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Abstract

The Riemann’s hypothesis (RH) states that the nontrivial zeros of the
Riemann zeta-function are of the form sn = 1/2 + iλn. By constructing
a continuous family of scaling-like operators involving the Gauss-Jacobi
theta series and by invoking a novel CT -invariant Quantum Mechanics,
involving a judicious charge conjugation C and time reversal T operation,
we show why the Riemann Hypothesis is true. An infinite family of theta
series and their Mellin transform leads to the same conclusions.

1 Introduction

Riemann’s outstanding hypothesis that the non-trivial complex zeros of the
zeta-function ζ(s) must be of the form sn = 1/2± iλn, is one of most important
open problems in pure mathematics. The zeta-function has a relation with the
number of prime numbers less than a given quantity and the zeros of zeta are
deeply connected with the distribution of primes [1]. References [2] are devoted
to the mathematical properties of the zeta-function.

The RH has also been studied from the point of view of mathematics and
physics [23], [4], [5], [6] among many others. We found recently a novel phys-
ical interpretation of the location of the nontrivial Riemann zeta zeros which
corresponds to the presence of tachyonic-resonances/tachyonic-condensates in
bosonic string theory. If there were zeros outside the critical line violating the
RH these zeros do not correspond to poles of the string scattering amplitude [8].
The spectral properties of the λn’s are associated with the random statistical
fluctuations of the energy levels (quantum chaos) of a classical chaotic system
[26]. Montgomery [9] has shown that the two-level correlation function of the
distribution of the λn’s coincides with the expression obtained by Dyson with
the help of random matrices corresponding to a Gaussian unitary ensemble.

Wu and Sprung [10] have numerically shown that the lower lying non-trivial
zeros can be related to the eigenvalues of a Hamiltonian whose potential has a
fractal shape and fractal dimension equal to D = 1.5. Wu and Sprung have
made a very insightful and key remark pertaining the conundrum of constructing
a one-dimensional integrable and time-reversal quantum Hamiltonian to model
the imaginary parts of the zeros of zeta as an eigenvalue problem. This riddle of
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merging chaos with integrability is solved by choosing a fractal local potential
that captures the chaotic dynamics inherent with the zeta zeros.

In [39] we generalized our previous strategy [3] to prove the RH based on ex-
tending the Wu and Sprung QM problem by invoking a judicious superposition
of an infinite family of fractal Weierstrass functions parametrized by the prime
numbers p in order to improve the expression for the fractal potential. A frac-
tal SUSY QM model whose spectrum furnished the imaginary parts of the zeta
zeros λn was studied in [3] , [39] based on a Hamiltonian operator that admits
a factorization into two factors involving fractional derivative operators whose
fractional ( irrational ) order is one-half of the fractal dimension of the fractal
potential. A model of fractal spin has been constructed by Wellington da Cruz
[22] in connection to the fractional quantum Hall effect based on the filling fac-
tors associated with the Farey fractions. The self-similarity properties of the
Farey fractions are widely known to posses remarkable fractal properties [24].
For further details of the validity of the RH based on the Farey fractions and
the Franel-Landau [25] shifts we refer to the literature on the zeta function.

In the key section below we start by reviewing our previous work [7] based on
a family of scaling-like operators in one dimension involving the Gauss-Jacobi
theta series (we also study the case of an infinite parameter family of theta series)
where the inner product of their eigenfunctions Ψs(t; l) is given by (2/l)Z [ 2l (2k−
s∗ − s)], where Z(s) is the fundamental Riemann completed zeta function and
(l + 4)/8 = k. There is a one-to-one correspondence among the zeta zeros
sn ( such that Z[sn] = 0 and ζ(sn) = 0 ) with the eigenfunctions Ψsn

(t; l) (of
the latter scaling-like operators) which are orthogonal to the ”ground” reference
state Ψso(t; l); where so = 1

2 + i0 is the center of symmetry of the location of the
nontrivial zeta zeros . By invoking a novel CT -invariant Quantum Mechanics,
involving a judicious charge conjugation C and time reversal T operation, we
show why the Riemann Hypothesis is true. The key reason why the Riemann
hypohesis is true is due to the CT invariance and that the pseudo-norm <
Ψs|CT |Ψs > is not null. Had the pseudo-norm < Ψs|CT |Ψs > been null, the
RH would have been false.

2 CT - symmetric Quantum Mechanics implies
the Riemann Hypothesis

The essence of the proof of the RH relies in the construction of a CT - symmet-
ric Quantum Mechanics which is a novel generalization of the PT -symmetric
QM [36] and in establishing a one to one correspondence among the zeta zeros
sn with the states Ψsn

(t) orthogonal to the ground ( vacuum state ) Ψso
(t)

associated with the center of symmetry so = 1
2 + i0 of the non-trivial zeta zeros

and corresponding to the fundamental Riemann function obeying the ”duality”
condition Z(s) = Z(1− s). We shall begin with the construction of the Scaling
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Operators related to the Gauss-Jacobi Theta series and the Riemann zeros [7]
given by

D1 = − d

d ln t
+

dV

d ln t
+ k. (2.1)

such that its eigenvalues s are complex-valued, and its eigenfunctions are given
by

ψs(t) = t−s+keV (t). (2.2)

D1 is not self-adjoint since it is an operator that does not admit an adjoint
extension to the whole real line characterized by the real variable t. The pa-
rameter k is also real-valued. The eigenvalues ofD1 are complex valued numbers
s. We also define the operator dual to D1 as follows,

D2 =
d

d ln t
− dV (1/t)

d ln t
+ k. (2.3)

that is related to D1 by the substitution t→ 1/t and by noticing that

dV (1/t)
d ln(1/t)

= −dV (1/t)
d ln t

. (2.4)

where V (1/t) is not equal to V (t).
The eigenfunctions of the D2 operator are Ψs( 1

t ) (with eigenvalue s) which
can be shown to be equal to Ψ1−s(t) when l = 4(2k − 1) [7] resulting from the
properties of the Gauss-Jacobi theta series under the x→ 1/x transformations.
Since V (t) can be chosen arbitrarily, we choose it to be related to the Bernoulli
string spectral counting function, given by the Jacobi theta series,

e2V (t) =
∞∑

n=−∞
e−πn2tl

= 2ω(tl) + 1. (2.5)

This choice is justified in part by the fact that Jacobi’s theta series ω has a deep
connection to the integral representations of the Riemann zeta-function [28].

Latter arguments will rely also on the following related function defined by
Gauss,

G(1/x) =
∞∑

n=−∞
e−πn2/x = 2ω(1/x) + 1. (2.6)

where ω(x) =
∞∑

n=1
e−πn2x. The Gauss-Jacobi series obeys the relation

G(
1
x

) =
√
x G(x). (2.7)

Then, our V is such that e2V (t) = G(tl). We defined x as tl. We call G(x) the
Gauss-Jacobi theta series (GJ).

Defining HA = D2D1 and HB = D1D2 we were able to show in [7], due
to the relation Ψs(1/t) = Ψ1−s(t) based on the properties of the Gauss-Jacobi
series, G( 1

x ) =
√
x G(x) that
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HA Ψs(t) = s(1− s)Ψs(t). HB Ψs(
1
t
) = s(1− s)Ψs(

1
t
). (2.8)

Therefore, despite that HA,HB are not Hermitian they have the same spectrum
s(1 − s) which is real-valued only in the critical line and in the real line. Eq-
(2.8) is the one-dimensional version of the eigenfunctions of the two-dimensional
hyperbolic Laplacian given in terms of the Eisenstein’s series. Had HA,HB

been Hermitian one would have had an immediate proof of the RH. Hermitian
operators have a real spectrum, hence if s(1− s) is real this means that 1− s =
c s∗ , for a real valued c, and 1− s∗ = c s. Subtracting :

1− s− (1− s∗) = −(s− s∗) = −c (s− s∗) ⇒ (s− s∗) (1− c) = 0. (2.9)

If c 6= 1 then one has s− s∗ = 0 ⇒ s = real. And if c = 1 then s− s∗ 6= 0 such
that the Imaginary part of s is not zero. Therefore, the condition 1−s = c s∗ for
c = 1 leads immediately to s = 1

2 + iλ. From eq-(2.8) resulting from properties
of the Gauss-Jacobi series G( 1

x ) =
√
x G(x) it follows that under the ”time

reversal ” T operation t→ 1
t the eigenfunctions Ψs(t) behave as

T Ψs(t) = Ψs(
1
t
) = Ψ1−s(t). (2.10)

and the Hamiltonian operators HA = D2D1, HB = D1D2 transform as

T HB T −1 = HA, T HA T −1 = HB . (2.11)

To prove the relations (2.11) one must recur to the properties of the discrete
charge and time reversal operations

C2 = 1 ⇒ C−1 = C; T 2 = 1 ⇒ T −1 = T . (2.12)

where the charge conjugation operation is defined by CΨs(t) = (Ψs(t))∗ =
Ψs∗(t); i.e. it is defined by taking the complex conjugate of s since the variable
t and parameter k appearing in the definition of the eigenfunctions in eq-(2.2)
are real. Therefore, upon using eqs-(2.8, 2.12) and by writing

T HB T −1 Ψs(t) = T HB T Ψs(t) = T HB Ψs(
1
t
) =

s(1− s) T Ψs(
1
t
) = s(1− s) Ψs(t) = HA Ψs(t) ⇒ (2.13a)

T HB T −1 = HA ⇔ T HA T −1 = HB (2.13b)

which follows from (2.13a) since the variable s parametrizing the eigenfunctions
Ψs(t) span a continuum of values. The nontrivial zeta zeros sn corresponding
to Ψsn

(t) are a discrete subset of the continuum of states Ψs(t).
We will show next that if the RH is true, the HA and HB operators are

invariant under the CT operation. Afterwards we will prove that the converse
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is also true, namely that if the HA and HB operators are invariant under the
CT operation, the RH is true. Let us begin with the first part of the proof which
requires to show that if the RH is true one must have

CT HA [CT ]−1 = HA, CT HB [CT ]−1 = HB . (2.14)

which is equivalent to having vanishing commutators

[ CT ,HA ] = 0, [ CT ,HB ] = 0. (2.15)

and having simultaneous eigenfunctions Ψs(t), Ψs( 1
t ) of HA, CT and HB , CT ,

respectively, where the ”charge” conjugation operation C ( that takes s→ s∗ )
is defined by

C Ψs(t) = (Ψs(t))∗ = Ψs∗(t), C Ψs(
1
t
) = (Ψs(

1
t
))∗ = Ψs∗(

1
t
). (2.16)

To prove that HA and HB are invariant under the CT operation (if the RH
is true ) we must show first that the eigenfunctions Ψs(t) and Ψs( 1

t ) = Ψ1−s(t)
are CT and T C invariant if 1 − s = s∗ ⇔ 1 − s∗ = s ⇔ s = 1

2 + iλ, i.e. if the
RH is true, then the eigenfunctions Ψs(t) and Ψs( 1

t ) = Ψ1−s(t) are invariant
under the CT operation.

Hence, if CT Ψs(t) = Ψs(t), the eigenfunction is invariant under the action
of CT such that

CT Ψs(t) = C Ψs(
1
t
) = C Ψ1−s(t) = Ψ1−s∗(t) = Ψs(t) because 1− s∗ = s.

(2.17)
If CT Ψs( 1

t ) = Ψs( 1
t ), the eigenfunction is invariant under the action of CT

such that

CT Ψs(
1
t
) = C Ψs(t) = Ψs∗(t) = Ψ1−s(t) = Ψs(

1
t
) because 1− s = s∗.

(2.18)
and similarly

T C Ψs(t) = T Ψs∗(t) = Ψs∗(
1
t
) = Ψ1−s∗(t) = Ψs(t) because 1− s∗ = s.

(2.19)

T C Ψs(
1
t
) = T Ψs∗(

1
t
) = Ψs∗(t) = Ψ1−s(t) = Ψs(

1
t
) because 1− s = s∗.

(2.20)
from eqs- (2.17-2.20) we conclude that if the RH is true, it follows that 1− s =
s∗ ⇔ 1 − s∗ = s ⇔ s = 1

2 + iλ, and which implies the CT invariance of
the eigenfunctions. (The trivial zeros live in the real line at the location of the
negative even integers ).
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Using the properties C−1 = C, T −1 = T and after having shown the CT =
T C invariance of the eigenfunctions, if the RH is true, one can write the action
on Ψs(t) of

CT HA [CT ]−1 Ψs(t) = CT HA T C Ψs(t) = CT HA Ψs(t) = CT s(1−s) Ψs(t) =

s(1− s) CT Ψs(t) = s(1− s) Ψs(t) = HA Ψs(t). (2.21)

where the action of CT s(1− s) Ψs(t) is assumed to be linear s(1− s) CT Ψs(t).
If the action was anti-linear one would have s∗(1− s∗) CT Ψs(t) instead. If the
RH is true then s∗(1 − s∗) = s(1 − s) and there is no distinction between the
linear and anti-linear actions. Since the above eq-(2.21) is valid for a continuum
of values of s (the nontrivial zeta zeros sn corresponding to Ψsn

(t) are a discrete
subset of the continuum of states Ψs(t) ) parametrizing the eigenfunctions Ψs(t)
and given by s = 1

2 + iλ, one learns from (2.21) that

CT HA [CT ]−1 = HA. (2.22)

and identical results follow for

CT HB [CT ]−1 = HB . (2.23)

by acting on Ψs( 1
t ). To sum up, we have proved from eqs-(2.21, 2.22, 2.23)

that the Hamiltonians HA,HB are invariant under the CT operation given by
eqs-(2.14, 2.15) as a direct result of the CT invariance of the eigenfunctions, and
which in turn, follows if the RH is true. We need to prove now the converse. In
the second part of our derivation we will not assume that the RH is true, but
instead will assume that the Hamiltonians HA,HB are invariant under the CT
operation, and from there we will prove the RH.

The invariance of the HA,HB operators under CT implies the vanishing
commutators [HA, CT ] = [HB , CT ] = 0 as expressed by eqs-(2.14, 2.15). When
the operators HA,HB commute with CT , there exits new eigenfunctions ΨCT

s (t)
of the HA operator with eigenvalues s∗(1 − s∗). Let us focus only in the HA

operator since similar results follow for the HB operator. Defining

| ΨCT
s (t) > ≡ CT | Ψs(t) > . (2.24)

one can see that it is also an eigenfunction of HA with eigenvalue s∗(1− s∗) :

HA | ΨCT
s (t) > = HA CT | Ψs(t) > = HA | Ψ1−s∗(t) > =

s∗(1− s∗) | Ψ1−s∗(t) > = s∗(1− s∗) CT | Ψs(t) > = (Es)∗ | ΨCT
s (t) > .

(2.25)
where we have defined (Es)∗ = s∗(1− s∗). Given

[HA, CT ] = 0 ⇒ < Ψs | [HA, CT ] | Ψs > = 0 ⇒

< Ψs | HA CT | Ψs > − < Ψs | CT HA | Ψs > =
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(Es)∗ < Ψs | CT | Ψs > − Es < Ψs | CT | Ψs > =

(E∗s − Es) < Ψs | CT | Ψs > = 0. (2.26)

From (2.26) one has two cases to consider.
• Case A : If the pseudo-norm is null

< Ψs | CT | Ψs > = 0 ⇒ (Es − E∗s ) 6= 0 (2.27)

then the complex eigenvalues Es = s(1−s) andE∗s = s∗(1−s∗) are complex conjugates
of each other. In this case the RH would be false and there are quartets of non-
trivial Riemann zeta zeros given by sn, 1− sn, s

∗
n, 1− s∗n.

• Case B : If the pseudo-norm is not null :

< Ψs | CT | Ψs > 6= 0 ⇒ (Es − E∗s ) = 0 (2.28)

then the eigenvalues are real given by Es = s(1 − s) = E∗s = s∗(1 − s∗) and
which implies that s = real ( location of the trivial zeta zeros ) and/or s =
1
2 + iλ ( location of the non-trivial zeta zeros). In this case the RH would be
true and the non-trivial Riemann zeta zeros are given by sn = 1

2 + iλn and
1−sn = s∗n = 1

2 − iλn. We are going to prove next why Case A does and cannot
occur, therefore the RH is true because we are left with case B.

As stated in the begining of this section, the essence of the proof relies in
establishing a one to one correspondence among the zeta zeros sn with the states
Ψsn

(t) orthogonal to the ground ( vacuum state ) Ψso
(t) associated with the

center of symmetry so = 1
2 + i0 of the non-trivial zeta zeros and corresponding

to the fundamental Riemann function obeying the ”duality” condition Z(s) =
Z(1−s). The inner products < Ψso(t) | Ψsn(t) > = Z[sn] = 0 fix the location
of the nontrivial zeta zeros sn since Z[s] is proportional to ζ(s) as we show next.

We have to consider a family of D1 operators, each characterized by two real
numbers k and l which can be chosen arbitrarily. The measure of integration
d ln t is scale invariant. Let us mention that D1 is also invariant under scale
transformations of t and F = eV since dV/(d ln t) = d lnF/(d ln t). In [31] only
one operator D1 is introduced with the number k = 0 and a different (from
ours) definition of F .

We define the inner product as follows,

〈f |g〉 =

∞∫
0

f∗g
dt

t
.

Based on this definition the inner product of two eigenfunctions of D1 is

〈ψs1 |ψs2〉 =

∞∫
0

e2V t−s12+2k−1dt

=
2
l
Z

[
2
l
(2k − s12)

]
,

. (2.29)
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where we have denoted s12 = s∗1 +s2 = x1 +x2 + i(y2−y1) and used the expres-
sions for the Gauss-Jacobi theta function and the definition of the fundamental
Riemann function Z[s] resulting from the Mellin transform as shown below in
eq-(2.31).

We notice that
〈ψs1 |ψs2〉 = 〈ψso |ψs〉, . (2.30)

thus, the inner product of ψs1 and ψs2 is equivalent to the inner product of ψso

and ψs, where so = 1/2 + i0 and s = s12 − 1/2. The integral is evaluated by
introducing a change of variables tl = x (which gives dt/t = (1/l)dx/x) and
using the result provided by the Gauss-Jacobi Theta given in Karatsuba and
Voronin’s book [2]. The fundamental Riemann function Z[s] in eq-(2.29) can be
expressed in terms of the Jacobi theta series, ω(x) defined by eqs-(2.5, 2.6) as

∞∫
0

∞∑
n=1

e−πn2xxs/2−1dx =

∫ ∞

0

xs/2−1ω(x)dx

=
1

s(s− 1)
+

∫ ∞

1

[xs/2−1 + x(1−s)/2−1] ω(x)dx

= Z(s) = Z(1− s),

.

(2.31)
where the fundamental Riemann ( completed zeta ) function is

Z(s) ≡ π−s/2 Γ(
s

2
) ζ(s), . (2.32)

which obeys the functional relation Z(s) = Z(1− s).
Since the right-hand side of (2.31) is defined for all s this expression gives

the analytic continuation of the function Z(s) to the entire complex s-plane
[2]. In this sense the fourth “=” in (2.31) is not a genuine equality. Such an
analytic continuation transforms this expression into the inner product, defined
by (2.29).

A recently published report by Elizalde, Moretti and Zerbini [11] (containing
comments about the first version of our paper [7]) considers in detail the con-
sequences of the analytic continuation implied by equation (2.31). One of the
consequences is that equation (2.29) loses the meaning of being a scalar product.
Arguments by Elizalde et al. [11] show that the construction of a genuine inner
product is impossible.

Therefore from now on we will loosely speak of a “scalar product” realizing
that we do not have a scalar product as such. The crucial problem is whether
there are zeros outside the critical line (but still inside the critical strip) and not
the interpretation of equation (2.29) as a genuine inner product. Despite this,
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we still rather loosely refer to this mapping as a scalar product. The states still
have a real norm squared, which however need not to be positive-definite.

Here we must emphasize that our arguments do not rely on the validity
of the zeta-function regularization procedure [12], which precludes a rigorous
interpretation of the right hand side of (2.31) as a scalar product. Instead, we
can simply replace the expression “scalar product of ψs1 and ψs2” by the map
S of complex numbers defined as

S : C ⊗ C → C

(s1, s2) 7→ S(s1, s2) =
2
l
Z(as+ b),

. (2.33)

where s = s∗1 + s2 − 1/2 and a = −2/l; b = (4k − 1)/l. In other words, our
arguments do not rely on an evaluation of the integral 〈ψs1 |ψs2〉, but only on
the mapping S(s1, s2), defined as the finite part of the integral (2.29). The
kernel of the map S(s1, s2) = 2

lZ(as + b) is given by the values of s such
that Z(as+ b) = 0, where 〈ψs1 |ψs2〉 = 〈ψso |ψs〉 and so = 1/2 + i0. Notice that
2b+a = 4(2k−1)/l. We only need to study the “orthogonality” (and symmetry)
conditions with respect to the “vacuum” state so to prove why a+ 2b = 1. By
symmetries of the “orthogonal” states to the “vacuum” we mean always the
symmetries of the kernel of the S map.

The “inner” products are trivially divergent due to the contribution of the
n = 0 term ( the zero modes ) of the GJ theta series in the integral (2.29).
From now on, we denote for “inner” product in (2.29) as the finite part of
the integrals by simply removing the trivial infinity. We shall see in the next
paragraphs, that this “additive” regularization is in fact compatible with the
symmetries of the problem.

For example, the n = 0 ( zero modes ) term yields a divergence in the integral
(2.29), when one evaluates the inner product of the states < Ψs(t)|Ψ1−s∗(t) > (
at the end of this work we will see why we select this particular pair of states),
given by the limits limt→∞ t2k−1/2k − 1 → ∞ when 2k − 1 > 0; limt→0 −
t2k−1/2k − 1 → ∞ when 2k − 1 < 0; and limt→∞ 2ln[t] → ∞ when 2k − 1 =
0. Therefore, the finite part of the integral (2.29) will be our definition of
the inner product, and after recurring to the Mellin transform of the Jacobi
series ω(x) (2.31), yields the sought after result 2

lZ[ 2
l (2k − (s∗1 + s2)) ] in the

r.h.s of (2.29) (where l 6= ±∞). A thorough discussion of the regularization
of the integrals (2.29) can be found in H.M. Edwards book [2] (chapter 10) 1.
Another regularization of the integrals (2.29) could be obtained by recurring to
a complex contour encircling t = 0 and t = ∞. Complex contours have been
used recently to define inner products in PT -invariant QM in a Krein Space by
[37]. At the end of this work we propose another family of theta series where
no regularization is needed in the construction of the inner products.

We can easily show that if a and b are such that 2b + a = 1, then the
symmetries of all the states ψs orthogonal to the “vacuum” state are preserved

1We thank M. Rios for reminding us
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by any map S, equation (2.33), which leads to 2
lZ(as+ b). In fact, if the state

associated with the complex number s = x+ iy is orthogonal to the “vacuum”
state and the “scalar product” is given by 2

lZ(as + b) = 2
lZ(s′), then the

Riemann zeta-function has zeros at s′ = x′ + iy′, s′∗, 1 − s′ and 1 − s′∗. If we
equate as+ b = s′, then as∗ + b = s′∗. Now, 1− s′ will be equal to a(1− s) + b,
and 1−s′∗ will be equal to a(1−s∗)+b, if, and only if, 2b+a = 1. Therefore, all
the states ψs orthogonal to the “vacuum” state, parameterized by the complex
number 1/2 + i0, will then have the same symmetry properties with respect to
the critical line as the nontrivial zeros of zeta.

Notice that our choice of a = −2/l and b = (4k − 1)/l is compatible with
this symmetry if k and l are related by l = 4(2k − 1). Conversely, if we assume
that the orthogonal states to the “vacuum” state have the same symmetries of
Z(s), then a and b must be constrained to obey 2b + a = 1. It is clear that a
map with arbitrary values of a and b does not preserve the above symmetries
and for this reason we have now that s′ = as+ b = a(s− 1/2) + 1/2

Therefore, concluding, the inner product 〈Ψs1 |Ψs2〉 is equal to 〈Ψso
|Ψs〉 =

2
l Z[a(s− 1/2) + 1/2] = 2

lZ(s′) where s = s∗1 + s2 − 1/2. For example, if we set
the particular value l = −2, then k = 1

4 , a = 1, b = 0, and consequently s′ = s
in this case such that the position of the zeros (sn)′ = sn have a one to one
correspondence with the location of the orthogonal states Ψsn to the reference
state Ψso

and we can finally write < Ψso
|Ψsn

>= −Z[sn] = 0 as announced.
The inner product of two states is

〈Ψs1 |Ψs2〉 = (
2
l
) Z [

2
l
(2k − (s∗1 + s2)) ]. (2.34)

and one finds that the states Ψs when s lies in the critical line s = 1
2 + iλ have

equal norm

< Ψs |Ψs > =
2
l
Z [

1
2
] 6= 0, (l 6= ±∞). (2.35)

In general, the norm of the states is not proportional to Z[ 12 ]. Only when
s = 1

2 + iλ.
It is very important to emphasize that having a discrete family of orthogonal

states Ψsn
(t) to the reference ground state Ψso

(t) ( so = 1
2 + i0 ) does not

mean that these states are orthogonal among themselves. For example, when
l = −2; k = 1

4 , one has < Ψso |Ψsn >= −Z[sn] = 0;< Ψso |Ψsm >= −Z[sm] = 0
but < Ψsm |Ψsn >= −Z[s∗m + sn − 1

2 ] 6= 0. The procedure how to construct a
discrete ortho-normal basis of states was outlined in [39].

Since Z[ 12 ] < 0 in order to have a positive definite norm one requires to
choose l < 0. Z(s) is real-valued along the critical line because when s =
1
2 + iλ⇒ 1− s = s∗ then as a result of the functional equation one must have
Z(s) = Z(1− s) = Z(s∗) = (Z(s))∗ which implies that Z(1/2 + iλ) = real.

After this lengthy discussion, we are ready now to study cases A and B in eqs-
(2.27, 2.28) respectively. From the explicit form of eq-(2.34) depicting the inner
product of two arbitrary states , by choosing for example that l = −2 ⇒ k = 1

4 ,
one concludes that the pseudo-norm

10



< Ψs | CT | Ψs > = < Ψs || Ψ1−s∗ > = − Z[ − (
1
2
− (s∗ + 1− s∗)) ] =

− Z[
1
2
] 6= 0. (2.36)

and consequently case A of eq-(2.27) is ruled out and case B of eq-(2.28) stands.
Concluding, since the pseudo-norm (2.36) is not null this implies that the eigen-
values Es, E

∗
s obey eq-(2.28) and are real-valued Es = s(1−s) = E∗s = s∗(1−s∗)

which means that the Riemann Hypothesis is true.
The results of eq-(2.36) and conclusions remain the same for other choices

of the parameters l, k so far as l, k are constrained to obey the condition l =
4(2k − 1) ⇔ a + 2b = 1 imposed from the symmetry considerations since the
orthogonal states Ψsn(t) to the reference state Ψso(t) must obey the same sym-
metry conditions with respect to the critical line and real line as the non-trivial
zeta zeros :

< Ψs | CT | Ψs > = < Ψs || Ψ1−s∗ > =
2
l
Z[

2
l
(2k − (s∗ + 1− s∗)) ] =

2
l
Z[

2
l
(2k − 1)] =

2
l
Z[

1
2
] 6= 0, (l 6= ±∞). (2.37)

as a result of l = 4(2k − 1). Therefore, if CT invariance holds and the pseudo-
norm < Ψs|CT |Ψs > is not null, the RH is true. Since de La Vallee-Poussin-
Hadamard’s theorem rules out zeta zeros at the boundaries of the critical strip
s = 0 + iλ, s = 1 + iλ, in our above discussion one may restrict the domain of
values of s to lie inside the critical strip 0 < Real s < 1.

At the end of this work we will have an infinite family of HA,HB oper-
ators associated with an infinite family of potentials Vjm(t) corresponding to
an infinite family of theta series with the advantage that no regularization of
the inner products is necessary. Another salient feature is that the the pseudo-
norm < Ψjm

s | CT |Ψjm
s > is not null ( see below ) as result that the zeta

function ζ(s) has no zeros at s = 1
2 − 2m, m = 1, 2, 3, ....,∞. The relevance

of the behavior of ζ( 1
2 − 2m) 6= 0, m = 1, 2, 3, ...,∞ is that it automatically

avoids looking at the behavior of zeta at s = 1/2. Armitage [15] has found a
zeta function ζL(s) defined over the algebraic number field L that has a zero
at s = 1/2 and presumably satisfies the RH . This finding would not be com-
patible with the result of eq-(2.37) and which was based on a regularized inner
product. Therefore, a well defined inner product that leads to the result (see
below) < Ψjm

s | CT |Ψjm
s > ∼ ζ( 1

2 −2m) 6= 0, m = 1, 2, 3, ...,∞ is no longer in
variance with the behaviour of the zeta function ζL(s) defined over the algebraic
number field L that has a zero at s = 1/2 [15].

Identical results follow if we had defined a new family of potentials V2j(t) in
terms of a weighted theta series Θ2j(t) and whose Mellin transform yields the
infinite family of extended zeta functions of Keating [40] and their associated
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completed zeta functions as shown by Coffey [41]. The Hermite polynomials
weighted theta series associated to 2j = even degree polynomials are defined by

e2V2j(t) = Θ2j(t) ≡
n=∞∑

n=−∞
(8π)−j H2j(n

√
2πt) e−πn2t. (2.38)

and are related to the potentials V2j(t) which appear in the definitions of the
differential operators (2.1, 2.2). The weighted theta series obeys the relation

(−1)j

√
t

Θ2j(
1
t
) = Θ2j(t). (2.39)

Only when j = even in (2.39) one can implement CT invariance to the new
family of Hamiltonians HA,HB associated with the potentials V2j(t) of (2.38)
because HAΨs(t) = s(1− s)Ψ(t) and HBΨs( 1

t ) = s(1− s)Ψs( 1
t ) would only be

valid when j = even as a result of the relations (2.1, 2.2, 2.3) and (2.38, 2.39).
The Mellin transform based on the weighted Θ2j(t) [41] requires once again

to extract the zero mode n = 0 contribution of Θ2j(t) (to regularize the diver-
gent integrals) in order to arrive at

∫ ∞

0

1
2
[ Θ2j(t) − (8π)−2j H2j(0) ] ts/2−1 dt = Pj(s) π−s/2 Γ(

s

2
) ζ(s), Re s > 0.

(2.40)
in the definition of the (regularized) inner products of eigen-states (2.29) as-
sociated to the new potentials (2.38). The polynomial pre-factor in front of
the completed Riemann zeta Z(s) = π−s/2 Γ( s

2 ) ζ(s) is given in terms of a
terminating Hypergeometric series [41]

Pj(s) = (8π)−j(−1)j (2j)!
j! 2F1(−j,

s

2
;
1
2
; 2). (2.41)

The orthogonal states Ψsn(t) to the ground state Ψso(t) ( so = 1
2 + i0) will now

be enlarged to include the nontrivial zeta zeros and the zeros of the polynomial
Pj(s).

The polynomial Pj(s) has simple zeros on the critical line Re s = 1
2 , obeys

the functional relation Pj(s) = (−1)jPj(1− s) and in particular Pj(s = 1
2 ) = 0

when j = odd [41]. It is only when j = even that Pj(s = 1
2 ) 6= 0 and when

we can implement CT invariance resulting from the relation (2.39) and which
is consistent with the results of eqs-(2.36, 2.37). Consequently, if one demands
CT invariance one arrives at the same conclusions as before when j = even ; i.e.
the eigenvalues Es = s(1− s) are real in the j = even case due to the condition
Pj(s = 1

2 ) 6= 0. Thus, the RH is consistent with CT invariance. In the j = odd
case, one cannot implement CT invariance and Pj(s = 1

2 ) = 0 .
Finally, we propose another family of theta series where no regularization

is needed in the construction of the inner products. There is a two-parameter
family of theta series Θ2j,2m(t) that in principle could yield well defined inner
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products without the need to extract the zero mode n = 0 divergent contribu-
tion. Given

e2V2j,2m(t) = Θ2j,2m(t) ≡
n=∞∑

n=−∞
n2m H2j(n

√
2πt) e−πn2t. (2.42)

when m 6= 0, the zero mode n = 0 does not contribute to the sum and the
Mellin transform of Θ2j,2m(t) , after exploiting the symmetry of the even-degree
Hermite polynomials, is [40], [41]∫ ∞

0

[ 2
n=∞∑
n=1

n2m H2j(n
√

2πt) e−πn2t ] ts/2−1 dt =

2 (8π)j Pj(s) π−s/2 Γ(
s

2
) ζ(s− 2m); Re s > 1 + 2m, m = 1, 2, .... (2.43)

The problem is to find the analytical continuation of the Mellin transform (2.43)
for all values of s in the complex plane and to verify that Θ2j,2m( 1

t ) has the
same behaviour as Θ2j( 1

t ) in eq-(2.39) compatible with the CT invariance when
j = even. The analytical continuation of ζ(s) was found by Remann in his
celebrated paper. A Poisson re-summation formula should lead to a relation
similar to (2.39). If these two conditions are met we would have at our disposal
a well defined inner product of the states Ψs(t) (without the need to regularize it
by extracting out the zero n = 0 mode of the theta series). In particular the inner
product of the states Ψs(t) with the shifted ”ground” state Ψ 1

2+2m(t), m =
1, 2, .... corresponding to the potentials in (2.42), by recurring to the result (2.43)
and following similar steps as in (2.29) is

< Ψ 1
2+2m(t) | Ψs(t) > = − 2 (8π)j Pj(s+2m) π−(s+2m)/2 Γ(

s+ 2m
2

) ζ(s).

(2.44)
this result requires fixing uniquely the values l = −2; k = 1

4 . The nontrivial
zeta zeros sn would correspond to the states Ψsn(t) orthogonal to the shifted
”ground” state Ψ 1

2+2m(t).
It remains to prove when l = −2, k = 1

4 and s12 = s∗1 +s2 = s∗1 +(1−s∗1) = 1
that

< Ψs | CT | Ψs > = < Ψs || Ψ1−s∗ > =∫ ∞

0

[ 2
n=∞∑
n=1

n2m H2j(n
√

2πt) e−πn2t ] t
2(−s12+2k)

2l −1 dt =

− 2 (8π)j Pj(s =
1
2
) π−1/4 Γ(

1
4
) ζ(

1
2
− 2m) 6= 0; j = even, m = 1, 2, 3, .....

(2.45)
Hence, one would arrive at a definite solid conclusion based on a well defined
inner product : the RH is true because ζ( 1

2 − 2m) 6= 0 when m = 1, 2, ....
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and Pj( 1
2 ) 6= 0 when j = even. This finding can be inferred from the nonzero

pseudo-norm < Ψs | CT | Ψs > 6= 0 in (2.45) and upon following our previous
arguments as in (2.36, 2.37) that rule out case A , single out case B, and that
leads to Es = s(1− s) = real ⇒ s = 1

2 + iλ ( and/or s = real ). Consequently
the RH is true if, and only if, CT invariance holds. The key reason why the
Riemann hypohesis is true is due to the CT invariance and that the pseudo-norm
< Ψs|CT |Ψs > is not null. Had the pseudo-norm < Ψs|CT |Ψs > been null,
the RH would have been false. It remains to be seen whether our procedure is
valid to prove the grand-Riemann Hypothesis associated to the L-functions.

For applications of the the Quantum Mellin transform see [42]. For a recent
interesting study of the Riemann zeta function and the construction of a pseudo-
differential operator related to the zeta function, its quantization and many
physical applications, see [38] . For related topics to the Riemann zeta function,
number theory, fractals, supersymmetry, strings, random matrix models, fractal
statistics, ....we refer to [4], [5], [6], [8], [9], [13], [14], [16], [17], [18], [19], [20],
[21], [22], [24], [23], [25], [26] J, [27], [28], [29], [30], [31], [32], [33], [34], [41], [43].
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