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Abstract: The past century has seen many dividends from Planck’s theory for black body radiation.  

Today we advance that theory to provide an explanation for the acceleration of the Universe and other 

cosmological observations.  We do this by arguing: 

 Thermal diffusion of an individual massive particle will build up excess energy until it releases 

that energy in the form of black body radiation. 

 Virtual particle pairs also suffer from such a mechanism and if an atom is nearby to capture the 

radiation before the pair annihilates, a net negative energy is pulled from the vacuum. 

 During the Dark Ages of the Universe when hydrogen atoms were prevalent, these virtual 

particles were coupled to and in thermal equilibrium with the background radiation field (today 

known as the Cosmic Microwave Background, CMB). 

 As the Universe re-ionized at z≈10, the virtual particles decoupled from the CMB, leaving the 

temperature of the virtual particles and the associated energy density to stay constant as the 

Universe continued to expand. 

 When the magnitude of this constant density is inserted into the Friedmann equation, it is 

interpreted as the Cosmological Constant predicting, as observed, an accelerating Universe. 

 Using the 68% confidence ranges as measured from the 5 year Wilkinson Microwave Anisotropy 

Probe, the magnitude of the Cosmological Constant as calculated from the theory described 

herein overlaps the value from the well accepted Lambda Cold Dark Matter model. 

Lastly with the intent to build support for further investigation, conclusions are presented which include: 

proposals for experimental verification, application to other cosmological observations and a 

rationalization based on Occam’s razor. 

Background and Approach: With recent cosmological observations that the Universe is not only 

expanding but accelerating, focus has fallen on an elusive energy density with negative pressure coined 

“Dark Energy” that has an  equation of state, w < -1/3 (Liddle 2003).  Previous attempts to explain its 

origin however have fallen short (Greene 2004; Peebles & Ratra 2003). Yet that has not kept many 

theories from being put forward (Papantonopoulos 2007); with the most accepted being the Lambda 

Cold Dark Matter model, Λ𝐶𝐷𝑀 (Liddle 2003).  Here Lambda, the Cosmological Constant, is a constant 

energy density with negative pressure, w=-1.    

In this article, the author proposes that the Cosmological Constant is indeed the correct form of dark 

energy and furthermore that black body radiation is the source of that energy.   The approach of this 

argument will be to give a simple explanation of how and why virtual particles are the source of a 

constant energy density that has the effect of accelerating the expansion of space.  The argument rests 



on a mechanism by which virtual particles radiate like a black body, which is described in detail in the 

appendix.  We will call this model the Lambda Black Body Radiation Model, Λ𝐵𝐵𝑅 

Black Body Radiation: A Black Body is an object that absorbs any impingent radiation.  Such a body will 

radiate a spectrum of power dependent only on its temperature as given by (Reif 1965), 
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The energy density (kg/m3) of this distribution is calculated by integrating the black body spectrum over 

the frequency and solid angle and transforming the units (Reif 1965). 
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While it is commonly understood that black body radiation is associated with macroscopic objects, the 

appendix shows that the black body spectrum is fundamental to an individual particle.   

Process for Virtual Particles Pairs: Virtual particles should too suffer from this mechanism.  For a 

virtual particle pair, the radiation process begins with the pair coming into existence.  They begin 

diffusing and accumulating excess energy; after a given time, the excess energy is released.  The two 

particles then collapse back on each other.  If a sink is not around to absorb the radiation from the 

virtual particles before the pair re-annihilates, the emitted photon will not escape, leaving no evidence 

of the pair.  If on the other hand an atom or other sink is nearby that has the right transition frequency 

to collect the radiation before the pair re-annihilates, the emitted radiation will provide a real positive 

energy to the Universe.  In order to keep the conservation of energy, a net negative energy must remain 

in the vacuum with the same magnitude but opposite sign of energy density as black body radiation. 

𝜌Virtual  Particles = −𝜌𝐵𝐵𝑅  

It is not all too surprising that a mechanism which traps energy from virtual particles leaves evidence in 

the form of black body radiation, since we have seen something similar in the Hawking Radiation from 

black holes (Hartle & Hawking 1976).  In Hawking Radiation, one of the two virtual particles gets trapped 

inside the event horizon of a black hole.  Of the pair, the free one escapes as black body radiation while 

the trapped one causes the black hole to lose mass.  In this case, it is not the massive particles that get 

trapped, but rather excess energy built up from the pair’s diffusive motion. However the result is the 

same; black body radiation is emitted and a negative energy remains to balance out the conservation of 

energy.  

If this mechanism is the only means by which virtual particles can exchange heat, their temperature will 

track the local radiation field (which for most of the Universe is the background radiation) assuming 

enough atoms are present to capture emitted photons.  This was the situation in the Universe during 

what is known as the Dark Ages; the time between decoupling and re-ionization (Barkana & Loeb 2001).  

However once re-ionization occurred, the atoms, which facilitated the equilibrium between virtual 



particles and the background radiation field, were lost.  At this time virtual particles stopped cooling and 

kept a constant temperature even unto today leaving a negative energy density, 𝜌Virtual  Particles .   
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Given the approximate red-shift of re-ionization this final temperature of the virtual particles, 𝑇Λ , can be 

calculated (Peacock 1999). 

𝑇Λ =  1 + 𝑧𝑅𝑒−𝑖𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛  𝑇𝑡𝑜𝑑𝑎𝑦 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

As long at the virtual particles did not continue to cool but rather stayed at the temperature of re-

ionization, 𝑇Λ , the Universe was left with a constant and pervasive dark energy density.  

Constant Density: Right after the end of the Dark Ages this dark energy density was the same 

magnitude as the radiation density of the observable Universe.  However while the temperature of the 

virtual particles remained constant, along with its associated density, the temperature of the 

background radiation continued to cool and its associated radiation density scaled like one over the 

fourth power of the scale factor.  As we know, this radiation density of the observable Universe is called 

today the Comic Microwave Background.   

There is interesting physics that takes place here as it relates to conservation of energy.  In the case of 

the radiation density and non-relativistic energy, the total energy (density times volume) remains 

constant in the case of non-relativistic matter, or decreases like one over the scale factor in the case of 

radiation since the wavelength of the radiation are themselves expanding (Peacock 1999).  However the 

case is different for a constant energy density.  We can see this by looking at the equation of state (Reif 

1965). 
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In the case of an equation of state of w=-1, the total energy (density times volume) actually increases 

linearly with volume.  For a reversible process in the presence of an ideal gas we have (Reif  1965), 

𝑑𝐸 = −𝑑𝑊 = −𝑝𝑑𝑉 

𝑑𝐸Virtual  Particles = 𝜌Virtual  Particles ∙ 𝑑𝑉 

In other words, as the Universe expands a real amount of positive work (constant pressure times 

volume) causes the total energy of the virtual particles to be in negative direct proportion with the 

volume thus keeping density constant (Liddle 2003). 

As time passed both the radiation and matter density decreased while the density from the virtual 

particles stayed constant.  At some point the magnitude of the virtual particle energy density became 

greater than both the radiation and non-relativistic matter density making the constant energy density 



(with its negative pressure) the dominant gravitational force pushing the Universe apart at an 

accelerating rate. 

The Cosmological Constant: Before the Cosmological Constant, Λ, is introduced, we first make the 

assumption of normal gravity (Nieto & Goldman 1991; Karshenboim 2008), i.e. that all energy (even 

negative energy) attracts all other energy (whether positive or negative).  With this assumption the 

effective energy density is   

𝜌ΛBBR =  𝜌Virtual  Particles  =
𝜋2 𝑘𝑇Λ 
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However it can be shown that even under the assumption of normal gravity, the effects of a constant 

density with negative pressure can be repulsive at astronomical scales (Mannheim 2000). 

We see this by introducing the scale factor of the Universe, R(t) (Peacock  1999), 

𝑑𝑠2 = 𝑅 𝑡 2 ∙ 𝑑𝑠3
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As shown by Friedmann, R(t) is related to the Hubble Constant, H (Liddle 2003), 
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As we can see, the introduction of Λ is simply a replacement for a scaled version of 𝜌ΛBBR  
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Λ is a function of Universal constants and 𝑇Λ , which has been argued is also constant; leading to an 

equation of state of w=-1.  As we see in the next section where we estimate the magnitude of 𝜌Λ𝐵𝐵𝑅, Λ 

dominates the Freidmann equation.  Ignoring other factors of 𝜌(𝑅) that are a function of R(t) and the 

contribution from curvature, we are left with, 

𝑅 

𝑅
= 𝐻 =  Λ𝑐2

3
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Which when solved predicts (as observed) that the Universe is not only expanding but accelerating 

𝑅 𝑡 = 𝑅𝑜𝑒
𝐻𝑡  

𝑅  𝑡 = 𝐻2𝑅 𝑡 > 0 

Agreement with ΛCDM: Because we have estimates of today’s z value of re-ionization and 

today’s temperature of the CMB we can estimate the density 𝜌Λ𝐵𝐵𝑅  using the Lambda Black Body 

Radiation model, Λ𝐵𝐵𝑅. 

Without going into the details, the Lambda Cold Dark Matter model, ΛCDM, provides a completely 

independent estimate of the density of dark energy, 𝜌ΛCDM  (Liddle 2003). 
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Again we can estimate 𝜌ΛCDM  because we have estimates of the parameter, ΩΛ , and today’s Hubble 

constant, H.   

The source of our estimates will be from the 5 year Wilkinson Microwave Anisotropy Probe (Dunkley et 

al., 2009).  However we must keep in mind that these estimates are best fit parameters and come with 

confidence ranges.  The ranges and estimates are compiled below in Table 1 and visualized in Figure 1. 

 

 
low average high 

  
low average high 

𝜌Λ𝐵𝐵𝑅  

 𝑘𝑔/𝑚3  
5.86E-27 1.03E-26 1.50E-26 

 
𝜌𝛬𝐶𝐷𝑀  

 𝑘𝑔/𝑚3  
6.41E-27 7.40E-27 8.05E-27 

𝑇𝑡𝑜𝑑𝑎𝑦  

 𝑑𝑒𝑔𝑟𝑒𝑒𝑠  
2.725 2.725 2.725 

 

𝐻 

 
𝑘𝑚

𝑠𝑒𝑐 ∙ 𝑀𝑝𝑐
  

69.2 72.4 74.5 

𝑧𝑟𝑒−𝑖𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛  

 
9.6 11.2 12.4 

 
𝛺𝛬  0.712 0.751 0.772 

 

Table 1

Figure 1 

Three things are of note.  First, the ranges of the density of dark energy from the two models overlap 

implying good agreement.  Second, Λ𝐵𝐵𝑅 reliance on the fourth power of the z value of re-ionization 

and its own confidence range causes the 68% confidence range for 𝜌Λ𝐵𝐵𝑅  to be four times as broad as 

the range for 𝜌Λ𝐶𝐷𝑀 .  Perhaps further modeling of re-ionization and its impact on the Λ𝐵𝐵𝑅 model 

could reduce its confidence range improving the likelihood of overlap.  Third, the range of  𝜌Λ𝐶𝐷𝑀  lies on 

the lower side of the range of 𝜌Λ𝐵𝐵𝑅 .  This last note can be accounted for if the temperature of the 

virtual particles 𝑇Λ  continue to slightly cool (due to a few atoms remaining) after re-ionization.  Again 

further modeling of the Λ𝐵𝐵𝑅 model would bring insight and precision to these estimates. 



Conclusion: The Lambda Black Body Radiation model described herein is based on the black body 

radiation of virtual particles, and provides an explanation of dark energy in the form of the Cosmological 

Constant.  Thus the evidence of dark energy we are looking for has already been found; it is the Cosmic 

Microwave Background.  The only thing missing in our search was that the dark energy density that 

balanced the CMB stopped cooling and remained constant as the epic of the Dark Ages ended.   

One might ask, “How can we prove such a model is correct?”   Outlined in the appendix is an experiment 

that would go a long way to prove that an individual particle can radiate like a Black Body.  It uses the 

result from the appendix that an individual particle diffuses classically on top of other motion and should 

be visible in the measurement of a quantum walk (Karski et al. 2009) (assuming the temperature and 

time scales are in the right range).   

Another experiment might be to measure the temperature of virtual particles by isolating a sufficiently 

high density of hydrogen atoms.  If the hydrogen atoms tend to approach the temperature 𝑇Λ , it could 

indcate the hydrogen atoms are coupled to the virtual particles and maintaining equilibrium.  However it 

is not clear on what time scales this would happen. 

Alternatively, one might look for cosmological observations where the environment is such that the 

virtual particles are coupled to the baryonic matter.  The case of VIRGOHI21 (Minchin et al. 2005) is such 

a region where there are plenty of neutral hydrogen atoms to facilitate equilibrium of the virtual 

particles.  In this local region the environment might be quite similar to that of the Universe during the 

Dark Ages; as such the equation of state of the virtual particles could be positive and their temperature 

would be in equilibrium with the local temperature.  In this case the resulting energy density of the 

virtual particles due to black body radiation is still be negative, but would have positive pressure 

resulting in attractive gravity.  If this is correct, it could explain the very large proportion of observed 

dark matter; where the dark matter is really the result of a combination of positive pressure exerted 

from the virtual particles (that are in equilibrium with the local temperature) on top of the absence of 

the otherwise ubiquitous negative pressure. 

The opposite environment is insightful too.  For example Globular Clusters provide a region of the 

Universe where starlight is very prevalent.  In this case we would expect any atoms, or other loose 

matter to be fully ionized and thus not able to provide the coupling mechanism to allow the local virtual 

particles to cool.  In this example 𝜌Λ𝐵𝐵𝑅  would remain constant, the equation of state would be w = -1 

and we would not see the effects of any additional positive pressure.  If this reasoning is correct, it could 

explain why we don’t measure any dark matter within Globular Clusters (Mashchenko & Sills 2005). 

These two observational examples provide anecdotal evidence that Λ𝐵𝐵𝑅 not only provides an 

explanation for dark energy, but for dark matter as well.  While this would be a very satisfying solution 

(tying together two open questions of cosmology), more investigation is needed. 

Additional questions that remain include (but are not limited to): 

1) Are there other mechanisms by which virtual particles can couple to ordinary energy? 

2) What is the rate of heat transfer between virtual particles and ordinary energy as a function of 

the density of neutral atoms? 



3) Can we model how virtual particles cool in the presence of ordinary matter in order to explain 

the observed density of dark matter?  

4) What are the impacts to entropy? 

5) How does Λ𝐵𝐵𝑅 hold up to Quantum Mechanics? 

6) How does Λ𝐵𝐵𝑅 hold up to General Relativity? 

Further questions about the radiation process are also given in the appendix. 

New physics is needed to further understand how an individual particle (and for that matter virtual 

particles) radiate like a Black Body.  Still, the Λ𝐵𝐵𝑅 model (where a virtual particle radiates like a black 

body and couples to the background radiation field) is quite simple and complements our current 

understanding for the observed acceleration of the Universe.  With the Λ𝐵𝐵𝑅 model being more simple 

and accurate than other attempts (Papantonopoulos  2007) to reconcile the reason for acceleration, the 

author calls upon Occam’s razor (Cover & Thomas 1991) to argue for further investigation of these 

findings.  

Appendix: Derivation of the Black Body Spectrum for an Individual massive particle 

Appendix - Hypothesis: When Planck solved the black body spectrum by using an assumption of 

quantized energy levels in 1900, it was unlikely that he had in mind the idea that space and time are also 

quantized (Ranganath 2008).  Even in 1922 when Stern and Gerlach experimentally showed “directional” 

quantization, the explanation was that a particle’s angular momentum was quantized, not that a particle 

could only step in discrete quanta (Mehra & Rechenberg 1999; Feynman 1965).  However after a 

century of advances in physics, electrical engineering and computer science (where discrete time 

processing has taken on a fundamental role (Shannon 1949; Forsythe & Wasow 1960; Bracewell 1986)), 

such an assumption has an opportunity to gain traction. 

Taking it a step further, this analysis hypothesizes that on top of all other motion a massive particle 

steps in space in discrete quanta and diffuses in space via the discrete Bernoulli process.  Specifically the 

location of the center of a particle’s wavepacket in each of the three position dimensions, will each 

independently step in the positive or negative direction an amount dx, dy, and dz at each time step dt 

with probability p or (1-p) respectively; moving its location from x, to x+dx or x-dx depending on a 

Boolean random event.  For the current analysis we assume that p=½ and thereby use a reference frame 

that is moving with zero average velocity relative to the particle.  

 It is hypothesized that the primary mechanism causing the black body radiation of an individual 

particle is that “on top of all other motion, an individual particle diffuses through space by 

stepping a discrete quantum via the Bernoulli process.”  

Appendix - The process and its parameters: The first step is to derive the parameters of the 

Bernoulli process as they relate to the appropriate physical quantities.   Details of the Bernoulli process 

can be reviewed in either Chandrasakhar (1942) or Reif (1965).   

First, the time step dt is found through the Heisenberg uncertainty principle where E·dt=ħ/2 (Shankar 

1994).  With E=mc2 (Einstein 1956) we arrive at  



𝑑𝑡 =
ℏ

2𝐸
=

ℏ

2𝑚𝑐2 

The total time will be t=K·dt, where K is the number of steps in the process. 

The position step, dx, dy, and dz will be equal through symmetry and equal to the speed of light times 

dt.  We arrive at this conclusion since the velocity eigenvalue of the Dirac equation for a massive free 

particle is equal to the speed of light, c (Dirac 1958).  The particle does not violate special relativity 

because the total displacement x (which will have a Binomial distribution) will rapidly become much less 

the total time t as the number of steps increases, thus preserving a group velocity which is less than c.  

One can think of the particle moving the distance dx in time dt by turning into pure energy of value mc2, 

yet stopping at each time step to possibly turn around. 

𝑑𝑥 = 𝑑𝑦 = 𝑑𝑧 = 𝑐 ∙ 𝑑𝑡 =
ℏ

2𝑚𝑐
 

We can now calculate the distribution on x as the two sided binomial distribution with probability 

parameter ½ and step size dx.  We calculate the variance Δx2 as 

 ∆𝑥 2 = 𝑑𝑥2 ∙ 𝐾 =
𝐾ℏ2
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If K is large, we can approximate the Binomial distribution as the Gaussian distribution 

𝑥~𝑝 𝑥 =
1

 2𝜋∆𝑥2
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−
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We can now calculate the distribution on the momentum px, py, and pz.  The distribution on px can also 

be approximated by a Gaussian with a variance that satisfies the Heisenberg uncertainty principle 

(Shankar 1994). 
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Thus the probability distribution on x and px (with y & z and py & pz being respectively equal), will be 

approximated by the Gaussian distribution with mean zero and variance Δx2 and Δpx
2 respectively.  

However care needs to be taken when calculating the diffusion constant for this classical diffusive term 

as there is reciprocity between the position and the momentum.  Thus when calculating the diffusion 

constant we must account for variance from both the randomness in position and the displacement 

from the randomness in momentum.  Calling this total variance  ∆𝑥 𝐶𝑙𝑎𝑠𝑠𝑖 𝑐𝑎𝑙
2  we can derive the diffusion 

constant, D. 

 ∆𝑥 𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙
2 = 2𝐷𝑡 =  ∆𝑥 2 +

 ∆𝑝𝑥 
2

𝑚2 𝑡2 

 ∆𝑥 𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙
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From which we get, 

𝐷 =
ℏ

2𝑚
 

Appendix - A Way for Experimental Verification: It should be noted that this classical diffusion 

associated with the Bernoulli process should not be confused with the quantum mechanical diffusion of 

a free particle’s wave packet.  Due to phase interactions of the pure frequencies that make up a free 

particle’s wave packet in the momentum space, quantum mechanical diffusion of the wave packet in the 

position space (also known as a quantum walk (Karski et al. 2009)) is derived by solving the imaginary 

diffusion equation (kinetic energy Hamiltonian) and has a characteristic variance that is quadratic in time 

(Shankar 1994). 

 ∆𝑥 𝑄𝑀
2 =  ∆𝑥0 

2 +
𝑘𝐵𝑇

𝑚
𝑡2 =  ∆𝑥0 

2 +
 ∆𝑝0 

2

𝑚2 𝑡2 

This spreading of the wavepacket is independent of the classical diffusion of the center of the 

wavepacket that occurs due to the process described herein.  To calculate the variance in position that 

would be observed if a measurement were to occur t seconds after a free particle at temperature T was 

initialized in a minimum uncertainty state, we would add the quantum variance to the classical variance 

because the two are derived from independent Gaussian distributions.   

 ∆𝑥 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
2 =  ∆𝑥 𝑄𝑀

2 +  ∆𝑥 𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙
2  

One way to provide support in affirmation of our given hypothesis is to make a measurement of the 

variance of a free particle.  As indicated above, a measurement of a free particle t seconds after 

initialization in the minimum uncertainty state will be  ∆𝑥 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
2   

 ∆𝑥 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
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𝑚
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Looking at Figure (2) of  ∆𝑥 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
2  𝑎𝑛𝑑  ∆𝑥 𝑄𝑀

2  over a normal time frame shows little divergence and 

experiments of quantum mechanical diffusion could easily have missed the extra classical term in the 

noise of the measurements (Karski et al. 2009).  However in the range of ℏ

4𝑘𝐵𝑇
< 𝑡 < ℏ

𝑘𝐵𝑇
 ,  ∆𝑥 𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙

2  is 

the dominant term and   ∆𝑥 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
2  is measurably different from  ∆𝑥 𝑄𝑀

2 . 

 

 

 

 

 

Figure 2 – Hypothesized solution   ∆𝒙 𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅
𝟐  vs. textbook solution  ∆𝒙 𝑸𝑴

𝟐  for normal and short time scales 
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Luckily at 10mK, the temperature of a dilution refrigerator, the width of an electron’s wavepacket at 

initialization is 150nm.  This length scale is large enough to detect with current state of the art 

semiconductor manufacturing.  A measurement of a free particle at this temperature and a few 

nanoseconds after initialization should show the effects of the classical Bernoulli diffusion.  

Appendix - Black Body Radiation: The idea that an individual particle radiates with a probability 

distribution that is in agreement with the black body spectrum has already been shown for faster than 

light particles / tachyons (Musha 2002).  However as can be seen below our argument is not limited to 

faster than light particles, but is a consequence of our hypothesis for all massive particles.  That is the 

probability distribution of the power of emitted radiation per unit area per solid angle in the frequency 

range  𝜔,𝜔 + 𝑑𝜔  by a single thermal particle fits perfectly to the proven solution (Reif  1965) 

℘ 𝜔 𝑑𝜔 =
ℏ𝜔3

4𝜋2𝑐3

1

 𝑒
ℏ𝜔

𝑘𝑇 − 1 
𝑑𝜔 

The model is simple: a particle starts out at rest; it diffuses via the Bernoulli process for K steps; it comes 

to rest again and radiates its excess energy in the form of photons. 

We begin by calculating the available energy of a particle after K steps.  Traditionally the kinetic energy 

is proportional to the quadratic sum over the three momentum directions.  However similar to the 

reciprocity described above when calculating the diffusion constant, the motion of the particle in the x, y 

and z directions give the particle an associated group velocity x/t, y/t, and z/t bringing the total available 

energy to be the quadratic sum of the six dimensions. 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 = ℏ𝜔 = ℏ𝜔𝑥 + ℏ𝜔𝑝𝑥 + ℏ𝜔𝑦 + ℏ𝜔𝑝𝑦 + ℏ𝜔𝑧 + ℏ𝜔𝑝𝑧  

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 = ℏ𝜔 = 𝑚
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After K steps, the particle will be found in phase space in each of 

the three dual dimensions: (x,px); (y,py); and (z,pz)  as shown in 

Figure (3).  Over either an ensemble of particles, or over time 

(assuming the particle has an energy source that keeps it from 

cooling after it radiates), the distribution in phase space will be 

Gaussian.  The equivalent energy lines are ellipses from which we 

can calculate the distribution on the total available energy, ω. 

Given the relationship ωx=ax2 (a>0) and with x~p(x) as above, the 

distribution on ωx is (Pan  2007) 

𝜔𝑥~𝑝 𝜔𝑥 = 1

 2𝜋∆𝑥2𝑎𝜔𝑥

𝑒
−𝜔𝑥

2𝑎∆𝑥2  

With this relationship and the probability distributions on x, y, z, px, 

py, and pz given above we derive 𝜔𝑥  

Figure 3 – Available energy in phase space 
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Fortunately the distribution on ωpx is the same 
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Since ω is simply the sum of the independent variables ωx, ωy, ωz and ωpx, ωpy, ωpz, we can solve for the 

distribution on ω as the convolution of the other distributions (Bracewell 1986). 

𝜔~𝑝 𝜔 = 𝑝 𝜔𝑥 ∗ 𝑝 𝜔𝑦 ∗ 𝑝 𝜔𝑧 ∗ 𝑝 𝜔𝑝𝑥  ∗ 𝑝 𝜔𝑝𝑦  ∗ 𝑝 𝜔𝑝𝑧   
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To go from 𝑝 𝜔 𝑑𝜔 to ℘ 𝜔 𝑑𝜔, we must normalize by the total surface area will be 4πR2 = 4π(K·c·dt)2; 

and the solid angle of 4π since the photons will radiate away from the particle radially at the speed of 

light.   Also to go from the probability distribution on photons to the power spectrum we must multiply 

by the power per photon ℏ𝜔/𝑡 where t = Kdt. 

℘𝐾 𝜔 𝑑𝜔 =
ℏ𝜔 ∙ 𝑝 𝜔 𝑑𝜔
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We are almost there, but two more steps are needed.  In our assumption, the excess energy will be 

radiated by a photon of energy ħω; as we know the energy of the photons is quantized and there can 

actually be M photons per mode with total energy M·ħω.  If we assume that the process is ergodic and 

that the particle has been in isolation since it was in thermal equilibrium with a reservoir at temperature 

T, we can enlist the help of the equipartition theorem to solve for M (Feynman 1965).  Doing so, we see 

the average energy is equal to kBT/2 for each quadratic dimension for a total of 6kBT/2.   

𝑀ℏ𝜔    = 𝑀 ∙  
𝑚

2
 
𝑥

𝑡
 

2
+

𝑚

2
 
𝑦

𝑡
 

2
+

𝑚

2
 
𝑧

𝑡
 

2
+

1

2𝑚
 𝑝𝑥 

2 +
1

2𝑚
 𝑝𝑦 

2
+

1

2𝑚
 𝑝𝑧 

2
                                                                          

 =
6∙𝑘𝐵𝑇

2
 

Since the average of x and the average of px is equal to zero (and for the other dimensions as well), the 

average of x2 and px
2 is equal to the variance Δx2 and Δpx

2, which has already been calculated.   
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With 𝐾 = 𝑀 ∙ 𝑚𝑐2 𝑘𝐵𝑇  (where M is a positive integer) and assuming that the particle is non-relativistic 

(mc2/kT is much much greater than one), we are assured that the K>>1.  This is nice since we already 

used this fact when exchanging the Gaussian as the limit of the binomial distribution.   

Going ahead and plugging K into our equation for ℘𝐾 𝜔 𝑑𝜔, we get ℘𝑀 𝜔 𝑑𝜔 
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We are only one more step away which is to sum over all states M from 1 to ∞, since all are possible. 

℘ 𝜔 𝑑𝜔 =  ℘𝑀 𝜔 𝑑𝜔 =

∞

𝑀=1

ℏ𝜔3𝑑𝜔

4𝜋2𝑐2
 𝑒

−𝑀ℏ𝜔
𝑘𝐵𝑇 =

ℏ𝜔3

4𝜋2𝑐2

1

 𝑒
ℏ𝜔

𝑘𝑇 − 1 
𝑑𝜔

∞

𝑀=1

 

Appendix - Discrete model: Given our 

hypothesis that time and space are 

quantized, it is natural to model this process 

on a computer.  The Matlab code below 

generates the Bernoulli process for each of 

the six dimensions at each time step and 

combines them together vis-á-vis the 

available energy.  As shown in Figure (4) the 

resulting histogram is in very strong 

agreement with the known solution to black 

body radiation.  Shown are the histogram of 

photons and the graph of ℘ 𝜔 /ℏ𝜔 (the 

distribution of photons). 

 

 

m=1;                        %Define unit mass assume speed of light is one, c=1 

kT=m/1000;                  %Define Temperature << mass energy 

dt=1/2/m;                   %Set time step where ħ=1, and c=1 

dx=dt;                      %Set position step where speed of light is one 

hv=kT*15*(.01:.01:1);       %Set energy independent variable’s range of 15 units of temperature 

N=150000;                   %Set number of random iterations 

 

for M=1:10                  %Possible photon states, should be from M = 1:∞ 

     

    K=m*M/kT;               %For given photon state, set number of steps 

    dp=m/K;                 %Set momentum step 

   

    x=sum(dx*(2*floor(rand(K,N)-.5)+1));    %Generate P samples and sum over K steps for x 

    y=sum(dx*(2*floor(rand(K,N)-.5)+1));    %Generate P samples and sum over K steps for y 

    z=sum(dx*(2*floor(rand(K,N)-.5)+1));    %Generate P samples and sum over K steps for z 

    px=sum(dp.*(2*floor(rand(K,N)-.5)+1));  %We use the Binomial to generate the Gaussian for px 

    py=sum(dp.*(2*floor(rand(K,N)-.5)+1));  %We use the Binomial to generate the Gaussian for py 

    pz=sum(dp.*(2*floor(rand(K,N)-.5)+1));  %We use the Binomial to generate the Gaussian for pz 

     

    w=m/2*(x/(K*dt)).^2+m/2*(y/(K*dt)).^2+m/2*(z/(K*dt)).^2+px.^2/2/m+py.^2/2/m+pz.^2/2/m; 

    %calculate excess energy 

     

    h(:,M)=hist(w,hv)*2/(4*pi*(K*dx)^2)/(K*dt)/(4*pi);    %Calculate histogram of energy           

normalized for surface area, time between emissions, solid angle, and factor of two 

end 

  

H=sum(h');                  %Sum over energy states 

P=hv.^2./(exp(hv/kT)-1);     %Calculate known intensity of photons 

P(1)=0;                      

H=H/max(H);                 %Normalize for relative magnitude 

P=P/max(P);                 %Normalize for relative magnitude 

l=length(H); 

rms=sqrt(sum((H-P).^2)/l);  %Compute RMS error of H with respect to I 

figure                       
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Figure 1 - histogram of proposed model vs. accepted theory
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hold on 

plot(hv,H)                  %Plot Histogram vs. frequency 

plot(hv,P,'r')              %Plot Known theory vs. frequency  

 

Appendix – Additional Questions: These advances still leave many questions outstanding, 

including (but not limited to): 

1) Is the vacuum quantized in space and if so how does the location of a particle map to the 

grid? 

2) What causes the radiation to be released at only certain time steps? 

3) What is the cooling process when an individual particle emits black body radiation? 

4) What is the true form of a particle and does it interact with other particles while it is 

stepping? 

5) What happens if a particle is relativistic? 
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