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Abstract

The basic ideas and results behind polyvector-valued gauge field the-
ories and Quantum Mechanics in Noncommutative Clifford spaces are
presented. The star products are noncommutative but associative up to
second order only. The construction of Noncommutative Clifford-space
gravity as polyvector-valued gauge theories of twisted diffeomorphisms
in Clifford-spaces would require quantum Hopf algebraic deformations of
Clifford algebras.

Clifford algebras are deeply related and essential tools in many aspects in
Physics. The Extended Relativity theory in Clifford-spaces ( C-spaces ) is a nat-
ural extension of the ordinary Relativity theory [3] whose generalized polyvector-
valued coordinates are Clifford-valued quantities which incorporate lines, areas,
volumes, hyper-volumes.... degrees of freedom associated with the collective
particle, string, membrane, p-brane,... dynamics of p-loops (closed p-branes) in
D-dimensional target spacetime backgrounds.

It was recently shown [1] how an unification of Conformal Gravity and a
U(4) x U(4) Yang-Mills theory in four dimensions could be attained from a
Clifford Gauge Field Theory in C-spaces (Clifford spaces) based on the (com-
plex) Clifford Cl(4, C) algebra underlying a complexified four dimensional space-
time (8 real dimensions). Clifford-space tensorial-gauge fields generalizations of
Yang-Mills theories allows to predict the existence of new particles (bosons,
fermions) and tensor-gauge fields of higher-spins in the 10 TeV regime [2]. Ten-
sorial Generalized Yang-Mills in C-spaces (Clifford spaces) based on poly-vector
valued (anti-symmetric tensor fields) gauge fields A/ (X) and field strengths
Fun(X) have been studied in [2], [3] where X = X I'™ is a C-space poly-
vector valued coordinate
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In order to match dimensions in each term of (1) a length scale parameter must
be suitably introduced. In [3] we introduced the Planck scale as the expansion
parameter in (1). The scalar component o of the C-space poly-vector valued
coordinate X was interpreted by [4] as a Stuckelberg time-like parameter that
solves the problem of time in Cosmology in a very elegant fashion.

A Clifford gauge field theory in the C-space associated with the ordinary
4D spacetime requires Axs(X) = A4;(X) T'4 that is a poly-vector valued gauge
field where M represents the poly-vector index associated with the C-space,
and whose gauge group G is itself based on the Clifford algebra C1(3,1) of the
tangent space spanned by 16 generators I' 4. The expansion of the poly-vector
Clifford-algebra-valued gauge field A%, for fized values of A, is of the form
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The index A spans the 16-dim Clifford algebra CI(3,1) of the tangent space
such as

PAT, = & 4+ B° T, + ®® Ty + D¢ Type + D% Ty (3a)

AYTa = A, + ALT, + AP Tay + A% Tape + A Tapea. (3D)

AL Ta = A + AL Ty + A Toy + A Ty + AL Topeq. (3c)

In order to match dimensions in each term of (2) another length scale pa-
rameter must be suitably introduced. For example, since Af},, , has dimensions
of (length)™3 and A:! has dimensions of (length)™" one needs to introduce an-
other length parameter in order to match dimensions. This length parameter
does not need to coincide with the Planck scale. The Clifford-algebra-valued
gauge field AZ‘ (z#)T 4 in ordinary spacetime is naturally embedded into a far
richer object Af/[(X)I’ A in C-spaces. The advantage of recurring to C-spaces
associated with the 4D spacetime manifold is that one can have a (complex)
Conformal Gravity, Maxwell and U(4) x U(4) Yang-Mills unification in a very
geometric fashion as provided by [1]

Field theories in Noncommutative spacetimes have been the subject of in-
tense investigation in recent years, see [8] and references therein. Star Product
deformations of Clifford Gauge Field Theories based on ordinary Noncommu-
tative spacetimes are straightforward generalizations of the work by [5]. The
wedge star product of two Clifford-valued one-forms is defined as

A AN, A = ((.Af} * Af)FAFB) da? Ndz¥ =
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In the case when the coordinates don’t commute [z#, z¥] = O*" (constants), the
cosine (symmetric) star product is defined by [5]
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and the sine (anti-symmetric Moyal bracket) star product is
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Notice that both commutators and anticommutators of the gammas appear in
the star deformed products in (4). The star product deformations of the gauge
field strengths in the case of the U(2,2) gauge group were given by [5] and the
expressions for the star product deformed action are very cumbersome .

In this letter we proceed with the construction of Polyvector-valued Gauge
Field Theories in noncommutative Clifford Spaces ( C-spaces ) which are polyvector-
valued extensions and generalizations of the ordinary noncommutative space-
times. We begin firstly by writing the commutators [I' 4, ' g]. For pg = odd one
has [7]
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for pq = even one has
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The anti-commutators for pg = even are
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and the anti-commutators for pg = odd are
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For instance,
Ji = ]l = 298 T = oo™ = =865 . (11)
Teh3% = [inbanes 7] = 295030 =36 002 ol (12)
Tt = Pababybsr 7™ %290%] = —32 000 qp2iatl 4192 51200 40l (13)

etc...

The second step is to write down the noncommutative algebra associated
with the noncommuting poly-vector-valued coordinates in D = 4 and which
can be obtained from the Clifford algebra (7-10) by performing the following
replacements (and relabeling indices)

fyll s X#7 7#1#2 PN Xﬂl#Q, ........ 7#1#2 ----- By XHIR2:fin (14)

When the spacetime metric components g,,,, are constant, from the replacements
(14) and the Clifford algebra (7-10) (after one relabels indices), one can then
construct the following noncommutative algebra among the poly-vector-valued
coordinates in D = 4, and obeying the Jacobi identities, given by the relations

[Xlu, X 2 ]* = XM x XH2 _ XH2 4 XK1 — 9 XHiIK2 (15)
[XM1H2’ XV ]* = 4 (gM2V X gHIV X P2 ) (16)
[ XHikehs XV = 9 XHikeHsy [ XHiM2pspa XV = _Q glV XHaMska 4
(17)
[X;U'llLQ, XVive ]* = —8 gﬂlul X H2v2 + 8 9#11/2 X H2v1 +
89“2"1 XHivz 89“2”2 Xk (18)
[ Xpkaks  xiva ] = 2 ghavr YRk g (19)
[XIL1#2#3’ X Vivavs ]* = —36 G#lﬂg vive YHsvs L (20)



[XH1M2M3/L4, XViva ]* = —16 glt1l/1 X H2m3pave (21)
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(23)

[Xmuzuzlm, X Vivavsia ]* = 192 GHiH2p3 Vivavs X HaV4 (24)
etc...... where

GHIH2e et VIV2 eV — - glalL g2 gt + signed permutations (25)

The metric components GF1#2--Hn V1¥2--Fn i (_gpace can also be written
as a determinant of the n x n matrix G whose entries are g+’

1 . i L
det Gpxpn = 7 Ciriain €iaennin ghiatin ghiaViz gtin¥in, (26)

11,02, eyt C I = 1,2,.....,D and j1,J2,....., Jn € J = 1,2,.....; D. One must
also include in the C-space metric GMY the (Clifford) scalar-scalar component
G (that could be related to the dilaton field) and the pseudo-scalar/pseudo-
scalar component GH1#2---HD Viv2---VD (that could be related to the axion field).

One must emphasize that when the spacetime metric components g, are
no longer constant, the noncommutative algebra among the poly-vector-valued
coordinates in D = 4, does not longer obey the Jacobi identities. For this reason
we restrict our construction to a flat spacetime background g, = 7.

The noncommutative conditions on the polyvector coordinates in condensed
notation can be written as

(27)
the structure constants fMN X are antisymmetric under the exchange of polyvec-
tor valued indices. An immediate consequence of the noncommutativity of co-
ordinates is

N N A 1 A
[ X, X ] = 2 Xm0 = AXPAXY > S| < XM > = XM (28)

Hence, the bivector area coordinates X*¥ in C-space can be seen as a measure
of the noncommutative nature of the ”quantized” spacetime coordinates X*.



The third step is to define the noncommutative star product of functions of
X as

1
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where the ellipsis in (29) are the terms involving derivatives acting on QM and
O, M.....r, A1(Z) = Onry Ongy oo Om, A1(Z2). (30a)
ON\Ny.....N, A2(Z) = On, Ony oo On, A2(Z). (300)

Derivatives on Q™" appear in the ordinary Moyal star product when Q™" de-
pends on the phase space coordinates. For instance, the Moyal star product
when the symplectic structure Q™" (q, p) is not constant is given by

A*B:Aexp(ZLangmﬁn> B =
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Due to the derivative terms 0,,€2™2"? the star product is associative up to
second order only [6] (f * g) x h = f * (g * h) + O(h*). Hence, due to the
derivatives terms acting on QMY (X) in (29), the star product will no longer
be associative beyond second order. When the star product is associative and
noncommutative, with the fields and their derivatives vanishing fast enough at
infinity, one has

/A * B = /AB + total derivative = /AB. (32a)
/A* Bx C = /A(B x C) + total derivative = /A(B x C) =

/ (BxC)A = / (B x C) * A + total derivative = / B «C x A (32b)

therefore, when the star product is associative and the fields and their derivatives
vanishing fast enough at infinity (or there are no boundaries) one has

/A*B*C:/B*C*Az/C*A*B. (32¢)



The relations (32) are essential in order to construct invariant actions under
star gauge transformations.

The C-space differential form associated with the polyvector-valued Clifford
gauge field is

A = Ay dXM = ddo + A, da" + A, do" 4+ +

_____ g dhrzha (33a)

where @ = @4 Ty, A, = Aﬁ Fa, Ay = .A;i‘l, | AR The C-space differential
form associated with the polyvector-valued field-strength is

F = Fyn dXM™ A dXN = Fy,do A da* + Fy ., do A dabii2 4

Fo vivg..ovg do Ndz? P2V 4 B da? A dx” + Fuy o, v, de?P2 AN A2 4

+ FHle ~~~~~ Hd—1 ViV2..... Vd—1 dxulltz ...... pa=t A de1V2 ....... Vdil' (33b)

The field strength is antisymmetric under the exchange of poly-vector indices
Fyn = —Fny. For this reason one has Fyp = 0 and Fio. 412
Finally, given the noncommutative conditions on the poly-vector coordinates
(27), the components of the Clifford-algebra valued field strength F AC4 ylc in
Noncommutative C-spaces are

Fiuny = F[%N] e = (0m .A% — On A]\C/f YTo +

(Ap« AR — AR+ AR ) {Ta, Tp } + % (A +AS + AR+ A5 ) [T, T
(34)
The commutators [ 4, I'p | and anti-commutators { I'4, I'p } in eqs-(34),
where A, B are polyvector-valued indices, can be read from the relations in eqs-
(7-10) . Notice that both the standard commutators and anticommutators of the
gammas appear in the terms containing the star deformed products of (34) and
which define the Clifford-algebra valued field strength in noncommutative C-
spaces; i.e. if the products of fields were to commute one would have had only the
Lie algebra commutator A4, A% [T 4,Tg] pieces without the anti-commutator
{T'4,Tp} contributions in the r.h.s of eq-(34).

We should remark that one is not deforming the Clifford algebra involving
[Ta, I'p]and { T4, I'p } in eq-(34) but it is the "point” product algebra
A3 % AL of the fields which is being deformed. (Quantum) g-Clifford algebras
have been studied by [9]. The symmetrized star product is

N | =

1
Anp xs AR = 5 (AN e AR + AR £ AY) = Ay AR+
XM X5 (9, 0, AYy) (8, Ox AR) + .. (35)
the antisymmetrized (Moyal bracket) star product is

A0 AR = - (A x AR — A« AS)) = XM (0, Ay (0, AS) +
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It is important to emphasize, as it is customary in Moyal star products, that
the poly-vector coordinates appearing in the r.h.s of eqs-(35-36) are treated
as c-numbers (as if they were commuting) while it is the product of functions
appearing in the Lh.s of (35-36) which are noncommutative.

Star products in noncommutative C-space lead to many more terms in
egs-(35-36) than in ordinary noncommutative spaces. For example, there are
derivatives terms involving polyvectors which do not appear in ordinary non-
commutative spaces, like

g o O 08 .
2 (gl XM — gmv xhe )% g’;‘ﬁ. (37h)
X Hh2fisy a)?/f;;zius 234(% (37¢)
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There is a subalgebra of the noncommutative polyvector-valued coordinates al-
gebra (27) involving only X* and the bivector coordinates X** when the space-
time metric components g, are constant. However, because [X#1#2 X¥] # 0
one must not confuse the algebra in this case with the ordinary ©-noncommutative
algebra [X#1, X#2] = QM2 where the components of O#1#2 are comprised of
constants such that [©@#1#2 XV = (.

The analog of a Yang-Mills action in C-spaces when the background C-space
metric GMY is X-independent is given by

S = / [DX] < FjjnTa * FfoTp > GMP GN@, (38)

where < I'y I'p > denotes the Clifford-scalar part of the Clifford geometric
product of two generators. As mentioned in the introduction suitable powers
of a length scale must be included in the expansion of the terms inside the
integrand in order to have consistent dimensions (the action is dimensionless).
The action (38) becomes

/ [DX] ( Fyn * FMN 4 B8 « EMN 4

Fyie = FYY + + Fyigzete o« FMNO ). (39)

aijaz

the measure in C-space is given by

DX = do Hdz“ H dxtihz I_Ida:““”“3 ..... dghhztid (40a)



The Clifford-valued gauge field A, transforms under star gauge transforma-
tions according to A}, = U 's Ay U, + U 0y U, . The field strength F
transforms covariantly Fj,y = U7 ! % Fayn x U, such that the action (39) is star
gauge invariant. U, = exp.(£(X)) = exp.(£4(X)T4) is defined via a star power
series expansion U, = >, 2 (£(X))? where (£(X))? = £(X) % &(X) * ... x£(X).
The integral [F «+ F = [F F + total derivatives. If the fields vanish fast
enough at infinity and/or there are no boundaries, the contribution of the total
derivative terms are zero.

If, and only if, the star product were associative one would have had star
gauge invariance of the action (39) under infinitesimal §F' = [F, {]. transforma-

tions

555:/<F*[F,§}*> :/<F*F*g>—/<F*§*F>.

(400)
If the star product were associative due to the relations in eqs-(32) one could
write eq-(40b) in the form

/FA*FB*§C<FAFBFC> —/FA*fc*FB<FAFcFB > =

/FB*gc*FA < TpTcly > —/FA*gC*FB < TaTcTp > =0

(40c¢)
such that in order to arrive at the zero result in (40c), assuring 6S = 0, one
needs to use the cyclic property of the scalar part of the geometric product

< TyuT'gpTleg > = < Tglglyg > = <T¢glal'p > (40d)

and relabel the indices B < A in the third term of (40c). However, since the
star product (29) is associative up to second order only, one has star gauge
invariance of the action up to second order only. Nevertheless, one still has
ordinary gauge invariance under infinitesimal transformations 6 F = [F, £] of the
action because

S=/<F*F> :/<FF>+t0talderivative: < FF >

(40e)
and the last integral is gauge invariant. In ordinary commutative C-spaces one
can perform the mode expansion in integer powers of the poly-vector coordinates



The sum over the spacetime dependent fields Ay, (x*) is taken over the infinite
number of integer-valued modes associated with the collection set of integers

ny = No,N12y «eeeee s 1123y eeenens s V12345 ceveeeens ,N12...d- (42)

In Noncommutative C-spaces we may replace the ordinary products of the poly-
vector valued coordinates in eq-(41) for their star products.

To finalize we provide a description of QM in Noncommutative C-spaces
based on Yang’s Noncommutative phase space algebra [10]. There is a subalgebra
of the C-space operator-valued coordinates which is isomorphic to the Non-
commutative Yang’s 4D spacetime algebra [10]. This can be seen after es-
tablishing the following correspondence between the C-space vector/bivector
(area-coordinates) algebra, associated to the 6D angular momentum (Lorentz)
algebra, and the Yang’s spacetime algebra via the SO(6) generators ¥ in 6D
(i,7 =1,2,3......,6) as follows [11]

h R
ih I o iﬁ DGR YL P iXN. (43a)

PATH o XM TS o i%lf”‘ (43b)

where the indices pu, v = 1,2, 3,4. The scales A and R are a lower and upper scale
respectively, like the Planck and Hubble scale. The SO(6) algebra [X%, 2+ =

—gFeit 4 can be recast in terms of a noncommutative phase space algebra
as
3 S o6 g % 55 A s
[P*, Nl = —in ﬁXﬂ’ (X*, N =1in %P“. (44)
TR 127 . v DIt DU . h2 g% an% v
[(XH, XV] = —in®™ XM, [PF, PY] = —in® R X XM = PEDILS
(45)

N . A . N
[XH, P'] = ihnt” 7 YO = ihng N, [XM, N] = 0. (46)
The last relation is the modified Heisenberg algebra in 4D since N does not
commute with X* nor P*. The remaining nonvanishing commutation relations
are

(2, XP] = —ing XV +inP X" (47a)
(S, PPl = —in'? PY +in"P P, (47b)
(S0, ST = — i ST i ST — (47c)

the last relation is the same as that in eq-(18) after reabsorbing factors of 2
in the definition of ¥#. Eqs-(44-47) are the defining relations of the Yang’s
Noncommutative 4D spacetime algebra involving the 8D phase-space variables
X# P* and the angular momentum (Lorentz) generators 3# in 4D. The above
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commutators obey the Jacobi identities. An immediate consequence of Yang’s
noncommutative algebra is that now one has a modified products of uncertain-
ties

h 2?2
AXPAPY = oo || < 2% >|; AX*AXY > 5 | < = >
v 1. n 2 v
APHAP > S(5)7 < 2 > L. (48)

The Noncommutative phase space Yang’s algebra in 4D can be general-
ized to the Noncommutative Clifford phase space algebra associated to the 4D
spacetime after following the same prescription as in eqs-(43) by invoking higher
dimensions ( 12D in this case instead of 6D ) as follows

XH s AXTHAT®, PF %F“/\FG. (49)

Xrarz oy yluapel BT1 £ N2 pia A TH2 ATS AT

prakz o, Yhope] 168 o (%)2 I AT#2 AT ATS, (50)

Xrnzbs s Ylipzus] 579) o4 N8 i T2 ATHS AT ATT AT?

pranzps , yplipzps] [6810] (%)3 DU ATH2 ATHS ATOATS AT (51)

Xrapzbspa o Ylapapopal BTN o0 \E i ATH2 AT AT#4 ATP ATT AT AT

prakzpsps , luipepspa] [681012] £ (%)4 TP ATH2 ATH3 AT ATS AT ATOAT 2,

(52)
The indices p1, po, 3, g range from 1,2,3,4. The extra indices span 8 ad-
ditional directions (dimensions) leaving a total dimension of 4 + 8 = 12. The
noncommutative Clifford phase space algebra commutators are defined in terms
of the algebra

[YMN PR — _j gMP YNQ 4 gMQ NP 1 j GNP yMQ _j gNQ yMP
(53)
The generators obey YMN = —TNM and GMN = GNM ynder an exchange of

multi-indices M < N.
The algebra (53) has the same structure as a generalized spin algebra and
satisfies the Jacobi identities. We must stress that

[N, Pe) 2 [TV, 07,19 ]. (54)
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except in the special case when M, N, P,Q are all bivector indices : hence we
must emphasize that the generalized spin algebra (53) is not isomorphic to
the noncommutative algebra of eqs-(15-24) | For example, from the commutator

[T[/L1pzu3] [579}, T vavavs] [6810]] = — ¢ @Qlmnzps] rivavs] y[579] [6810] (55a)

one can infer the Weyl-Heisenberg algebra commutator

[XHiHks  privavs] — B3 Glrreps] [vivevs] p[579] [6810] (55b)

From the commutator

(s (751 plavas] 579 = _j GI5™) B79] sl brsassl, (560)

one can infer the commutator among the tri-vector coordinates
[X#um#s’ XV1V2V3} = — i \6 @579] [579] plupaps] [vivevs] (56b)

where Ylnzns] vevs] i g generalized angular momentum (spin) generator.
From the commutator

[rlumens] 1579 p[579] (6810 — j [579) [579] L pams) (6810] (57a)

one can infer the commutator

ig G579 1579] pripzps (57b)

[X,ul[tz,ug,’ T[579] [6810]] = 4 )\6
which exchanges the X#1H2Hs for PH1H2E3 etc ... Therefore, eqs-(55,56,57) are
the suitable tri-vector analog of eqs-(44,45,46). Clearly, the above non-vanishing
commutators dif fer from those in eqgs-(15-24) and will modify the QM wave
equations when one introduces potential terms like V(X) = g(X * X *....... * X).
QM in ordinary (commutative) C-spaces can be found in [11].

Having provided the basic ideas and results behind polyvector gauge field
theories in Noncommutative Clifford spaces, the construction of Noncommuta-
tive Clifford-space gravity as polyvector valued gauge theories of twisted diffeo-
morphisms in C-spaces will be the subject of future investigations. It would
require quantum Hopf algebraic deformations of Clifford algebras [9]. Such the-
ory is far richer than gravity in Noncommutative spacetimes [12].
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