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ABSTRACT

Noncommutative p-brane actions, for even p+ 1 = 2n-dimensional world-volumes, are written explicitly
in terms of the novel Moyal-Yang ( Fedosov-Kontsevich ) star product deformations of the Noncommutative
Nambu Poisson Brackets (NCNPB) that are associated with the noncommuting world-volume coordinates
g, p? for A =1,2,3,..n. The latter noncommuting coordinates obey the noncommutative Yang algebra
with an ultraviolet Lp (Planck) scale and infrared (R ) scale cutoff. It is shown why our p-brane actions in
the ”classical” limit A.;; = ALp/R — 0 still acquire nontrivial noncommutative corrections that differ from
ordinary p-brane actions. Super p-branes actions in the light-cone gauge are also amenable to Moyal-Yang
star product deformations as well due to the fact that p-branes moving in flat spacetime backgrounds, in the
light-cone gauge, can be recast as gauge theories of volume-preserving diffeomorphisms. The most general
construction of noncommutative super p-branes actions based on non ( anti ) commuting superspaces and
quantum group methods remains an open problem.

1. THE YANG’S NONCOMMUTATIVE SPACETIME AGEBRA

Yang’s noncommutative space time algebra [1] is a generalization of the Snyder algebra [2] (where now
both coordinates and momenta are not commuting) that has received more attention recently [3]. The
isomorphism of Yang’s algebra [1] to the 4D (angular momentum algebra) conformal algebra SO(4,2) was
established by Tanaka [3] (within the context of the holographic principle) by using the correspondence
XH s LpY¥H5 where Lp is an ultraviolet scale ( Planck scale ) and P* « (h/R)X*® where R is an infrared
scale ( the throat size of de Sitter, Anti de Sitter space ) . AXHY, hX*5 hXH6 A¥56 are the angular momentum
operators in 6D. This construction [2] can be generalized to higher dimensional extensions of Yang’s algebra
[1] by simply replacing the SO(4, 2) algebra with SO(D,2).

Using this correspondence allows to write the exchange commutators of the Yang’s spacetime algebra (
which exchange X and P in units ¢ = 1)

h L2 L
[P N] = —inf® o X0 (X N] = m55?PP“. N = %256. (1-1)
The coordinates and momenta are no longer commuting:
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[X*, XY] = —in® LE2* . [PH,PY] = —m%ﬁz# : (1-2)
where AX* = MM are angular-momentum like operators. The signatures for AdSs space are n®® = +1;
7% = —1 and for the Fuclideanized AdSs space are n°> = +1 and 1°® = +1. The modi fied Weyl-Heisenberg
algebra is :

L
(X, PH] = —mnﬂ"fpzw — —ihn"™ . (1-3)



The other commutation relations are the standard angular momentum ones

[ZHV7 Zpo] = i(nuazup + nypzua - nupzya - nuazup)- (1 - 4)

and
(B, Xpl = i(upXp = Mup X)) [Zpws Pol = i(Mup P — 1upPy).- (1-5)

These commutators obey the Jacobi identities. When Lp — 0 and R — oo one recovers the ordinary
commutative spacetime algebra. The Snyder algebra [2] is recovered by setting R — oo while leaving Lp
intact. To recover the ordinary Weyl-Heisenberg algebra is more subtle. Tanaka [3] has shown that the
spectrum of the operator N' = (Lp/R)%5% is discrete given by n(Lp/R) . This is not suprising since the
angular momentum generator M?5% associated with the Euclideanized AdSs space is a rotation in the now
compact z° — 2 directions. This is not the case in AdSs space since n% = —1 and this timelike direction
is no longer compact. Rotations involving timelike directions are equivalent to noncompact boosts with a
continuous spectrum.

In order to recover the standard Weyl-Heisenberg algebra from Yang’s Noncommutative spacetime
algebra, and the standard uncertainty relations AxAp > h with the ordinary % term , rather than the nh

Lp

term, one needs to take the limit n — oo limit in such a way that the net combination of n=5% — 1.

This can be attained when one takes the double scaling limit of the quantities as follows .

L L? L?
Lp—0. R—oo. LpR—L* lim, .o nﬁp = anR = nL2P

— 1. (1-6)

From eq-(1-6) one learns then that nL? = LpR = L? where the spectrum n corresponds to the
quantization of the angular momentum operator in the x° —x° direction (after embedding the 5D hyperboloid
of throat size R onto 6D ) . Tanaka [3] has shown why there is a discrete spectra for the spatial coordinates
and spatial momenta in Yang'’s spacetime algebra that yields a minimum length Lp ( ultraviolet cutoff in
energy ) and a minimum momentum p = i/R ( maximal length R , infrared cutoff ) . The energy and
temporal coordinates had a continous spectrum.

The physical interpretation of the double-scaling limit of eq-(1-6) is that the the area L? = Lp R becomes
now quantized in units of the Planck area L% as L? = nL?% . Thus the quantization of the area ( via the
double scaling limit ) L? = LpR = nL% is aresult of the discrete angular momentum spectrum in the z°—x®
directions of the Yang’s Noncommutative spacetime algebra when it is realized by ( angular momentum )
differential operators acting on the Euclideanized AdSs space ( two branches of a 5D hyperboloid embedded
in 6D ). A general interplay between quantum of areas and quantum of angular momentum, for arbitrary
values of spin, in terms of the square root of the Casimir A ~ L%,/j(j + 1), has been obtained a while ago in
Loop Quantum Gravity by using spin-networks techniques and highly technical area-operator regularization
procedures [4] .

In [5] we have shown why AdS, gravity with a topological term; i.e. an Einstein-Hilbert action with
a cosmological constant plus Gauss-Bonnet terms can be obtained from the vacuum state of a BF-Chern-
Simons-Higgs theory without introducing by hand the zero torsion condition imposed in the MacDowell-
Mansouri-Chamsedine-West construction. One of the most salient features of [5] was that a geometric mean
relationship was derived from first principles, among the cosmological constant p,qeyum , the Planck area
L% and the AdS, throat size squared R? given by (p,) ™! = (Lp)?(R?). A similar geometric mean relation is
also obeyed by the condition LpR = L?(= nL%) in the double scaling limit of Yang’s algebra which suggests
to identify the cosmological constant as pygcuum = L~ . Notice that by setting the infrared scale R equal
to the Hubble radius horizon (today) Ry and Lp equal to the Planck scale one reproduces precisely the
observed value of the vacuum energy density : p ~ Lpr, Ry = Lp*(Lpanck/Ru)? ~ 107120M4, .

Non (anti) commuting superspaces have been studied by several authors [6] , however the supersymmetric
version ( if possible ) of the full fledged Yang’s algebra, for noncommuting coordinates and momenta, with
an upper R and lower scale L,, , is not known, to our knowledge. Having presented this introductory review
of Yang’s algebra we proceed with the main results of this work.

2. MOYAL-YANG STAR PRODUCTS AND NONCOMMUTATIVE BRANES



Brane actions from quenched SU(N) QCD in the large N — oo limit have been constructed in [7] by
means of Moyal deformation quantization methods. Moyal deformations of Gravitational actions via SU(c0)
gauge theories were presented in [8]. Some time ago, Self Dual Gravity from SU(co) Self Dual Yang Mills
was provided in [9,10] . The area-preserving diffeomorphisms ( diffs ) algebra of the sphere was shown to
be isomorphic to a basis-dependent limit of SU(cc) by [11] and many important physical applications of
membranes and higher spin theories within the context of W, algebras was analyzed by many authors,
in particular by [12]. The task now is to construct novel Moyal star product deformations of ( super )
p-brane actions based on the noncommutative spacetime Yang’s algebra where the deformation parameter
is heyr = hLp/R for nonzero values of 7.

The modified Poisson bracket is now given by

{F @ p"), G (" p") Yo = (022F) QP (925G) = (94 F) {a”, 4"} (948G) + (9pa F) {p™. 0"} (8,06) +

(0,4F) {g*. 9"} (0,5G) + (9paF) {p™. 4"} (9,59). 2-1)

where the entries {g*, ¢®} # 0, {p?,pP} # 0, and {p?,¢®} = —{p?, ¢} can be read from the commutators
described in the previous section by simply defining the deformation parameter fi.;r = i(Lp/R).
Denoting the coordinates ¢”,p? by Z4 and when the Poisson structure Q4% is given in terms of

constant numerical coefficients, the Moyal star product is defined in terms of the deformation parameter
fLeff = fLLp/R as

(FxG)(Z) = exp [ (iheg) QP 07V 052 | F(Z1) 6(2) 20 20— 2. (2-2)

where the derivatives 81(421) act only on the F(Z;) term and 8}(3Z2) act only on the G(Z3) term.

Because in our case the Poisson structure Q47 is given in terms of variable coefficients, it is a function of
the coordinates 9Q48 #£ 0, since the Yang’s algebra is basically an angular momentum algebra, the suitable
Moyal-Yang star product ( in R? ) given by Kontsevich [13] will acquire corrections to the ordinary Moyal
star product :
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The Kontsevich star product is associative up to second order [13] (f*xg)xh = f* (g h) + O(hiff). The
most general expression of the Kontsevich star product in Poisson manifolds is quite elaborate and shall not
be given here [13]. Star products in curved phase spaces have been constructed by Fedosov [14] . Despite
these technical subtlelties it will not affect the final expressions for the ”classical” Noncommutative p-brane
actions (shown below) when one takes the A.fr — 0 ”classical” limit. We will show below that in that limit
there are still nontrivial noncommutative corrections to the ordinary p-brane actions .

Our final expressions below, in the h.ry — 0 limit, already encode the Noncommutative structures
inherent in the noncommuting world volume coordinates. We shall display as well the Kontsevich star
products corrections . The Noncommutative Moyal-Yang Bracket defined in terms of the Kontsevich star
product is : {{F , G}} = FxG — GxF. In particular, when one relates the (in the even-dimensional
world-volume case , p + 1 = 2n) world-volume coordinates o!,02, ...... ,oPT! of p-branes to the 2n phase
space variables ¢, p as shown in [7,8] , one has

{ Xulah ™) X (@ p™) P =X+ Xy — X, * X, (2—4)

where one has rewritten X*(a',02,.....) by X*(¢4,pP®). A Moyal-Yang star-product deformation of the
Nambu-Poisson Brackets (MYNPB) can be defined when p + 1 = 2n = even [15] :

(X s Xy oo X Moty ves = {0 X Xpw 1 % {4 Xpoo X 1} 5 ot {{ X X0 1) i( ........



where the ellipsis denotes signed permutations; i.e. the Moyal-Yang star-product deformations of the Nambu-
Poisson-Brackets ( MYNPB ) can be decomposed as suitable antisymmetrized sums of Moyal-Yang star
products of the Moyal-Yang brackets (MYB) among pairs of variables.

When p+1 = odd, attempts have bee made to introduce deformations based on the Zariski star product
deformations of the Nambu Poisson Brackets ( NPB), but unfortunately these deformed brackets failed to
obey all the required algebraic properties of a ( quantum ) bracket [15]. Therefore, to our knowledge, only
when p+1 = 2n is even one can perform a suitable star product deformations of the NPB. The Dirac-Nambu
p-brane action is

S =T / [P o] \/ |det (Gup)| = T / [dP o] \/|det (G (9 X1) (9pX7)]|. (2 —6)

where T is the p-brane tension. When the target spacetime background is flat, G, = 1., , the determinant
can be rewritten in terms of Nambu Poisson Brackets ( NPB ) as

det (Gab) = {Xﬂl’Xlw? ..... ,)(HpJrl }{XHI,X‘Q, ..... ,X“P+1}NPB. (2—7)

det (Gab): {X‘ul,Xﬂz, ..... ,X”P+1 }{XVI,XVZ, ..... ,XVerl}NPB CTVIUWCTV/QV2 ............ G (278)

Hp+1Vp+1*
and one cannot naively pull the metric factors G, inside the brackets and perform the index contractions
inside the brackets. The Noncommutative branes action is simply obtained in a two step process. Firstly,
we construct the Moyal-Yang action S};y by using Moyal-Yang star products and brackets in the special
case p+ 1 = 2n = even

Suy =T / [@*"a] /| det [ Gap(XP(0)) ] | (2-9)
where the Moyal-Yang deformations of the determinant det [ Gqp(X”(0)) |« are :

1
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(2 — 10)
The correct Moyal-Yang deformed action S}y, for p-branes ( such that p + 1 = 2n ) moving in curved
backgrounds, must involve naturally the Moyal-Yang deformations of the determinant det (Ggp)s as shown
in eq-(2-10) . However, when the target spacetime is flat one could use the other form of the action given
by

The second step after eq-(2-10) is to take the h.fy — 0 limit such that the star products of functions reduce
to ordinary pointwise products and the Moyal-Yang Brackets ( MYB) reduce to Noncommutative Poisson
Brackets ( NCPB)

. 1 Y ” v
limp,;—0 ﬂ{{XM,X = X" X Yvors = (0,4 X7) {¢*, ¢} (0,2 X7) +

(Opa X1) {p™, 0P} (9p X¥) + (992 X*) {g™, 0"} (Bpp XY) + (3,4 X") {p*,¢"} (9,5XY).  (2-12)

where the entries {¢?,¢®} # 0, {p?,pB} # 0, and {p?,¢®} = —{p?,¢®} can be read from the 4D Yang’s
algebra, in the particular case 7°° = 1% = 1 (which is associated with an Euclideanized AdS space )

1 L?
A B . A B AB
= N , = ——X"". 2—13a
{q > q }NCPB llmhgff 0 iﬁeff [q q ] 7 ( 3 )



. 1 h
{p*,p®YNeps = limp,,,—0 ﬂ[pA,pB] = —FEAB (2 —13b)
. 1
{C]AapB}NCPB = llmhcffao mi[qA,pB] = —nAB. (2 —13¢)
with 1
2P = 2(¢"” =Y. ¢t =dah pt =0 (2 - 13d)

one can generalize Yang’s original 4-dim algebra [1] to Noncommutative 2n-dim world-volumes and /or space-
times by working with the 2n 4+ 2-dim angular-momentum algebra SO(d,2) = SO(p + 1,2) = SO(2n, 2).
Therefore, the Sy¢ action may now be written in terms of the Noncommutative Nambu Poisson Brackets
(NCNPB)

(2 —14)
defined as
{ XM17Xu2a """ aXup+1}NCNPB =

{ Xy Xpn YnerB { Xpugy Xpy INCPBvveeen { Xy, Xy, INcPB + permutations. (2 —15)
where the { X,,,,X,, }ncpPB,..... brackets are defined by eqs-(2-12, 2-13). Notice that the measure :

d*o =dg' Ndpt ANdg® Ndp® A ... Adg™ A dp”. (2 —16)

has world-volume dimensions i" that compensates for the dimensions A~ " of the square root expression of
( 2-14) stemming from the brackets.

To illustrate the corrections to the ordinary p-brane actions due to the inherent noncommutative world
volume coordinates we will present the explicit corrections to the p-brane action described by (2-17a) whose
world volume is p+ 1 = 2n-dimensional spanned by the ¢', ¢?, ....q" and p', p?, ....p" coordinates. The NCPB
are :

1=n

L2 o o
(X", Xt vopp = ) 0y X0, XH — o5 Y (d'Y — ¢'p') O X110y X1 —

i=1 i,j i#j
1 o ,
ﬁ Z (quJ—qu) 8[piX”18pj]X”. (2—17)

1,5 i#£]
these NCPB are the ones that define the NCNPB
{)(“1,)(”2,)(M37 ............ Xuzn}NCNpBE
{ X*M XP2 Ynyeps { XM, XM InepBec... { XHen—t XH2n L yopp. + signed permutations. (2 — 18)

and which are inserted into the Noncommutative p-brane action (2-14) when p+ 1 = 2n. The last two terms
in the r.h.s of (2-17) explicitly furnish the corrections to the ordinary p-brane actions (2-14) due to the
inherent noncommutative world-volume coordinates expressed in eqs-(2-13a, 2-13b, 2-13¢, 2-13d). Notice
that the limits 7 = 0 and/or L = 0, 0o in eq-(2-17) are singular even if one were to take take L?/h* — 1. As
it was stated earlier, in the ”classical 7 ficyy — 0 limit, there are still nontrivial noncommutative corrections
to the ordinary classical p-brane actions, and for this reason our p-brane actions described in (2-14) differ
from the standard p-brane actions.

Concluding, the action (2-14) written explicitly in terms of NCNPB given by eqs-(2-17, 2-18) is the
sought-after Noncommutative p-brane action associated with the noncommuting world-volume coordinates

5



g, p? given by the Yang’s algebra (2-12, 2-13) after one identifies the p + 1 = 2n world-volume coordinates
o’s with the 2n-dim phase space variables ¢*, p? . Finally, the Moyal-Yang (Kontsevich) deformed p-brane
action (2-11), for non-zero values of fi.ys , requires to write

1 (GPerf) oyivir yin
0 0, = (00 0 g+ ) i 0 3,50

ihe . .
@esr) guun (o, 00,0, X110, X0 — 9, X1419,,0,, X00) | + O(R2 ). (2-19)
that are introduced in the expression ( 2-11) for the Moyal-Yang deformed p-brane action S* after using eqs-
(2-3, 2-5, 2-13) for the Kontsevich star product, the MYNPB and the symplectic matrix 25/ respectively.

2nx2n

3. NONCOMMUTATIVE SUPER p-BRANES,

p-branes as composite antisymmetric tensor field theories with a volume preserving diffs invariance were
studied in [16,17]. In this section we will precisely show how light-cone gauge super p-branes actions are
amenable for star product deformations as well due to the fact that p-branes can be recast as gauge theories
of volume-preserving diffs in the light-cone gauge [18]. Super p-branes actions exist only for certain values
of (p, D), and for certain values of the world-volume and target spacetime background signatures, due to
constraints which originate by marching the number of physical bosonic and fermionic degrees of freedom.
For example, supermembranes ( p = 2 ) of Minkowski signatures can only be constructed in D = 4,5,7,11
dimensions. The number of physical bosonic degrees of freedom is D — 3 = 1,2,4,8 which matches the
fermionic physical degrees of freedom.

The lightcone gauge is obtained after imposing the conditions [18] :

1
=%
The lightcone gauge action for super p-branes of spherical topology, moving in flat target spacetime

backgrounds, can be rewritten in terms of Nambu-Poisson brackets of the physical lightcone variables
X1(1,0%),¥(r,0%) as follows [18]

X+ (XO+ XPY., Xt =z +ptr. goo=—h = —det (gir). goi=0. TTO=0. (3-1)

1 1
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2UDyW 4 T Airizeier £ XX
5 oV + p—1) Y {

where I = 1,2,3,....D — 2 and ¢® = o',02,...... ,oP are the spatial p-degrees of freedom of the super p-

brane. Since the action (3-2) involves taking the Nambu Poisson Brackets w.r.t to the p spatial variables
of the p-brane, the only even p values for the super p-branes correspond now to p = 2 ( membranes ) in
D = 4,5,7,11 dimensions and p = 4 in D = 9 dimensions. The Moyal-Yang (Kontsevich ) star products
deformations of (3-2) are displayed below in eq-(3-11, 3-12).

The covariant world-volume temporal derivative is defined

0 Xigy ooy Xiy 1, UL (3-2)

oxT! oxT’
DoX'= —— +u9, X" = — + { A} A%, . AP X} 3-3
0 or +u o7 +{ ’ ) ’ ’ } ( )
in terms of the world-volume gauge field u® satisfying the divergence free condition d,u® = 0.
For p-branes with spherical topology the world-volume gauge field u® can be expressed as the multi-
symplectic gradient of the p — 1 functions A', 42, ... AP~ as follows

. DAYOAT 9Ar!
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The action displays a gauge invariance under p-volume preserving diffs

oxT  oxe
XI __ya _ _
0XT=A do@’  doo 0. (3-5)

The divergence free condition of the parameters is required to preserve the p-volumes and

o\
Su = ——— — uPOpA + A\ Opu. (3-6)

or
These transformations can be rewritten in terms of Nambu-Poisson brackets by rewriting the parameters \*

as the multi-symplectic gradient involving another set of parameters ( functions ) A%(at, 02, .....,0P) :
OAY OA? OAP~1
A = Mozt — 3-7
¢ o™ Joa2 Qo =1 ( )
SXT={ AV A% AP xT L (3-18)
a 2 1 2 -1 ya 1 2 -1 ,a
ou == —{ A A% AP N P A AR AP e ] (3-9)
T

There is the residual Abelian gauge invariance W — Wab 4 9,09%¢.
The Moyal-Yang (Kontsevich ) star products deformations require to replace the term (Do X7)? in (3-2)

by
ox’ _ ox7! i
(DoX1)2 = ( o +{{ AN A% L AP XT ) ( o +H{{ AL AT AT X)) (3 10)
The term
{ Xil,Xiz, ..... ,Xip }2 — {{ )(7;1,‘)(1'27 ..... 7Xip }}* * {{ Xil,XZ'Q, ..... ,Xip }}* etc...... (3 — ].1)

and, naturally, the symmetry transformations (3-8, 3-9) require the use of Moyal-Nambu brackets

We conclude by adding that it is desirable to recur to superspace methods to build covariant actions
beyond the light cone gauge and to deform these super p-brane actions in superspace by deforming the
superspace measure associated with the super p-branes. In order to achieve this one would need the proper
formulation of Non (anti ) commuting superspace algebras. This remains an open problem. Another inter-
esting avenue to pursue the study of noncommutative branes is based on the fact that Yang’s algebra can
also be realized in terms of the holographic area-coordinates algebra of the Clifford-space associated with the
6D Clifford algebra. Namely, the holographic-area coordinates algebra is isomorphic to the Yang’s algebra
by recurring to the coordinates/angular momentum correspondence found by Tanaka [3]. A current review
of the Extended Relativity program in Clifford spaces can be found in [19].
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