] when, 

                              

From here we can write 

                           
 

  
 

             
 

 
 

We show that     (when the mass is the reduced 

Planck mass) by first deriving in the appendix the 

density of the ―dark particle.‖  Exploring the 

mathematics and physics of this hypothetical particle 

begins with the ordinary quantum mechanical 

harmonic oscillator in the ground state where the one 

dimension ground state quantum mechanical energy 

is equal to the temperature. 

    
   

 
     

While the frequency of the harmonic oscillator is 

equal to      , we find a de-coherence time period 

equal to one over twice the temperature (which also 

obeys the Heisenberg uncertainty relation with the 

ground state energy) . 

  
 

    
 

 

    
 

To define the length scale associated with   (which 

will determine among other things the volume in 

which this energy resides), an Ansatz is used to 



assume dark particles come as a pair with equal and 

independent probability distributions.   

Now define      as the distance a pair of particles, 

traveling in opposite directions at the speed of light, 

can traverse in time  .  Calling      the general 

relativistic length scale of the dark particle pair is 

consistent with our understanding of how the length 

―scales‖ as it is proportional to the inverse of the 

temperature [1]. 

      
  

   
 

Using this length scale, the density is found by 

integrating the energy over its probability distribution 

(which is equal to the three dimensional ground state 

energy,   ) and dividing by the volume,     .  

  
   
 

 
      

 
 
  
 
 
    
 

 
      

 

    
 

Define a second length scale     , the quantum 

mechanical length scale, as the standard deviation 

between the dark particle pair.  In this case the 

distance between the pair of particles with equal and 

independent probability distributions has a variance 

      that is equal to   times the variance of one 

particle. 

                        

Taking the time derivative we have 

                           

We are now in a position to solve (under three 

regimes) for      using the Freidmann equation of 

general relativity and      using the Heisenberg 

uncertainty relation of quantum mechanics.  One 

regime occurs when the temperature is completely 

variable, a second that represents the curvature of 

space, and a third when the temperature is constant.  

The magnitude of the mass of the dark particle is 

shown explicitly in the first regime to be the reduced 

Planck mass when      and      (of the same form) 

are set equal to each other. 

Throughout the paper the definition of these quantities 

above,              do not change.  They will have 

different solutions based on what is variable and 

what is constant, but   for example will always be 

one over twice the temperature in Planck units. 

II. THREE REGIMES 

A. Variable Temperature Regime       

When the temperature is variable and inversely 

proportional to the length scale we can re-write the 

density as, 

     
  

        
 

Simple calculus solves the Freidmann equation when 

the density is dominated by this equation of state, 
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Solving for       

      
     

 
 

 
  

   

The above is the general relativistic solution for the 

scale factor of one particle pair.   

Solving for      begins with the Heisenberg 

uncertainty relation [2]. 

               
 

             
 

Solving the differential equation gives the known 

result of quantum diffusion derived in appendix A 

and studied in [3,4]. 

                             
 

 
   

             
 

 
  

 
 

 

Leading to the quantum mechanical length scale, 

      
  

 
  

 
 

 

Equating the general relativistic length scale,     , to 

the quantum mechanical length scale,     , solves for 

the square of the mass of the particle. 

   
  

   
 



The obvious solution is the positive reduced Planck 

mass.  This solution is interesting as a fundamental 

particle with this mass will be dominated by 

gravitational effects if its charge is less than, 

                     , if it has any charge at all; 

and because it is precisely the Planck mass divided 

by      is simplifies many of the expressions in 

general relativity [5].   

B. Curvature Regime        

While the quantum diffusion described above in the 

first regime has a variance that is linear in time, 

another type of quantum diffusion has a variance that 

is quadratic in time [2] as shown in appendix B.  In 

this section we will show that the same solution is 

available from the Freidmann equation.  We can 

write 

           
     

    
 

   

Using a variation of the derivation of Friedmann’s 

equation as given by Liddle [1], we equate the 

average gravitational potential energy of a sphere 

with radius   to the three dimensional potential 

energy of the harmonic oscillator with        Joules 

per degree of freedom hypothesized in appendix A  

                      
    

 

         
                             

     
 

 

When                

    

 

         
 
            

    

 
 

We can re-write       in terms of our length scale where 

          

                               
   

 
 

If the temperature is kept constant at    we can re-

write this in the form of the Freidmann equation. 

 
    

 
 

 

 
   

 
        

     
 

 
 

 
 
 

 

It is not yet clear how to handle the negative sign 

(however later when        is added to the other 

densities it all balances out and the solution is real). 

   
      

 
  

Looking at the absolute value we have as we should, 

                             
      

This regime is interesting as it provides the 

explanation for the spring force hypothesized in the 

appendix. 

   
 

  
       

 

  

            
 

 

 
         

 
    

     
 

 
 

 
 
 

   

Plugging in for the magnitude of         evaluated at 

           we derive            from appendix 

A and thus validate our 2nd Ansatz. 

   
 

  
  

The thermal energy curves the space around the 

particle which provides the resistive spring force. 

C. Constant Temperature Regime      

In this regime the temperature is kept constant at   . 

The general relativistic length scale in this regime is 

solved by directly replacing it with the quantum 

mechanical length scale into the density. 

                  
  

              
  

Shown in appendix B, when            we have, 

            
        

     
 

    
  

  

      
 

With this replacement and substituting in the reduced 

Planck mass, the Friedmann equation becomes  

 
    

 
 

 

 
   

 
  

      
 

  
 

Solving for      yields, 

     
 

      
 
    
 

  

IV. PARTICLE LIFECYCLE 



A. Langevin Equation 

Each one of these regimes is interesting in its own 

right, however considering them holistically, solves 

the lifecycle of the particle and is consistent with the 

Langevin equation.  

 
    

 
 

 

 
  

         
 
     
 

 
 

 
 
 

 
      

 

  
 

The three terms have an equation of state,   
 

 
  

 

 
    respectivly.  This equation is easily solved.  

    

 
  

 

   
 
    
 

  

With a little calculus the solution is 

   
  

     
    

       
    

With              and the diffusion constant from 

appendix B,         , this is re-written, 

           
  

     

Tying this solution back to the quantum mechanical 

length scale,                 
     gives  

          
             

  
     

One will recognize this as the solution to Langevin’s 

equation when the noisy driving force is correlated 

with the particle displacement (derived in appendix 

B) [6].    

B. Balanced (Zero) Density 

One amazing feature of looking at the density from 

all three regimes together is that it approaches zero 

as time passes.  When time first starts out, the density 

is huge given the inverse dependence on the fourth 

power of the length scale. 

              

 

   
 

  

         
 
     
 

 
 

 
 
 

 
      

 

  
  

However at     asymptotic value the three separate 

densities perfectly cancel each other. 

   
          

               

One might ask however if this energy density is a 

candidate for the missing energy of the Universe: i.e. 

dark matter under the the temperature is variable 

where       [1]; and dark energy when the 

temperature is constant where      [7].  The 

answer is not directly.  As we just argued the density 

approaches zero as time passes.  However indirectly 

we find that the strong local gravitation fields 

produce a radiation density of bosons that separately 

adds to the density.  This radiation density contributes 

to distant gravitational effects and could be of the 

right magnitude to explain the relic density of dark 

energy. 

III. RADIATION FIELD 

Due to the high gravitational fields of the dark 

particle, one would expect the particle to be coupled 

to a radiation field [8]; and this is what is found (as 

detailed in appendix C).   

We implicitly assumed in the beginning of the paper 

that the dark particles have a non-zero mass.  

However if we look at a density of radiation where 

the photons have zero mass we see that only the first 

term in the holistic energy density remains. 

  
  

        
 
      

  
 
 

 
 
 

    
      

 

   
 

           
  

        
 
      

 

    
 

Furthermore when the probability distribution on the 

energy of the harmonic oscillator hypothesized in 

appendix A is associated with bosons instead of 

fermions (where multiple particles can occupy each 

mode), the density needs to be summed over these 

multiple states.  Doing so and further accounting for 

time dilation and red-shift effects radiating in the high 

gravitational fields of the particle, the resulting 

radiation density trapped in the gravitational fields is 

exactly the black body distribution (as detailed in 

appendix C).  When     is the temperature of the 

radiation trapped by the dark particles we have:  

                
   

    
 

  
  

    
 

   
   



                  
 

 

 
         

 

      
 

In normal black body radiation, a macroscopic cavity 

provides the confinement of the radiation [9].  Here it 

is the gravitational effects from the mass of the 

particle that confines the radiation.   

IV. DISCUSSION 

A. Dark Matter and Dark Energy 

The density and length scales discussed above are 

associated with individual dark particle pairs.  

However with their theoretical derivation behind us 

we can get to a discussion of their application to the 

open questions of dark energy and dark matter by 

extrapolating to the density and length scale of the 

Universe.  A more thorough analysis is scheduled in 

due time, yet the gist of the argument is simple 

enough to relay here.  

We will assume the reader is familiar with dark 

energy [7] and the observations it intends to explain.  

However to quickly set the stage, cosmological 

observations early last century by Hubble indicated 

the Universe is expanding.  More recent observations 

of Type Ia supernova suggest the Universe is not just 

expanding but is also accelerating [1].   

The most popular explanation for these findings is an 

elusive energy density with an equation of state, 

       [7] coined ―Dark Energy‖ making up 

~73% [10] of the energy of the Universe.  Despite 

many attempts to explain dark energy’s origin [11], 

those attempts have fallen short [7,12]. Yet there are 

still many theories under review [13]; with the most 

accepted being the Lambda Cold Dark Matter model, 

     where the Lambda, the Cosmological Constant 

provides a negative pressure      [7].   

Another set of observations (that seem to be 

independent of the expansion and acceleration 

observations) show a discrepancy between the 

amounts of luminous matter we can visually account 

for and the amounts of mass we can infer from 

gravitational effects, such as speed of galaxy rotation 

[1].  ―Dark Matter,‖ the explanation for this 

discrepancy, is a positive pressure energy density that 

clumps near other baryonic matter, is devoid of 

interactions with photons [1], and makes up ~22% of 

the energy of the Universe [10].  

We hypothesize that under different conditions 

experienced in the Universe, dark particles can 

explain both dark energy and dark matter. 

A. Constant and Variable Temperature 

Now hypothesize that a local group of dark particle’s 

are able to exchange heat with the local surroundings 

when hydrogen atoms or other sinks are nearby to 

capture the radiation from its gravitational binding.  

In this case the temperature of the dark particles is 

variable and thus inversely proportional to the length 

scale of the local Universe leading to an aggregate 

energy density local to the hydrogen atoms with an 

equation of state,      . 

Dark particles randomly walk as it exchanges heat 

with available local hydrogen atoms, thus allowing 

the temperature of its trapped radiation to equilibrate 

with the external radiation field.  Figure 1 below is 

an artist rendition of what this process might look like. 

However when the dark particles are isolated away 

from any sinks, no radiation can escape and the dark 

particles radiation has no way to release heat or 

change their temperature.  In this case the particles’ 

radiation density is constant and the equation of state 

is     .  The total energy scales linearly with the 

volume (which is exponentially increasing) as work is 

done on the system as it expands.  The radiated 

photons in turn exponentially generate new dark 

particles to fill the space.  Figure 2 below is an artist 

rendition of what this regime might look like. 

 



B. Application to our Universe 

When the Universe was in the Dark Ages, where a 

preponderance of hydrogen atoms was available 

[14] the dark particles could equilibrate with the 

comic microwave background.  After the Dark Ages 

when re-ionization happed, the dark particles 

became frozen at that temperature with no way to 

release or absorb any hear.  Today the aggregate 

effect of dark particles’ radiation that are devoid of 

local neutral hydrogen atoms provide a negative 

pressure to the Universe with a constant density equal 

to             .  Using the Six-Parameter      Fit 

from the 7-year WAMP data [10] we have        

       and                    ,  

             
  

  

       
 

    

 
  

  

                            
 

    

            
  

  
          

We can compare this to the to the accepted relic 

density by using the      model with          

and        
  

 
     [10]. 

                             
  

  
 

The explanation given here (based on dark particles) 

for dark energy is only off by     from     ; a 

huge improvement from the       discrepancy found 

in other derivations of the vacuum energy density 

[11].    

The argument continues for dark matter; in local 

regions near other baryonic matter these dark 

particles find the sinks needed to exchange heat and 

thus allow the temperature of the radiation and the 

density to vary.  In this environment the dark particles’ 

radiation has a positive pressure energy density that 

presents an attractive gravitational force explaining 

the observed gravitational effects of dark matter and 

why it clumps near other baryonic matter.   

In the case of galaxy rotation, dark particles provides 

an explanation why the velocity of rotation does not 

scale like one over the square root of the radius 

which would be consistent with a large mass at the 

center of the galaxy [1].  But rather the mass appear 

to be spread throughout the galaxy.  In the dark 

particle explanation, the gas of the galaxy (which is 

spread throughout the galaxy) couples the dark 

particles to the local temperature giving a local 

positive pressure to the galaxy.  The combination of 

the temperature of the gas as a function of radius and 

the density of coupling sites as a function of radius, 

could explain why the velocity of rotation goes is flat. 

Two opposite examples are in agreement with the 

argument here.  First VIRGOI21 is an example where 

a preponderance of both hydrogen atoms and dark 

matter is found [15].   Oppositely globular clusters 

are regions where starlight is very prevalent.  In this 

case we would expect any atoms, or other loose 

baryonic matter to be fully ionized and thus not able 

to provide the coupling mechanism to allow the local 

dark particles’ radiation to cool.  The local region 

would have no positive pressure dark particles 

explaining why no dark matter is measured within 

globular clusters [16]. 

IV. CONCLUSION 

While the mathematics of quantum diffusion can get 

complicated [3] and that of general relativity even 

more complicated [5], the mathematics presented 

here is intended to not be more complicated than 

calculus.  Rather the intent is to present the framework 

and the right values for the physical parameters 

necessary to join Freidmann’s equation to 

Heisenberg’s Uncertainty equation. 

The only Ansatzes used are 1) dark particles coming 

as pairs and 2) a spring force that resists motion.   

Given that this simple development requires no major 

change to quantum mechanics or general relativity 

and has the potential to explain dark matter or dark 

energy, more investigation is justified under Occam’s 

razor [17].   
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APPENDIX A – ENERGY DENSITY 

A. The Process 

This analysis hypothesizes that a particle comes into 

existence with its pair and the two will independently 

diffuse in space in each of the three position 

dimensions.  To start with, the magnitude squared of 

the wavefunction will be the Gaussian distribution 

         
 

      
  

 
  

       

We can now calculate the distribution on the 

momentum   ,   ,and   .  The distribution on    will 

also be a Gaussian with a variance that satisfies the 

Heisenberg uncertainty principle [2]. 

     
  

  

      
 

            
 

       
  

 
  

 

    
 
    

Thus the probability distribution on   and    (with   & 

  and    &    being respectively equal), will be the 

Gaussian distribution with mean zero and variance 

      and      
  respectively.   

The total energy of the particle will have both position 

and momentum components.  The additon of the 

kinetic energy should be familiar      
 

  
    

 .  

However there is also a potential energy term 

    
 

 
  
 
 
 
 resulting from the inertial mass.  

Assuming the particle is at rest relative to a reference 

frame, the particle will originate at rest and begin to 

move a total displacement, x in time  .  From 

Netwon’s second Law [18] the force on the particle 

will be 

              
  

  
  

  
  
  

 
  

    
 

With the particle being at rest on average we can 

look at Newton’s third Law [18] or stating Newton’s 

first Law [18] backward, i.e. given a particle at rest, 

the sum of the forces acting on the particle is zero, 

we have 

                   
   

    
 

Here we see Hook’s Law which has an associated 

potential energy     
 

 
  
 
 
 
 leading to the harmonci 

osscilator with 1-D groud state energy,     [19]. 

    
   

 
 
 

 
 
    

 
     

Considering the   and   dimensions as well, we are 

led to the three dimensional harmonic oscillator. 

                               

      

          
 

 
 
 

 
 
 

 
 

  
    

  
 

 
 
 

 
 
 

 
 

  
    

 

 
 

 
 
 

 
 
 

 
 

  
    

  

If we assume the process is ergodic and that the 

particle is at a equilibrium temperature   the 

equipartition theorem can be evoked where, the 

average energy is equal to       for each quadratic 

dimension [19]. 

 

 
 
 

 
 
          
 

 

  
    

 
            

 
   

 
 

Since the average of   and    is equal to zero, the 

average of    and   
  is equal to the variance       

and      
  

     
        

      
  

      
 

  
 

    
 

       
     

 
 

After   seconds, the particle will be found in phase 

space in each of the three dual dimensions:       , 

      , and       . 

Given the relationship              and with 

      ) as above, the distribution on    is [20], 

            
 

         

 
   
         

Thus from the probability distributions on  ,  , and   

given above the distribution on   is derived 



             
 

      
 
    
       

Fortunately the distribution on    , given   , 

  ,and    above, is the same 

                
 

       
 
     

        

Since   is simply the sum of the independent 

variables   ,   ,    and    ,    ,     we can solve 

for the distribution on   as the convolution of the 

other distributions [21]. 

                                      

        

         
    

      
  

   
      

To find the average energy density, integrate over 

frequency and divide by the volume of space that the 

particle and it’s pair could possibly fall within.  The 

volumes should be the space a photon can traverse in 

time   in either direction, i.e.        

  
 

  
  

 

 
      

 
 
 

  
  

 

 
    

      
  

   
     

        
 
      

 

    
 

APPENDIX B – QUANTUM DIFFUSION 

A. Linear Variance 

This diffusion is also called imaginary diffusion as it 

can be derived by taking the quantum mechanical 

kinetic energy Hamiltonian and making a Minkowski 

transformation to imaginary time.   

  
  

  
 

  
 

  
  

  

  

  

   
 

     

 

  
 

 

  

  

   
 

  
 

  
 

D can also be derived from Einstein’s kinetic theory 

[6]. 

       
 

 
    

 

      
    

 

  
 

Plugging into the variance we have 

          
  

 

 
   

This quantum diffusion has also been studied by 

Belavkin [3] and Nelson [4]. 

B. Quadratic Variance 

A second type of quantum diffusion occurs due to 

multiple frequencies evolving at different rates.  While 

this derivation will follow the method outlined by 

Bohm [22], the precise result is found in Shankar [2]. 

      
 

       
 

  
 

  
 

    
 
 

                           
 

  

    

Where 

      
  

 

  
 

Solving the integral and taking the magnitude 

squared results in a probability distribution with a 

variance that is grows in quadratic time. 

          
 

        
    
 

   

  

 
  

      
    
 

      

Considering only the quadratic term            
  we 

have 

           
     

    
 

   

C. Constant Variance 

When the temperature is constant at   , and    

        we have, 

            
  

 

 
          

     
 

    
  

  

      
 

D. Langevan Equation 

The Langevan equation begins with the force 

equation with both a resistive force that opposes and 



is proportional to the velocity and a noise driving 

force [6]. 

       
 

 
            

Einstein’s relation can be used to show that   

       as we defined above [6].  Multiplying by x 

and using the product rule of differentiation yields, 

        
 

  
               

 
  

 

 
              

In the classical case        is uncorrelated with x, 

however here the force is the same as we used in 

deriving the harmonic oscillator in appendix A,  

               
   

    
 

 
 

  
         

 

 
             

   

    
 

Taking the time average and using the equipartition 

theorem [19] on the kinetic and potential energy 

leaves, 

 
 

  
               

 

 
                    

              
  

   

Again a break from the classical derivation when 

                .  Classically this initial condition is zero, 

however we want the Langevin equation to be 

quantum mechanically correct and obey the 

Heisenberg uncertainty relation. 

                 
 

  
 

            
 

  
 
  

   

From here the rest of the derivation is the same as the 

classical Langevin derivation 

 

  
                     

 

 
 
  

   

                
   

 

 
 
   

    
 

 

 
 

 
     

  
   

        
  

    

APPENDIX C – BLACK BODY RADIATION 

The energy density in appendix A was related to 

fermions.  In the fermions’ case, there can be only 

one particle per quantum state.  However a radiation 

density can have more than one particle occupy each 

quantum state.  The energy will be radiated by a 

photon of energy   ; since there can actually be M 

photons per mode (as a photon is a boson) the total 

energy is    .  Again enlisting the help of the 

equipartition theorem, we solve for M [19]. 

           

 
 

 
 
 

 
 
 

 
 

  
    

  
 

 
 
 

 
 
 

 
 

  
    

 
 

 

 
 
 

 
 
 

 
 

  
    

  

         
     

 
 

  
 

 
 
 

 
 
          
   

 

  
    

 
            

 
   

 
 

     
  

     

 
 

      
   

      
 

  
  

    
 

Plugging these into our equation for the probability 

the energy is  ,                  

                
      

      
  

    
      

Next to find the density we need Poynting’s theorem.  

The energy    built up by the particle’s diffusion is 

transferred to the photon field every   seconds.  As 

the radiation moves away from the particle, general 

relativistic effects red-shifts the energy and dilates the 

cycle duration.  Using Poynting’s theorem as a form 

of conservation of energy [23], the delta in radiated 

power between when the photon is emitted in the 

high gravitational fields near the particle and the 

radiation power a distance    away from the particle 

is found.  This delta can be thought of as the energy 

density trapped by the gravitational fields.    



When there is no current we have, 

  
 

  
       

In figure 3 below, the inner circle has a radius equal 

the particle’s spatial step as defined by Heisenberg 

uncertainty principle. 

       
 

   
 

When the particle radiates the power flowing through 

this hypothetical inner circle is equal to the energy of 

the photon divided by the cycle time of the diffusion 

process,     . The outer circle has a radius equal to 

the extent of a photon traveling for   seconds which if 

        is beyond the range of the particle’s 

general relativistic effects.  

The power flux at this point in space is reduced by 

the factor                    , where    is the 

Schwarzchild radius.  This reduction in power flux is 

due to the energy being gravitationally red-shifted by 

the amount                  , and the time 

being dilated by the factor,                   

[24].  When         we have, 

      
  

 
 

      
  

 
          

The power between the inner radius and the outer 

radius (the grey area in figure 3 above) is  

                  
  

 

  
  

 
  

   
 

      divided by the area of the outer radius, 

represents the power flux.  Thus             divided 

by the speed of light and multiplied by the probability 

distribution on the radiated energy is the average 

energy density of the radiation field gravitationally 

trapped by the mass of the particle.   

                  
  

   

               

         

 
   

     
 
    
      

The last step is to sum over all states M from 1 to ∞, 

and both degrees of polarization [8] since all are 

possible. 

                                   

 

           

 
     

    
  

    
   

 

   

 
   

    
 

  
  

      
   

One will recognize the energy density of Black Body 

radiation, and of course integrating over   gives the 

total average energy density [8] 

                           
 

 

 
       

 

      
 

  

A2=4π(cτ)
2

Power2

P2=S2A2=(1-rs/dx)ħω/τ

P1

A1=4πdx
2

P1=S1A1=ħω/τ
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