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Abstract

A candidate action for an Exceptional E8 gauge theory of gravity in 8D
is constructed. It is obtained by recasting the E8 group as the semi-direct
product of GL(8, R) with a deformed Weyl-Heisenberg group associated
with canonical-conjugate pairs of vectorial and antisymmetric tensorial
generators of rank two and three. Other actions are proposed, like the
quartic E8 group-invariant action in 8D associated with the Chern-Simons
E8 gauge theory defined on the 7-dim boundary of a 8D bulk. To finalize,
it is shown how the E8 gauge theory of gravity can be embedded into a
more general extended gravitational theory in Clifford spaces associated
with the Cl(16) algebra and providing a solid geometrical program of a
grand-unification of gravity with Yang-Mills theories. The key question
remains if this novel gravitational model based on gauging the E8 group
may still be renormalizable without spoiling unitarity at the quantum
level.

Keywords: C-space Gravity, Clifford Algebras, Grand Unification, Exceptional
algebras, String Theory.

1 Introduction

Exceptional, Jordan, Division and Clifford algebras are deeply related and es-
sential tools in many aspects in Physics [3], [8], [9]. Ever since the discovery
[1] that 11D supergravity, when dimensionally reduced to an n-dim torus led
to maximal supergravity theories with hidden exceptional symmetries En for
n ≤ 8, it has prompted intensive research to explain the higher dimensional
origins of these hidden exceptional En symmetries [2] . More recently, there
has been a lot of interest in the infinite-dim hyperbolic Kac-Moody E10 and
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non-linearly realized E11 algebras arising in the asymptotic chaotic oscillatory
solutions of Supergravity fields close to cosmological singularities [1], [2].

Grand-Unification models in 4D based on the exceptional E8 Lie algebra
have been known for sometime [7]. The supersymmetric E8 model has more
recently been studied as a fermion family and grand unification model [6] un-
der the assumption that there is a vacuum gluino condensate but this conden-
sate is not accompanied by a dynamical generation of a mass gap in the pure
E8 gauge sector. Supersymmetric non-linear σ models of Kahler coset spaces

E8
SO(10)×SU(3)×U(1) ;

E7
SU(5) ;

E6
SO(10)×U(1) are known to contain three generations

of quarks and leptons as (quasi) Nambu-Goldstone superfields [4] (and refer-
ences therein). The coset model based on G = E8 gives rise to 3 left-handed
generations assigned to the 16 multiplet of SO(10), and 1 right-handed gen-
eration assigned to the 16∗ multiplet of SO(10). The coset model based on
G = E7 gives rise to 3 generations of quarks and leptons assigned to the 5∗+10
multiplets of SU(5), and a Higgsino (the fermionic partner of the scalar Higgs)
in the 5 representation of SU(5).

A Chern-Simons E8 Gauge theory of Gravity proposed in [15] is a unified
field theory (at the Planck scale) of a Lanczos-Lovelock Gravitational theory
with a E8 Generalized Yang-Mills (GYM) field theory, and is defined in the 15D
boundary of a 16D bulk space. The Exceptional E8 Geometry of the Clifford
(16) Superspace Grand-Unification of Conformal Gravity and Yang-Mills was
studied by [16]. In particular, it was discussed how an E8 Yang-Mills in 8D, after
a sequence of symmetry breaking processes E8 → E7 → E6 → SO(8, 2), leads to
a Conformal gravitational theory in 8D based on the conformal group SO(8, 2)
in 8D. Upon performing a Kaluza-Klein-Batakis [19] compactification on CP 2,
involving a nontrivial torsion, leads to a Conformal Gravity-Yang-Mills unified
theory based on the Standard Model group SU(3)×SU(2)×U(1) in 4D. Batakis
[19] has shown that, contrary to the standard lore that it is not possible to obtain
the Standard Model group from compactifications of 8D to 4D, the inclusion of
a nontrivial torsion in the internal CP 2 = SU(3)/SU(2)× U(1) space permits
to do so. Furthermore, it was shown [16] how a conformal (super) gravity and
(super) Yang-Mills unified theory in any dimension can be embedded into a
(super) Clifford-algebra-valued gauge field theory by choosing the appropriate
Clifford group.

The action that defines a Chern-Simons E8 gauge theory of (Euclideanized)
Gravity in 15-dim (the boundary of a 16D space) was based on the octic E8

invariant constructed by [5] and is defined as [15]

S =
∫
M16

< F F ...... F >E8 =∫
M16

(FM1 ∧ FM2 ∧...... ∧ FM8) ΥM1M2M3....M8 =
∫

∂M16
L(15)

CS (A,F) (1.1)

The E8 Lie-algebra valued 16-form < F 8 > is closed : d (< FM1TM1 ∧
FM2TM2∧ ..... ∧FM8TM8 >) = 0 and locally can always be written as an exact
form in terms of an E8-valued Chern-Simons 15-form as I16 = dL(15)

CS (A,F).
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For instance, when M16 = S16 the 15-dim boundary integral (1.1) is evaluated
in the two coordinate patches of the equator S15 = ∂M16 of S16 leading to the
integral of tr(g−1dg)15 (up to numerical factors ) when the gauge potential A is
written locally as A = g−1dg and g belongs to the E8 Lie-algebra. The integral
is characterized by the elements of the homotopy group π15(E8). S16 can also
be represented in terms of quaternionic and octonionic projectives spaces as
HP 4, OP 2 respectively.

In order to evaluate the operation < ....... >E8 in the action (1.1) it involves
the existence of an octic E8 group invariant tensor ΥM1M2....M8 that was recently
constructed by Cederwall and Palmkvist [5] using the Mathematica package
GAMMA based on the full machinery of the Fierz identities. The entire octic
E8 invariant contains powers of the SO(16) bivector XIJ and spinorial Y α

generators X8, X6Y 2, X4Y 4, X2Y 6, Y 8. The corresponding number of terms is
6, 11, 12, 5, 2 respectively giving a total of 36 terms for the octic E8 invariant
involving 36 numerical coefficients multiplying the corresponding powers of the
E8 generators. There is an extra term ( giving a total of 37 terms ) with an
arbitrary constant multiplying the fourth power of the E8 quadratic invariant
I2 = − 1

2 tr[ (F IJ
µν XJ)2 + (Fα

µνYα)2 ].
Thus, the E8 invariant action has 37 terms containing : (i) the Lanczos-

Lovelock (Euclideanized) Gravitational action associated with the 15-dim bound-
ary ∂M16 of the 16-dim manifold. ; (ii) 5 terms with the same structure as the
Pontryagin p4(F IJ) 16-form associated with the SO(16) spin connection ΩIJ

µ

and where the indices I, J run from 1, 2, ...., 16; (iii) the fourth power of the
standard quadratic E8 invariant [I2]4 ; (iv) plus 30 additional terms involving
powers of the E8-valued F IJ

µν and Fα
µν field-strength (2-forms). The most salient

feature of the action (1.1) is that it furnishes a unification of gravity and E8

Yang-Mills theory in 16D.
It is the purpose of this work to explore further the Exceptional theories of

Gravity based on gauging the E8 group in 8D and how to embed these theories
into generalized theories of gravity in C-spaces (Clifford spaces) providing a
solid geometrical program of Grand-Unification of Gravity with the other forces
in Nature. Recent approaches to the E8 group based on Clifford algebras can
be found in [11], [29].

2 An E8 Gauge Theory of Gravity in D = 8

We will base our construction of the E8 Gauge Theory of Gravity in D = 8
on Born’s deformed reciprocal complex gravitational theory and Noncommuta-
tive Gravity in 4D [18] which was constructed as a local gauge theory of the
deformed Quaplectic group U(1, 3) ×s H(4) advanced by [10], and that was
given [18] by the semi-direct product of U(1, 3) with the deformed (noncom-
mutative) Weyl-Heisenberg group corresponding to noncommutative generators
[Za, Zb] 6= 0. To achieve our goal we need to show why the E8 group can be
recast as the semi-direct product of GL(8, R) with a deformed Weyl-Heisenberg
group involving canonical-conjugate pairs of vectorial and antisymmetric tenso-
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rial generators.
The commutation relations of E8 can be expressed in terms of the 120 SO(16)

bivector generators X [IJ] and the 128 SO(16) chiral spinorial generators Y α as
[12] (and references therein)

[XIJ , XKL] = 4 ( δIK XLJ − δIL XKJ + δJK XIL − δJL XIK ).

[XIJ , Yα] = − 1
2

Γ[IJ]
αβ Y β ; [Yα, Yβ ] =

1
4

Γ[IJ]
αβ XIJ . (2.1a)

where XIJ = −XJI . It is required to choose a representation of the gamma
matrices such that Γ[IJ]

αβ = −Γ[IJ]
βα since [Yα, Yβ ] is antisymmetric under α ↔ β.

The Jacobi identities among the triplet [Yα, [Yβ , Yγ ]] + cyclic permutation are

ΓIJ
αβ ΓIJ

γδ Y δ + cyclic permutation among (α, β, γ) = 0. (2.2a)

the above Jacobi identity can be shown to be satisfied by contracting two of the
spinorial indices (α, β) in (2.2a) after multiplying (2.2a) by Γαβ

KL and Γαβ
K1K2....K6

,
respectively, giving

ΓIJ
αβ Γαβ

KL ΓIJ
γδ + ΓIJ

βγ Γαβ
KL ΓIJ

αδ + ΓIJ
γα Γαβ

KL ΓIJ
βδ = 0. (2.2b)

and

ΓIJ
αβ Γαβ

K1K2....K6
ΓIJ

γδ + ΓIJ
βγ Γαβ

K1K2....K6
ΓIJ

αδ + ΓIJ
γα Γαβ

K1K2....K6
ΓIJ

βδ = 0. (2.2c)

Eqs-(2.2b, 2.2c) are zero (which implies that eq-(2.2a) is also zero) due to the
very special properties of the chiral representation of the Clifford gamma ma-
trices in 16D and after decomposing the 1

2 (128×127) = 8128 dimensional space
of antisymmetric Σ[αβ] matrices into a space involving 120 antisymmetric ΓIJ

γδ

and 8008 ΓI1I2....I6
γδ matrices in their chiral spinorial indices γδ [21] .

The E8 algebra as a sub-algebra of Cl(8) ⊗ Cl(8) is consistent with the
SL(8, R) 7-grading decomposition of E8(8) (with 128 noncompact and 120 com-
pact generators) as shown by [12]. Such SL(8, R) 7-grading is based on the
diagonal part [SO(8)×SO(8)]diag ⊂ SO(16) described in full detail by [12] and
can be deduced from the Cl(8)⊗Cl(8) 7-grading decomposition of E8 provided
by Larsson [11] as follows,

[γµ
(1) ⊕ γµν

(1) ⊕ γµνρ
(1) ]⊗ 1(2) + 1(1)⊗ [γµ

(2) ⊕ γµν
(2) ⊕ γµνρ

(2) ] + γµ
(1)⊗γν

(2). (2.3)

these tensor products of elements of the two factor Cl(8) algebras, described by
the subscripts (1), (2), furnishes the 7 grading of E8(8)

8 + 28 + 56 + 64 + 56 + 28 + 8 = 248. (2.4)

8 corresponds to the 8D vector γµ; 28 is the 8D bivector γµν ; 56 is the 8D
tri-vector γµνρ, and 64 = 8 × 8 corresponds to the tensor product γµ

(1) ⊗ γν
(2).
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In essence one can rewrite the E8 algebra in terms of 8 + 8 vectors Za, Za (
a = 1, 2, ...8); 28 + 28 bivectors Z [ab], Z[ab]; 56 + 56 tri-vectors E[abc], E[abc],
and the SL(8, R) generators Eb

a which are expressed in terms of a 8 × 8 = 64-
component tensor Y ab that can be decomposed into a symmetric part Y (ab)

with 36 independent components, and an anti-symmetric part Y [ab] with 28
independent components. Its trace Y cc = N yields an element N of the Cartan
subalgebra such that the degrees −3,−2,−1, 0, 3, 2, 1 of the 7-grading of E8(8)

can be read from [12]
We begin by following very closely [12] by writing the full E8 commutators

in the SL(8, R) basis of [13], after decomposing the SO(16) representations into
representations of the subgroup SO(8) ≡

(
SO(8)× SO(8)

)
diag

⊂ SO(16). The
indices corresponding to the 8v,8s and 8c representations of SO(8), respectively,
will be denoted by a, α and α̇. After a triality rotation the SO(8) vector and
spinor representations decompose as [12]

16→ 8s ⊕ 8c. (2.5)

128s → (8s ⊗ 8c)⊕ (8v ⊗ 8v) = 8v ⊕ 56v ⊕ 1⊕ 28⊕ 35v. (2.6a)

128c → (8v ⊗8s)⊕ (8c ⊗ 8v) = 8s ⊕ 56s ⊕ 8c ⊕ 56c. (2.6b)

respectively. We thus have I = (α, α̇) and A = (αβ̇, ab), and the E8 generators
decompose as

X [IJ] → (X [αβ], X [α̇β̇], Xαβ̇); Y A → (Y αα̇, Y ab). (2.7)

Next we regroup these generators as follows. The 63 generators

Eb
a =

1
8
( Γab

αβ X [αβ] + Γab
α̇β̇

X [α̇β̇]) + Y (ab) − 1
8
δabY cc. (2.8)

for 1 ≤ a, b ≤ 8 span an SL(8, R) subalgebra of E8. The generator given by
the trace N = Y cc extends this subalgebra to GL(8, R). Γab,Γabc, .. are signed
sums of antisymmetrized products of gammas. The remainder of the E8 Lie
algebra then decomposes into the following representations of SL(8, R):

Za =
1
4
Γa

αα̇ ( Xαα̇ + Y αα̇). (2.9a)

Z[ab] = Zab =
1
8

(
Γab

αβ X [αβ] − Γab
α̇β̇

X [α̇β̇]
)

+ Y [ab]. (2.9b)

E[abc] = Eabc = − 1
4
Γabc

αα̇ ( Xαα̇ − Y αα̇). (2.9c)

and

Za = − 1
4
Γa

αα̇ (Xαα̇ − Y αα̇ ). (2.10a)
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Z [ab] = Zab = − 1
8

(
Γab

αβ X [αβ] − Γab
α̇β̇

X [α̇β̇]
)

+ Y [ab]. (2.10b)

E[abc] = Eabc = − 1
4
Γabc

αα̇ ( Xαα̇ + Y αα̇). (2.10c)

It is important to emphasize that Za 6= ηabZ
b, Zab 6= ηacηdbZ

cd, ...... and for
these reasons one could use the more convenient notation for the generators

Za
± ≡ (Za, Za); Zab

± ≡ (Zab, Zab); Zabc
± ≡ (Eabc, Eabc). (2.11)

which permits to view these doublets of generators (2.11) as pairs of ”canonically
conjugate variables”, and which in turn, allows us to view their commutation
relations as a defining a generalized deformed Weyl-Heisenberg algebra with
noncommuting coordinates and momenta as shown next. One may now define
the pairs of complex generators to be used later

V a =
1√
2

(Za
+ − i Za

−), V̄ a =
1√
2

(Za
+ + i Za

−). (2.12a)

V ab =
1√
2

(Zab
+ − i Zab

− ), V̄ ab =
1√
2

(Zab
+ + i Zab

− ). (2.12b)

V abc =
1√
2

(Zab
+ − i Zab

− ), V̄ abc =
1√
2

(Zabc
+ + i Zabc

− ). (2.12c)

The remaining GL(8, R) = Sl(8, R)× U(1) generators are

Eab = E(ab) + E [ab]. (2.13)

The Cartan subalgebra is spanned by the diagonal elements E1
1 , ......., E7

7

and N , or, equivalently, by Y 11, ......., Y 88. The elements Eb
a for a < b (or

a > b) together with the elements for a < b < c generate the Borel subalgebra
of E8 associated with the positive (negative) roots of E8. Furthermore, these
generators are graded w.r.t. the number of times the root α8 (corresponding
to the element N in the Cartan subalgebra) appears, such that for any basis
generator X we have [N,X] = deg (X) ·X.

The degree can be read off from

[N, Za] = 3Za, [N, Za] = −3 Za, [N, Zab] = 2Zab; [N, Zab] = −2Zab

[N, Eabc] = Eabc, [N, Eabc] = − Eabc; [N, Eb
a] = 0. (2.14)

The remaining commutation relations defining the generalized deformed
Weyl-Heisenberg algebra involving pairs of canonical conjugate generators are

[Za, Zb] = 0; [Za, Zb] = 0; [Za, Zb] = Eb
a −

3
8
δb
aN. (2.15)
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This last commutator between the pairs of conjugate Za, Zb generators (like
phase space coordinates) yields the deformed Weyl-Heisenberg algebra. The
latter algebra is deformed due to the presence of the Eb

a generator in the r.h.s of
(2.15) and also because the N trace generator does not commute with Za, Za as
seen in (2.14). Similarly, one has the deformed Weyl-Heisenberg algebra among
the pairs of conjugate Zab, Z

ab antisymmetric rank-two tensorial generators (like
tensorial phase space coordinates)

[Zab, Zcd] = 0; [Zab, Zcd] = 0; [Zab, Z
cd] = 4δ

[c
[a E

d]
b] +

1
2
δcd
abN ; (2.16)

The commutators among the pairs of conjugate and noncommuting Eabc, E
abc

antisymmetric rank-three generators (like noncommuting tensorial phase space
coordinates) are

[Eabc, Edef ] = − 1
32

εabcdefghZgh 6= 0 [Eabc, Edef ] =
1
32

εabcdefghZgh 6= 0

(2.17)

[Eabc, Edef ] = − 1
8

δ
[ab
[deEf ]

c] − 3
4

δabc
def N. (2.18)

The other commutators among the generalized antisymmetric tensorial genera-
tors are

[Zab, Z
c] = 0; [Zab, Zc] = −Eabc; [Zab, Zc] = −Eabc; [Zab, Zc] = 0. (2.19)

[Eabc, Zd] = 0; [Eabc, Z
d] = 3δd

[a Zbc]; [Eabc, Zde] = −6δ
[ab
de Zc]; [Eabc, Zde] = 0.

(2.20)

[Eabc, Zd] = 3δ
[a
d Zbc]; [Eabc, Zd] = 0; [Eabc, Zde] = 0; [Eabc, Z

de] = 6δde
[abZc].
(2.21)

The homogeneous commutators among the GL(8, R) generators and those be-
longing to the deformed Weyl-Heisenberg algebra are

[Eb
a, Zc] = − δc

a Zb +
1
8

δb
a Zc; [Eb

a, Zc] = δb
c Za − 1

8
δb
a Zc. (2.22)

[Eb
a, Zcd] = − 2δb

[c Zd]a − 1
4

δb
a Zcd; [Eb

a, Zcd] = 2δ[c
a Zd]b +

1
4

δb
a Zcd.

[Eb
a, Ecde] = −3δ[c

a Ede]b +
3
8

δb
a Ecde; [Ea

b, Ecde] = 3δb
[c Ede]a −

3
8

δb
a Ecde.

(2.23)
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Finally, the commutators among the GL(8, R) generators are

[Eb
a, Ed

c ] = δb
c Ed

a − δd
a Eb

c . (2.24)

The elements {Za, Zab} (or equivalently {Za, Zab}) span the maximal 36-
dimensional abelian nilpotent subalgebra of E8 [12], [13]. Finally, the generators
are normalized according to the values of the traces given by

Tr (NN) = 60 · 8; Tr (ZaZb) = 60 δa
b , T r (ZabZcd) = 60 · 2! δab

cd

Tr (EabcE
def ) = 60 · 3! δdef

abc , T r (Eb
aEd

c ) = 60 δd
aδb

c − 15
2

δb
a δd

c . (2.25)

with all other traces vanishing.
Using the redefinitions of the generators in eqs-(2.11, 2.12) allows to write

the E8 Hermitian gauge connection associated with the E8 generators as

Aµ = Ea
µ Va + Ēa V̄a + Eab

µ Vab + Ēab
µ V̄ab +

Eabc
µ Vabc + Ēabc

µ V̄abc + i Ω(ab)
µ E(ab) + Ω[ab]

µ E[ab] (2.26)

where one may set the length scale L = 1, scale that is attached to the viel-
beins to match the (length)−1 dimensions of the connection in (2.26). The
GL(8, R) components of the E8 (Hermitian) gauge connection are the (real-
valued symmetric) Ω(ab)

µ shear and (real-valued antisymmetric) Ω[ab]
µ rotational

parts of the GL(8, R) anti-Hermitian gauge connection i (Ω(ab)
µ − iΩ[ab]

µ ) such
that the GL(8, R) Lie-algebra-valued connection i Ωab

µ Eab is Hermitian because
the GL(8, R) generators E(ab), E[ab], and the remaining ones appearing in the E8

commutators of eqs-(2.14-2.24), are all chosen to be anti-Hermitian (there are
no i factors in the r.h.s of the latter commutators). The (generalized) vielbeins
fields are Ea

µ, Eab
µ , Eabc

µ plus their complex conjugates. These (generalized) viel-
beins fields involving antisymmetric tensorial tangent space indices also appear
in generalized gravity in Clifford spaces (C-spaces) where one has polyvector-
valued coordinates in the base space and in the tangent space such that the
generalized vielbeins are represented by square and rectangular matrices [22].
The trace part N is included in the symmetric shear-like generator E(ab) of
Gl(8, R). The rotational part corresponds to E[ab].

The E8 (Hermitian) field strength (in natural units h̄ = c = 1) is

Fµν = i [ Dµ, Dν ] = ( ∂µ AA
ν − ∂ν AA

µ + i fA
BC AB

µ AC
ν ) LA. (2.27a)

where the indices A = 1, 2, 3, ......248 are spanned by the 248 generators LA of
E8

Va, V̄a, Vab, V̄ab, Vabc, V̄abc, E(ab), E[ab]. (2.27b)

giving a total of 8 + 8 + 28 + 28 + 56 + 56 + 36 + 28 = 248, respectively.
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The structure constants are determined by the commutators eqs-(2.14-2.24)
in terms of the redefinitions of the generators in eqs-(2.11, 2.12). It is the
GL(8, R) field strength sector of the E8 field strength the one which is associated
with the Hermitian GL(8, R)-valued curvature two form

R = ( i R(ab)
µν E(ab) + R[ab]

µν E[ab] ) dxµ ∧ dxν =

i ( R(ab)
µν − i R[ab]

µν ) ( E(ab) + E[ab] ) dxµ ∧ dxν (2.28)

and whose components are given by

R[ab]
µν = ∂µΩ[ab]

ν − ∂νΩ[ab]
µ + Ω[ac]

[µ Ω[cb]
ν] −

Ω(ac)
[µ Ω(cb)

ν] +
1
L2

Ea
[µ Eb

ν] +
1
L2

Ēa
[µ Ēb

ν] + ........ (2.29)

R(ab)
µν = ∂µΩ(ab)

ν − ∂νΩ(ab)
µ + Ω(ac)

[µ Ω[cb]
ν] + Ω(bc)

[µ Ω[ca]
ν] +

1
L2

Ea
[µ Ēb

ν] +
1
L2

Eb
[µ Ēa

ν] + ............. (2.30)

A summation over the repeated c indices is implied and [µν] denotes the anti-
symmetrization of indices with weight one. One may set the length scale L = 1
(necessary to match dimensions).

The components of the (generalized) torsion two-form correspond to the field
strength associated with the (generalized) vielbeins

F a
µν = ∂µEa

ν − ∂νEa
µ + Ω[ac]

[µ Ec
ν] + ....... (2.31)

F ab
µν = ∂µEab

ν − ∂νEab
µ + Ω[ac]

[µ Ecb
ν] + ........ (2.32)

F abc
µν = ∂µEabc

ν − ∂νEabc
µ + Ω[ad]

[µ Edbc
ν] + ...... (2.33)

plus their complex conjugates F̄ a
µν , F̄ ab

µν , F̄ abc
µν .

The complex Hermitian metric with symmetric g(µν) and antisymmetric g[µν]

components (which could play the role of a symplectic structure) associated with
the Exceptional E8 Geometry is defined in terms of the (generalized) complex
vielbeins

Ea
µ =

1√
2

( ea
µ + ifa

µ ); Ēa
µ =

1√
2

( ea
µ − ifa

µ ). (2.34)

Eab
µ =

1√
2

( eab
µ + ifab

µ ); Ēab
µ =

1√
2

( eab
µ − ifab

µ ). (2.35)

Eabc
µ =

1√
2

( eabc
µ + ifabc

µ ); Ēabc
µ =

1√
2

( eabc
µ − ifabc

µ ). (2.36)
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as

gµν ≡ g(µν) + i g[µν] ≡ Ea
µ Ēb

ν ηab + Eab
µ Ēcd

ν ρabcd + Eabc
µ Ēdef

ν ρabcdef .
(2.37)

such that (gµν)† = gµν ⇒ (gµν)∗ = gνµ and where the generalized (tangent
space) area and volume metrics are given as

ρabcd = ηac ηbd − ηbc ηad. (2.38a)

ρabcdef = ηad ηbe ηcf ± permutations of a, b, c indices (2.38b)

The complex-valued Hermitian curvature tensor is defined

Rµνρλ = ( R(ab)
µν − i R[ab]

µν ) ( Eaρ Ebλ + Ēaρ Ēbλ ). (2.39a)

Rρ
µνλ = ( R(ab)

µν − i R[ab]
µν ) ( Eρ

a Ebλ + Ēρ
a Ēbλ ). (2.39b)

where

Eaµ = ηab Ēb
µ , Ēaµ = ηab Eb

µ , Eρ
a Eb

ρ = δb
a, Ēρ

a Ēb
ρ = δb

a. (2.39c)

Eµab = Ēcd
µ ρabcd, Eµabc = Ēdef

µ ρabcdef , Eρ
ab Ecd

ρ = δcd
ab, Eρ

abc Edef
ρ = δdef

abc .
(2.39d)

The contraction of spacetime indices of the Hermitian curvature tensor with
the complex Hermitian metric gµν yields two different complex valued Hermitian
Ricci tensors 1 given by

Rµλ = gρσ gσν Rρ
µνλ = δν

ρ Rρ
µνλ = R(µλ) + i R[µλ]; (Rµλ)∗ = Rλµ (2.40)

and

Sµλ = gσρ gσν Rρ
µνλ = S(µλ) + i S[µλ]; (Sµλ)∗ = Sλµ (2.41)

due to the fact that

gρσ gσν = δν
ρ but gσρ gσν 6= δν

ρ . (2.42)

because gσρ 6= gρσ. The position of the indices is crucial.
A further contraction yields the generalized (real-valued) Ricci scalars

R = gλµ Rµλ = (g(µλ) − i g[µλ]) ( R(µλ) + i R[µλ] ) =

R = g(µλ) R(µλ) + Bµλ R[µλ]. (2.43)

1There is a third Ricci tensor Q[µν] = Rρ
µνλ

δλ
ρ related to the curl of the nonmetricity

Weyl vector Qµ [24]
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S = gλµ Sµλ = (g(µλ) − i g[µλ]) ( S(µλ) + i S[µλ] ) =

S = g(µλ) S(µλ) + Bµλ S[µλ]. (2.44)

The antisymmetric part of the metric g[µλ] ≡ Bµλ can be identified with a
Kalb-Ramond field. The first term g(µλ) R(µλ) corresponds to the usual scalar
curvature of the ordinary Riemannian geometry. The presence of the extra
terms Bµλ R[µλ] and Bµλ S[µλ] due to the anti-symmetric components of the
complex metric, the two different types of Ricci tensors and the presence of
generalized vielbeins with antisymmetric tensorial tangent space indices in the
definition of the complex Hermitian metric (2.37, 2.38) are one of the hallmarks
of this Exceptional complex gravity based on E8. We should notice that the
inverse complex metric is

g(µλ) + ig[µλ] = [ g(µν) + ig[µν] ]−1 6= (g(µν))−1 + (ig[µν])−1. (2.45)

so g(µν) is now a complicated expression of both gµν and g[µν] = Bµν . The same
occurs with g[µν] = Bµν . Rigorously we should have used a different notation
for the inverse metric g̃(µλ) + iB̃[µλ], but for notational simplicity we chose to
drop the tilde symbol.

The generalized real-valued torsion tensor T ρ
µν is defined in terms of the

complex-valued torsion T ρ
µν , T̄ ρ

µν quantities as

T ρ
µν ≡ T ρ

µν + T̄ ρ
µν =

F a
µν Eρ

a + F̄ a
µν Ēρ

a + F ab
µν Eρ

ab + F̄ ab
µν Ēρ

ab + F abc
µν Eρ

abc + F̄ abc
µν Ēρ

abc. (2.46a)

The real-valued torsion vector is

Tµ = δν
ρ T ρ

µν = Tµ + T̄µ (2.46b)

where the complex valued torsion tensors are

Tµνρ = T σ
µν gσρ = F a

µν Eρa + F ab
µν Eρab + F abc

µν Eρabc. (2.46c)

T̄µνρ = T̄ σ
µν ḡσρ = F̄ a

µν Ēρa + F̄ ab
µν Ēρab + F̄ abc

µν Ēρabc. (2.46d)

the complex-valued torsion vectors are

Tµ = Tµνρ gρν = δν
σ T σ

µν , T̄µ = T̄µνρ ḡρν = δν
σ T̄ σ

µν . (2.46e)

The inverse vielbeins are defined by

Eρ
a Eb

ρ = δb
a, Eρ

ab Ecd
ρ = δcd

ab, Eρ
abc Edef

ρ = δdef
abc , ....... (2.47a)

Eν
a Ea

µ = δν
µ, Eν

ab Eab
µ = δν

µ, Eν
abc Eabc

µ = δν
µ, .... (2.47b)

and one has the following relationships

gσρ Eρ
a = Eσa, ḡσρ Ēρ

a = Ēσa, gσρ Eρ
ab = Eσab, ḡσρ Ēρ

ab = Ēσab, ..........
(2.47c)

11



but

gσρ Ēρ
a = ḡρσ Ēρ

a 6= Ēσa, ḡσρ Eρ
a = gρσ Eρ

a 6= Eσa, ............. (2.47d)

One should notice the last inequalities because the position of indices is essential
as indicated by eq-(2.42). The (real-valued) action, linear in the two (real-
valued) Ricci curvature scalars and quadratic in the (real-valued) generalized
torsion is of the form

1
2κ2

∫
d8x

√
| det (g(µν) + ig[µν]) | ( a1 R + a2 S + a3 T ρ

µν T µν
ρ + a4 Tµ T µ).

(2.48)
The real-valued torsion squared terms can be explictly written as

T ρ
µν T µν

ρ = Tµνρ Tµνρ + T̄µνρ T̄µνρ + Tµνρ T̄µνρ + T̄µνρ Tµνρ. (2.49a)

Tµ T µ = Tµ Tµ + T̄µ T̄µ + Tµ T̄µ + T̄µ Tµ. (2.49b)

where κ2 is the gravitational coupling in 8D of dimensions (length)6 and a1, a2, a3, a4

are suitable parameters which can be constrained if one wishes to avoid the pres-
ence of tachyons, ghosts and higher order poles in the quantum propagators, in
a similar vein as it occurs in nonsymmetric theories of gravity [24], [25], [26], [28]
and ordinary metric affine theories of gravity based in gauging the affine group
GL(8, R)×s T8 in 8D which is given as the semi-direct product of GL(8, R) with
the translations group [23].

Curvature squared terms (and higher powers) could be added to the action,
and terms involving the nonvanishing nonmetricity tensor as well. For instance,
affine theories of gravity are not Riemannian and as such have a nonvanishing
nonmetricity tensor Qµνρ = Dµg(νρ) 6= 0. Since we have now a symmetric and
antisymmetric metric gµν = g(µν) + ig[µν] it is possible to still have Dµg(νρ) 6=
0 and Dµgνρ = 0 simultaneously. Quantum gravity models in 4D based on
gauging the (covering of the) GL(4, R) group were shown to be renormalizable
[34], however due to the presence of fourth-derivatives terms in the metric which
appeared in the quantum effective action, upon including gauge fixing terms and
ghost terms, the prospects of unitarity were spoiled. The key question remains
if this novel gravitational model based on gauging the E8 group may still be
renormalizable without spoiling unitarity at the quantum level.

To sum up, the action (2.48) is a candidate action for an Exceptional E8

gauge theory of gravity in 8D obtained by viewing the E8 group as the semi-
direct product of GL(8, R) with a deformed Weyl-Heisenberg group associated
with canonical-conjugate vectorial and antisymmetric tensorial generators of
rank two and three. The curvature has a dilational, shear and rotational
part corresponding to the one dilation generator, 35 shear E(ab) and 28 ro-
tational( Lorentz) E [ab] generators of GL(8, R). The generalized torsion is the
field strength corresponding to the remaining vectorial and tensorial generators.
The gauge fields associated with the latter generators are the generalized com-
plex vielbeins from which the complex Hemitian metric in eqs-(2.37, 2.38) with

12



symmetric g(µν) and anti-symmetric g[µν] (Kalb-Ramond like) components is
explicitly defined.

As mentioned in the introduction, a Kaluza-Klein-Batakis [19] compactifi-
cation of an 8D Conformal gravitational theory on an internal four-dim CP 2

space , involving a nontrivial torsion, leads to a conformal Gravity-Yang-Mills
unified theory based on the Standard Model group SU(3)×SU(2)×U(1) in 4D.
For these reasons, the E8 gauge theory of gravity in 8D constructed here is very
appealing. We will discuss in the next section how the inherent E8 Geometry
present in the action (2.48) can be seen as a particular case of a more general
Clifford space gravity associated with the Clifford algebra Cl(16) in 16D [16],
[22].

The standard E8 Yang-Mills action in 8D associated with the field strengths
in eq-(2.27) and involving the ordinary real symmetric metric ĝµν = ea

µeb
νηab 6=

g(µν) of the manifold M8 is

IY M =
1

4g2

∫
d8x

√
|det ĝµν | Trace ( Fµν Fµν ). (2.49c)

The trace operation is performed in the 248-dim adjoint representation and
to evaluate the action (2.49) it is more convenient to use the normalization
condition of the 248 original anti-Hermitian generators given by eq-(2.25) in
terms of the trace operation. The Yang-Mills coupling g2 has dimensions of
(length)4 in 8D.

A topological invariant action based on the quartic E8-invariant action in
8D is given by

I(4) =
∫
M8

< F ∧ F ∧ F ∧ F >E8 . (2.50)

the < ...... > operation involves the existence of a quartic E8 group invariant
tensor that allows us to contract group indices and which contains powers of
the 120 SO(16) bivectors XIJ and the chiral spinorial Yα generators. A di-
mensionless factor in front of the integral can be included. The action (2.50) is
locally a total derivative and since the E8 Lie-algebra valued 8-form < F 4 > is
closed : d (< FM1TM1 ∧FM2TM2 ∧ ..... ∧FM4TM4 >) = 0, the action locally
can always be written as an exact form in terms of an E8-valued Chern-Simons
7-form as I8 = dL(7)

CS(A,F), exactly as we did in the 16D case [15].
A generalized Yang-Mills (GYM) action in 8D involving quartic powers of

the field strength is

IGY M =
∫

M8
< (F ∧ F ) ∧ ∗(F ∧ F ) > . (2.51)

where the < ...... > operation requires again the use of the quartic E8 group-
invariant tensor in order to contract group indices like the Killing Lie group
invariant metric in ordinary quadratic Yang-Mills actions. The Hodge star dual
operation is defined in terms of the ordinary real symmetric metric ĝµν of the
manifold M8. Scalar and spinorial matter fields (minimally coupled to the
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gauge/geometric fields of the E8 gauge theory of gravity) can be added to the
action (2.48) and their equations of motion can be found, the Noether symmetry
currents (associated with conservations laws) can be constructed, etc .... like in
the metric affine theories of gravity [23].

3 Affine Theories of Extended Gravity in Clifford-
Spaces

We begin this final section by showing how to embed the E8 gauge theory of
gravity and E8 Yang-Mills theories into more general actions associated with the
gauging of the Cl(16) algebra in 16D. Let us start by constructing the actions
associated to the most general Clifford Cl(16) gauge field theory by writing the
Cl(16)-valued gauge field

Aµ = AA
µ ΓA = Aµ1 +Aa

µΓa +Aa1a2
µ Γa1a2 +Aa1a2a3

µ Γa1a2a3 + ......... +

Aa1a2....a16
µ Γa1a2.......a16 . (3.1)

the Cl(16)-algebra-valued field strength ( omitting numerical coefficients at-
tached to the Γ’s ) is

FA
µν ΓA = ∂[µAν] 1 + [ ∂[µAa

ν] + Ab2
[µAb1a

ν] ηb1b2 + ..... ] Γa +

[ ∂[µAab
ν] + Aa

[µAb
ν] −Aa1a

[µ Ab1b
ν] ηa1b1 −Aa1a2a

[µ Ab1b2b
ν] ηa1b1a2b2 + ..... ] Γab +

[ ∂[µAabc
ν] +Aa1a

[µ Ab1bc
ν] ηa1b1 +...... ] Γabc + [ ∂[µAabcd

ν] −Aa1a
[µ Ab1bcd

ν] ηa1b1 +...... ] Γabcd

+[ ∂[µAa1a2....a5b1b2.....b5
ν] + Aa1a2...a5

[µ Ab1b2....b5
ν] + ...... ] Γa1a2....a5b1b2.....b5 + ....

(3.2)
and is obtained from the evaluation of the commutators of the Clifford-algebra
generators. The most general formulae for all commutators and anti-commutators
of Γµ,Γµ1µ2 , ....., with the appropriate numerical coefficients, can be found in
[20], in general for pq = odd one has

[γb1b2.....bp , γa1a2......aq ] = 2γ
a1a2......aq

b1b2.....bp
−

2p!q!
2!(p− 2)!(q − 2)!

δ
[a1a2

[b1b2
γ

a3....aq ]

b3.....bp] +
2p!q!

4!(p− 4)!(q − 4)!
δ
[a1....a4

[b1....b4
γ

a5....aq ]

b5.....bp] − ......

(3.3a)
for pq = even one has

[γb1b2.....bp
, γa1a2......aq ] = − (−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ
[a1

[b1
γ

a2a3....aq ]

b2b3.....bp] −

(−1)p−12p!q!
3!(p− 3)!(q − 3)!

δ
[a1....a3

[b1....b3
γ

a4....aq ]

b4.....bp] + ...... (3.3b)
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The anti-commutators of the gammas can also be found in [20], and one has the
reciprocal situation as eqs-(3.3), one has instead that for pq = even

{γb1b2.....bp
, γa1a2......aq} = 2γ

a1a2......aq

b1b2.....bp
−

2p!q!
2!(p− 2)!(q − 2)!

δ
[a1a2

[b1b2
γ

a3....aq ]

b3.....bp] +
2p!q!

4!(p− 4)!(q − 4)!
δ
[a1....a4

[b1....b4
γ

a5....aq ]

b5.....bp] − ......

(3.4a)
for pq = odd one has

{γb1b2.....bp , γa1a2......aq} = − (−1)p−12p!q!
1!(p− 1)!(q − 1)!

δ
[a1

[b1
γ

a2a3....aq ]

b2b3.....bp] −

(−1)p−12p!q!
3!(p− 3)!(q − 3)!

δ
[a1....a3

[b1....b3
γ

a4....aq ]

b4.....bp] + ...... (3.4b)

Therefore, one of the most salient features of this work is that the octic E8-
invariant actions can be embedded into a more general octic Cl(16)-invariant
action involving a large number of terms. The octic Cl(16)-invariant action in
16D is of the form

S =
∫

d16x < FA1
µ1ν1

FA2
µ2ν2

....... FA8
µ8ν8

ΓA1ΓA2 ...... ΓA8 > εµ1ν1µ2ν2.....µ8ν8 .

(3.5)
where < ....... > denotes the scalar part of the Clifford geometric product asso-
ciated with the products of the Cl(16) algebra generators. For instance

< Γa Γb > = δab, < Γa1a2 Γb1b2 > = δa1b1 δa2b2 − δa1b2 δa2b1

< Γa1 Γa2 Γa3 > = 0, < Γa1a2a3 Γb1b2b3 > = δa1b1 δa2b2 δa3b3 ± ......

< Γa1 Γa2 Γa3 Γa4 > = δa1a2 δa3a4 − δa1a3 δa2a4 + δa2a3 δa1a4 , etc ...... (3.6)

The integrand of the 16-dim action (3.5) is locally a total derivative and upon
integration yields the Chern-Simons Cl(16) gauge theory of gravity in 15D and
which is an extension of the action for the Chern-Simons E8 gauge theory of
gravity in 15D described by eq-(1.1) [15].

A Cl(16)-invariant Yang-Mills action is

SY M [Cl(16)] =
1

4g2

∫
d16x

√
g < FAµν FBρτ ΓAΓB >scalar gµρgντ . (3.7)

where < ΓAΓB > = GAB 1 denotes the scalar part of the Clifford geometric
product of the gammas Γ. There are a total of 216 = 65536 terms in

FAµν FBρτ GAB = FµνFρτ + F a
µνF a

ρτ + F a1a2
µν F a1a2

ρτ + .......... +

F a1a2.......a16
µν F a1a2......a16

ρτ . (3.8)
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where the indices run as a = 1, 2, .....16. The Clifford algebra Cl(16) = Cl(8)⊗
Cl(8) has the graded structure ( scalars, bivectors, trivectors,....., pseudoscalar
) given by

1 16 120 560 1820 4368 8008 11440 12870

11440 8008 4368 1820 560 120 16 1. (3.9)

consistent with the dimension of the Cl(16) algebra 216 = 256 × 256 = 65536.
The anomaly-free group of the Heterotic string E8 × E8 ⊂ Cl(16) ⊗ Cl(16) =
Cl(32), and whose bivector generators can be identified with the SO(32) algebra
generators that is consistent with the fact that SO(32) is the anomaly-free group
of the open superstring.

Let us extend the above actions to the more general case involving the C-
space (Clifford space) associated with the Cl(16) and Cl(8) algebras. In par-
ticular , we will focus on the latter where the 28 = 256 components of the
Cl(8)-space polyvector X can be expanded as

X = σ 1 + xµΓµ + xµ1µ2Γ
µ1µ2 + ........ xµ1µ2µ3.......µ8Γ

µ1µ2....µ8 . (3.10)

In order to match dimensions in the expansion (3.10) one requires to introduce
powers of a length scale [22] which we could set equal to the Planck scale and set
it to unity. In Clifford Phase Spaces [30] one needs two length scales parameters,
a lower and an upper scale.

The novel affine theories of gravity in the C-space associated with the Cl(8)
algebra involves gauging the semi-direct product of the Cl(8) group with the
polyvector-valued translation group T in 28 = 256 dimensions. An extended
theory of gravity in C-spaces was presented by [22] based on generalizations of
the Poincare group ( SO(D − 1, 1) ×s TD ) to Clifford spaces of dimension 2D

corresponding to polyvector-valued rotations, boosts and translations. The ordi-
nary affine group GL(D,R)×s TD is a further extension of the Poincare group
by including the shear transformations in additional to rotations. Therefore,
the affine theories of extended gravity in C-spaces proposed here is a further
generalization of the C-space gravity results in [22].

The Cl(8) polyvector-valued gauge connection can be decomposed into sym-
metric and antisymmetric pieces as

Ω(AB)
M {ΓA,ΓB}+ Ω[AB]

M [ΓA,ΓB ] = ( Ω(AB)
M dC

AB + Ω[AB]
M fC

AB ) ΓC ≡ ΩC
M ΓC .
(3.11)

where the structure constants fC
AB and dC

AB are given by eqs-(3.3, 3.4). Adding
the polyvector-valued translations PA allows us to construct the affine connec-
tion in the Cl(8)-space as follows

AM = ΩA
M ΓA + EA

M PA. (3.12)

where ΓA are the Cl(8) generators corresponding to the generalized Lorentz and
shear transformations in C-space, and PA are the polyvector-valued translation
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generators. The polyvector-valued gauge connection ΩA
M has 256× 256 compo-

nents, since the base space index M and tangent space index A span 28 = 256
degrees of freedom. The C-space vielbein EA

M which gauges the polyvector-
valued translations has also 256×256 components. For instance we can see why
now there are square and rectangular matrices of the form

EA
M = Ea

µ, Ea1a2
µ , .........., Ea1a2....a8

µ , Ea
µ1µ2

, ............, Ea
µ1µ2........µ8

,

Ea1a2
µ1µ2

, Ea1a2
µ1µ2µ3

, ......, Ea1a2
µ1µ2........µ8

, ...... (3.13)

we must also include the (pseudo)scalar-(pseudo) scalar components E, Ea1a2.....a8
µ1µ2.....µ8

as well.
The generalized curvature and torsion two-forms in C-space associated with

the Cl(8) gauge connection and vielbein one-forms

ΩA ≡ ΩA
M dXM , EA ≡ EA

M dXM . (3.14)

are

RA
MN dXM ∧ dXN = RA = d ΩA + fA

BC ΩB ∧ ΩC . (3.15)

T A
MN dXM ∧ dXN = TA = d EA + gA

BC ΩB ∧ EC . (3.16)

To illustrate why RA
MN is a true generalized curvature in C-space despite the

fact that it has 3 polyvector-valued indices it suffices to select A among the 28
bivector components [a1a2] of the tangent Cl(8)-space and M,N to be the
vectorial components of the base Cl(8)-space manifold. Hence, R

[a1a2]
µν has

the correct number of indices corresponding to the SO(7, 1)-valued curvature
two-form R

[a1a2]
µν dxµ ∧ dxν . Care must be taken when working with Cl(8) or

Cl(7, 1), Cl(1, 7) algebras since they are not isomorphic.
Notice that the expressions in eqs-(3.15, 3.16) are just the polyvector valued

extensions of the usual Poincare algebra involving the commutators [Mµν ,Mρσ]
and [Mµν , Pρ], when the Lorentz algebra generators are realized in terms of
Clifford bivectors as Mµν ∼ [γµ, γν ] = 2γµν . In Clifford affine spaces associated
with Cl(8)×s T the commutators involving the polyvector generators are

[ΓA,ΓB ] = fC
AB ΓC , [ΓA,PB ] = gC

AB PC , [PA,PB ] = 0. (3.17)

that permits us to evaluate each one of the (very large number of ) components
RA

MN , T A
MN in eqs-(3.15, 3.16). Further contractions of the curvature and torsion

with the inverse vielbeins give

RM = RA
MN EN

A ; TM = T A
MN EN

A ; RMNP = RA
MN EAP , TMNP = T A

MN EAP ,
(3.18)
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where the C-space metric is defined in terms of the vielbein and the 256-dim
tangent space metric ηAB as

GMN ≡ EA
M EB

N ηAB ; ηAB = GMN EM
A EN

B ; EBN = ηAB EA
N . (3.19a)

Two important remarks are in order. Firstly, note that there is in general an
scalar component in RM when the polyvector-valued index M corresponds to
the scalar element of the Clifford algebra as described by the first term in the
expansion of the polyvector X in eq-(3.10). Secondly, instead of working with
the expressions for the curvature RA

MN given in terms of the Clifford connec-
tion ΩC

M by eqs-(3.15-3.18), one could work alternatively with the expressions
R(AB)

MN , R[AB]
MN given in terms of Ω(AB)

M , Ω[AB]
M which follow explicitly from eq-

(3.11). In the latter case one can construct a C-space Ricci curvature and Ricci
scalar using the standard contractions

RMP = RAB
MN EN

B EAP ; R = RAB
MN EN

B EM
A . (3.19b)

We prefer at the moment to work with eqs-(3.18) where the tangent space
polyvector-valued indices are A,B, C, ... and span a 28 = 256 dim space. The
base space polyvector-valued indices are M,N,P, Q, ... and also span a 28 = 256
dim space. The inverse vielbein EM

A is defined as EM
A EB

M = δB
A and EM

A EA
N = δM

N .
In the traditional description of C-spaces [22] there is one component of the

C-space metric GMN = Gscalar scalar = Φ corresponding the scalar element of
the Clifford algebra that must be included as well. Such scalar component is a
dilaton-like Jordan-Brans-Dicke scalar field. In [31] we were able to show how
Weyl-geometry solves the riddle of the cosmological constant within the context
of a Robertson-Friedmann-Lemaitre-Walker cosmology by coupling the Weyl
scalar curvature to the Jordan-Brans-Dicke scalar φ field with a self-interacting
potential V (φ) and kinetic terms (Dµφ)(Dµφ). Upon eliminating the Weyl
gauge field of dilations Aµ from its algebraic (non-propagating) equations of
motion, and fixing the Weyl gauge scalings, by setting the scalar field to a
constant φo such that φ2

o = 1/16πGN , where GN is the present day observed
Newtonian constant, we were able to prove that V (φo) = 3H2

o/8πG and which
was precisely equal to the observed vacuum energy density of the order of
10−122 M4

Planck. Ho is the present value of the Hubble scale. One must also
include the pseudo-scalar elements of GMN as well when both indices M,N are
[µ1µ2.....µ8] corresponding to the top grade part of the Cl(8) polyvector. This
component of the C-space metric corresponds to another scalar field.

The affine theory of extended gravity in Cl(8)-space admits an action

S =
1

2κ2

∫
M256

[d(256)X]
√
|det GMN | L. (3.20)

whose Lagrangian density is

[ a1 RM RM + a2 TM T M + a3 RMNP RMNP + a4 TMNP T MNP ]. (3.21)
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where the 256-dim measure of integration is defined by

[d(256)X] = dσ
∏

dxµ

∏
dxµ1µ2

∏
dxµ1µ2µ3 ....... dxµ1µ2µ3.......µ8 . (3.22)

in terms of the 256 components of the polyvector X
A generalized Einstein-Hilbert gravity action based on gauging the general-

ized Poincare group in C-spaces was given by [22] where in very special cases
the C-space scalar curvature R admits an expansion in terms of sums of pow-
ers of the ordinary scalar curvature R , Riemann curvature Rµνρσ and Ricci
Rµν tensor of the underlying Riemannian spacetime manifold. The exterior
products of the (Clifford-algebra-valued) spin-connection and vielbein one-forms
in Clifford-spaces can also be constructed in Clifford-Superspaces by including
both orthogonal and symplectic Clifford algebras and generalizing the Clifford
super-differential exterior calculus in ordinary superspace [33], to the full fledged
Clifford-Superspace outlined in [16]. Clifford-Superspace is far richer than or-
dinary superspace and Clifford-Supergravity involving polyvector-valued exten-
sions of Poincare and (Anti) de Sitter supergravity [27] is far richer than ordinary
supergravity. Fermionic matter and scalar-field actions can be constructed in
C-spaces in terms of Dirac-Barut-Hestenes spinors as in [22], [32].

To finalize we write down the most general extension of the Cl(2n) Chern-
Simons gravitational action in D = 2n in the case when one replaces the ordinary
D = 2n-dim space with a Cl(2n)-space of dimensions 2D = 22n associated with
polyvector-valued X coordinates instead of ordinary vectors xµ. The action is
of the form

I =
∫
M22n

∑
< F ∧ F ∧ F......... ∧ F > . (3.23)

where the summands are of the form

< F I1I2
µ1µ2

F I3I4
µ3µ4

..... F
I22n−1I22n

µ22n−1µ22n ΓI1I2 ΓI3I4 ...... > εµ1µ2..........µ22n−1µ22n . (3.25)

< F I1I2I3I4
µ1µ2...µ4

........ F
I22n−3......I22n

µ22n−3........µ22n ΓI1I2I3I4 ΓI5I6I7I8 .......... > εµ1µ2..........µ22n .
(3.26)

etc ....... and where the brackets < ...... > denotes taking the scalar parts of
the Clifford geometric product of the gamma factors inside the bracket. The
properties of the most general action (3.23) warrants further investigation.
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