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Abstract

It is shown how a Conformal Gravity and U(4)×U(4) Yang-Mills Grand Uni-
fication model in four dimensions can be attained from a Clifford Gauge Field
Theory in C-spaces (Clifford spaces) based on the (complex) Clifford Cl(4, C) al-
gebra underlying a complexified four dimensional spacetime (8 real dimensions).
Upon taking a real slice, and after symmetry breaking, it leads to ordinary Grav-
ity and the Standard Model in four real dimensions. A brief conclusion about
the Noncommutative star product deformations of this Grand Unified Theory
of Gravity with the other forces of Nature is presented.
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1 Introduction : The E8 Geometry of Cl(16)
spaces

Not long ago, a Chern-Simons E8 Gauge theory of Gravity [1] based on the
octic E8 invariant constructed in [2] was advanced as a unified field theory
of a Lanczos-Lovelock Gravitational theory and a E8 Generalized Yang-Mills
(GYM) field theory. It was defined in the 15D boundary of a 16D bulk space.
The Exceptional E8 Geometry of the Clifford (16) (Cl(16)) Superspace Grand-
Unification of Conformal Gravity and Yang-Mills was studied more recently, and
in particular, it was discussed how an E8 Yang-Mills in 8D, after a sequence of
symmetry breaking processes E8 → E7 → E6 → SO(8, 2), leads to a Conformal
gravitational theory in 8D based on the conformal group SO(8, 2) in 8D. Upon
performing a Kaluza-Klein-Batakis [3] compactification on CP 2, involving a
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nontrivial torsion, leads to a Conformal Gravity-Yang-Mills unified theory based
on the Standard Model group SU(3) × SU(2) × U(1) in 4D. Batakis [3] has
shown that, contrary to the standard lore that it is not possible to obtain the
Standard Model group from compactifications of 8D to 4D, the inclusion of a
nontrivial torsion in the internal CP 2 = SU(3)/SU(2)×U(1) space permits to
do so.

Furthermore, it was shown [1] how a conformal (super) gravity and (super)
Yang-Mills unified theory in any dimension can be embedded into a (super)
Clifford-algebra-valued gauge field theory by choosing the appropriate orthogo-
nal and symplectic Clifford group. The latter is required in order to introduce
a graded exterior calculus in Superspace [15]. A candidate action for an Excep-
tional E8 gauge theory of gravity in 8D was constructed in [1]. It is obtained by
recasting the E8 group as the semi-direct product of GL(8, R) with a deformed
Weyl-Heisenberg group associated with canonical-conjugate pairs of vectorial
and antisymmetric tensorial generators of rank two and three. Other actions
were proposed, like the quartic E8 group-invariant action in 8D associated with
the Chern-Simons E8 gauge theory defined on the 7-dim boundary of a 8D bulk.

Grand-Unification models in 4D based on the exceptional E8 Lie algebra
have been known for sometime [4]. Both gauge bosons Aa

µ and left-handed
(two-component) Weyl fermions are assigned to the adjoint 248-dim represen-
tation that coincides with the fundamental representation (a very special case
for E8). The Higgs bosons Φ are chosen from among the multiplets that couple
to the symmetric product of two fermionic representations Ψa

LCΨb
LΦab ( C is

the charge conjugation matrix) such that [248 × 248]S = 1 + 3875 + 27000.
Bars and Gunaydin [4] have argued that a physically relevant subspace in the
symmetry breaking process of E8 is SO(16) → SO(10) × SU(4), where the
128 remaining massless fermions (after symmetry breaking) are assigned to the
(16, 4̄) and (1̄6, 4) representations. SU(4) serves as the family unification group
(four fermion families plus four mirror fermion families of opposite chirality)
and SO(10) is the Yang-Mills GUT group.

This symmetry breaking channel occurs in the 135-dim representation of
SO(16) that appears in the SO(16) decomposition of the 3875-dim represen-
tation of E8 : 3875 = 135 + 1820 + 1920. By giving a large v.e.v (vacuum
expectation value) to the Higgs Φab in the 135-dim representation of SO(16),
corresponding to a symmetric traceless tensor of rank 2, all fermions and gauge
bosons become super-heavy except for the adjoint representations of gauge
bosons given in terms of the SO(10)×SU(4) decomposition as (45, 1)+ (1, 15).
The spinor representations of the massless fermions is 128 = (16, 4̄) + (1̄6, 4),
leading to 4 fermion families plus their 4 mirror ones. In this process, only 120
fermions and 188 gauge bosons of the initial 248 have gained mass.

In SO(10) GUT a right-handed massive neutrino (a SU(5) singlet) is added
to each Standard Model generation so that 16 (two-component) Weyl fermions
can now be placed in the 16-dim spinor representation of SO(10) and, which
in turn, can be decomposed in terms of SU(5) representations as 16 = 1 +
5∗ + 10 [8]. In the second stage of symmetry breaking, the fourth family of
5∗ + 10; 5 + 10∗ becomes heavy without affecting the remaining 3 families.
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Later on [7] found that a Peccei-Quinn symmetry could be used to protect
light fermions from acquiring super large massses. If this protection is to be
maintained without destroying perturbative unification, three light families of
fermion generations are singled out which is what is observed. In addition to
the other three mirror families, several exotic fermions also remain light.

The other physically relevant symmetry breaking channel is E8 → E6 ×
SU(3) with 3 fermion families (and their mirrors) assigned to the 27 ( 2̄7) dim
representation of E6 :

248 = (1, 8) + (78, 1) + (27, 3) + (2̄7, 3̄)

In this case, in addition to the 16 fermions assigned to the 16-dim dim spinor
representation of SO(10), there exist 11 exotic (two-component) Weyl fermions
for each generation. The low energy phenomenology of superstring-inspired E6

models has been studied intensively. New particles including new gauge bosons,
massive neutrinos, exotic fermions, Higgs bosons and their superpartners, are
expected to exist. See [9] for an extensive review and references about these
superstring-inspired E6 models. The supersymmetric E8 model has more re-
cently been studied as a fermion family and grand unification model [5] under
the assumption that there is a vacuum gluino condensate but this condensate is
not accompanied by a dynamical generation of a mass gap in the pure E8 gauge
sector.

Exceptional, Jordan, Division and Clifford algebras are deeply related and
essential tools in many aspects in Physics [10], [11], [12]. Ever since the discovery
[13] that 11D supergravity, when dimensionally reduced to an n-dim torus led
to maximal supergravity theories with hidden exceptional symmetries En for
n ≤ 8, it has prompted intensive research to explain the higher dimensional
origins of these hidden exceptional En symmetries [14] . More recently, there
has been a lot of interest in the infinite-dim hyperbolic Kac-Moody E10 and
non-linearly realized E11 algebras arising in the asymptotic chaotic oscillatory
solutions of Supergravity fields close to cosmological singularities [13], [14].

Supersymmetric non-linear σ models of Kahler coset spaces E8
SO(10)×SU(3)×U(1) ;

E7
SU(5) ;

E6
SO(10)×U(1) are known to contain three generations of quarks and lep-

tons as (quasi) Nambu-Goldstone superfields [6] (and references therein). The
coset model based on G = E8 gives rise to 3 left-handed generations assigned to
the 16 multiplet of SO(10), and 1 right-handed generation assigned to the 16∗

multiplet of SO(10). The coset model based on G = E7 gives rise to 3 genera-
tions of quarks and leptons assigned to the 5∗ + 10 multiplets of SU(5), and a
Higgsino (the fermionic partner of the scalar Higgs) in the 5 representation of
SU(5).

The content of this work is to show why one does not need Cl(16) nor E8 to
obtain a unification of gravity with the other forces in four dimensions. It can be
attained in a simpler fashion as long as one works in C-spaces (Clifford spaces).
A Conformal Gravity and U(4)× U(4) Yang-Mills Grand Unification model in
four dimensions can be attained from a Clifford Gauge Field Theory in C-spaces
(Clifford spaces) based on the (complex) Clifford Cl(4, C) algebra underlying a
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complexified four dimensional spacetime (8 real dimensions). Upon taking a real
slice and after symmetry breaking it leads to ordinary Gravity and the Standard
Model in four real dimensions. A brief conclusion about the Noncommutative
star product deformations of this Grand Unified Theory of Gravity with the
other forces of Nature is presented.

2 Conformal Gravity and U(4)×U(4) Yang-Mills
Unification from a Clifford Gauge Field The-
ory in C-spaces

A model of Emergent Gravity with the observed Cosmological Constant from a
BF-Chern-Simons-Higgs Model was recently revisited [16] which allowed to show
how a Conformal Gravity, Maxwell and SU(2) × SU(2) × U(1) × U(1) Yang-
Mills Unification model in four dimensions can be attained from a Clifford
Gauge Field Theory in a very natural and geometric fashion. In this work we
will develop further the results of [16] to show how to construct a Complex
Conformal Gravity-Maxwell and Yang-Mills Unification incorporating the full
Standard Model in 4D based on a Clifford gauge field theory in in C-spaces
(Clifford spaces) . Let ηab = (+,−,−,−), ε0123 = −ε0123 = 1, the Clifford
Cl(1, 3) algebra associated with the tangent space of a 4D spacetime M is
defined by {Γa,Γb} = 2ηab such that

[Γa,Γb] = 2Γab, Γ5 = − i Γ0 Γ1 Γ2 Γ3, (Γ5)2 = 1; {Γ5,Γa} = 0; (2.1)

Γabcd = εabcd Γ5; Γab =
1
2

(ΓaΓb − ΓbΓa) . (2.2a)

Γabc = εabcd Γ5 Γd; Γabcd = εabcd Γ5. (2.2b)

Γa Γb = Γab + ηab, Γab Γ5 =
1
2
εabcd Γcd, (2.2c)

Γab Γc = ηbc Γa − ηac Γb + εabcd Γ5 Γd (2.2d)

Γc Γab = ηac Γb − ηbc Γa + εabcd Γ5 Γd (2.2e)

Γa Γb Γc = ηab Γc + ηbc Γa − ηacΓb + εabcd Γ5 Γd (2.2f)

Γab Γcd = εab
cd Γ5 − 4δ

[a
[c Γb]

d] − 2δab
cd . (2.2g)

δab
cd =

1
2

(δa
c δb

d − δa
d δb

c ). (2.3)

the generators Γab,Γabc,Γabcd are defined as usual by a signed-permutation sum
of the anti-symmetrizated products of the gammas. A representation of the
Cl(1, 3) algebra exists where the generators 1,Γ0,Γ5,ΓiΓ5, i = 1, 2, 3 are chosen
to be Hermitian; while the generators −i Γ0 ≡ Γ4; Γa, Γab for a, b = 1, 2, 3, 4
are chosen to be anti-Hermitian. For instance, the anti-Hermitian generators
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Γk for k = 1, 2, 3 can be represented by 4 × 4 matrices, whose block diagonal
entries are 0 and the 2 × 2 block off-diagonal entries are comprised of ±σk,
respectively, where σk, are the 3 Pauli’s spin Hermitian 2× 2 matrices obeying
σiσj = δij +iεijkσk. The Hermitian generator Γ0 has zeros in the main diagonal
and−12×2,−12×2 in the off-diagonal block so that−i Γ0 = Γ4 is anti-Hermitian.
The Hermitian Γ5 chirality operator has 12×2,−12×2 along its main diagonal
and zeros in the off-diagonal block. The unit operator 14×4 has 1 along the
diagonal and zeros everywhere else.

Using eqs-(2.1-2.3) allows to write the Cl(1, 3) algebra-valued one-form as

A =
(

i aµ 1 + i bµ Γ5 + ea
µ Γa + i fa

µ Γa Γ5 +
1
4
ωab

µ Γab

)
dxµ. (2.4)

The Clifford-valued anti-Hermitian gauge field Aµ transforms according to
A′

µ = U−1 Aµ U + U−1∂µU under Clifford-valued gauge transformations.
The anti-Hermitian Clifford-valued field strength is F = dA + [A,A] so that F
transforms covariantly F ′ = U−1 F U . Decomposing the anti-Hermitian field
strength in terms of the Clifford algebra anti-Hermitian generators gives

Fµν = i F 1
µν 1 + i F 5

µν Γ5 + F a
µν Γa + i F a5

µν Γa Γ5 +
1
4
F ab

µν Γab. (2.5)

where F = 1
2 Fµν dxµ ∧ dxν . The field-strength components are given by

F 1
µν = ∂µaν − ∂νaµ (2.6a)

F 5
µν = ∂µbν − ∂νbµ + 2ea

µfνa − 2ea
νfµa (2.6b)

F a
µν = ∂µea

ν − ∂νea
µ + ωab

µ eνb − ωab
ν eµb + 2fa

µbν − 2fa
ν bµ (2.6c)

F a5
µν = ∂µfa

ν − ∂νfa
µ + ωab

µ fνb − ωab
ν fµb + 2ea

µbν − 2ea
νbµ (2.6d)

F ab
µν = ∂µωab

ν + ωac
µ ω b

νc + 4
(
ea
µeb

ν − fa
µf b

ν

)
− µ←→ ν. (2.6e)

A Clifford-algebra-valued dimensionless anti-Hermitian scalar field Φ(xµ) =
ΦA(xµ) ΓA belonging to a section of the Clifford bundle in D = 4 can be
expanded as

Φ = i φ(1) 1 + φa Γa + φab Γab + i φa5 Γa Γ5 + i φ(5) Γ5 (2.7)

so that the covariant exterior differential is

dA Φ = (dA ΦC) ΓC =
(

∂µ ΦC + AA
µ ΦB f C

AB

)
ΓC dxµ .. (2.8)

where
[Aµ, Φ] = AA

µ ΦB [ΓA, ΓB ] = AA
µ ΦB f C

AB ΓC . (2.9)

The first term in the action is
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I1 =
∫

M4

d4x εµνρσ < ΦA FB
µν FC

ρσ ΓA ΓB ΓC >0 . (2.10)

where the operation < ....... >0 denotes taking the scalar part of the Clifford
geometric product of ΓA ΓB ΓC . The scalar part of the Clifford geometric
product of the gammas is for example

< Γa Γb > = δab, < Γa1a2 Γb1b2 > = δa1b1 δa2b2 − δa1b2 δa2b1

< Γa1 Γa2 Γa3 > = 0, < Γa1a2a3 Γb1b2b3 > = δa1b1 δa2b2 δa3b3 ± ......

< Γa1 Γa2 Γa3 Γa4 > = δa1a2 δa3a4 − δa1a3 δa2a4 + δa2a3 δa1a4 , etc ......
(2.11)

The integrand of (2.10) is comprised of terms like

F ab ∧ F cd φ(5) εabcd; F (1) ∧ F (5) φ(5); F a ∧ F a5 φ(5);

2 F a
b ∧ F b

a φ(1); F (1) ∧ F (1) φ(1); F (5) ∧ F (5) φ(1);

F (1) ∧ F ab φab; F (1) ∧ F a5 φa5; F (1) ∧ F a φa;

F a ∧ Fa φ(1); F a5 ∧ Fa5 φ(1); F ab ∧ F c (ηbcφa − ηacφb);

F ab ∧ F c φ5d εabcd; F a ∧ F b5 φcd εabcd; ........ (2.12)

The numerical factors and signs of each one of the above terms is determined
from the relations in eqs-(2.1-2.2). Due to the fact that εµνρσ = ερσµν the terms
like

F a
b ∧ F bc φac = F bc ∧ F a

b φac = F cb ∧ F a
b φac =

F c
b ∧ F ba φac = − F a

b ∧ F bc φac ⇒ F a
b ∧ F bc φac = 0

F a∧F b φab = 0; F a5∧F b5 φab = 0; F a5∧F b5 φcd εabcd = 0, ........ (2.13)

vanish. Thus the action (2.10) is a generalization of the McDowell-Mansouri-
Chamseddine-West action. The Clifford-algebra generalization of the Chern-
Simons-like terms [16] are

I2 =
∫

M4

< ΦE dΦA ∧ dΦB ∧ dΦC ∧ dΦD Γ[E ΓA ΓB ΓC ΓD] >0 =

∫
M4

(
φ(5) dφa ∧ dφb ∧ dφc ∧ dφd εabcd − φa dφ(5) ∧ dΦb ∧ dΦc ∧ dΦd εabcd + .........

)
.

(2.14)
where dφA is the covariant exterior differential (∂µφA + [Aµ, φ]A)dxµ. The
Clifford-algebra generalization of the Higgs-like potential is given by

I3 = −
∫

M5

< dΦA∧dΦB∧dΦC∧dΦD∧dΦE Γ[A ΓB ΓC ΓD ΓE] >0 V (Φ) =

6



−
∫

M5

dΦ5 ∧ dΦa ∧ dΦb ∧ dΦc ∧ dΦd εabcd V (Φ) + ........ (2.15)

where
V (Φ) = κ

(
ΦA ΦA − v2

)2
(2.16a)

and

ΦA ΦA = φ(1) φ(1) + φa φa + φab φab + φa5 φa5 + φ(5) φ(5). (2.16b)

Vacuum solutions can be found of the form

< φ(5) > = v; < φ(1) > = < φa > = < φab > = < φa5 > = 0.
(2.17)

A variation of I1 + I2 + I3 given by eqs-(2.19,2.14, 2.15) w.r.t φ5, and taking
into account the v.e.v of eq-(2.17) which minimize the potential (2.16a) solely
after the variation w.r.t the scalar fields is taken place, allows to eliminate the
scalars on-shell leading to

I1+ I2+ I3 =
4
5

v
∫

M

d4x
(

F ab ∧ F cd εabcd + F (1) ∧ F (5) + F a ∧ F a5
)

=

4
5

v
∫

M

d4x
(

F ab
µν F cd

ρσ εabcd + F (1)
µν F (5)

ρσ + F a
µν F a5

ρσ

)
εµνρσ. (2.18)

where Einstein’s summation convention over repeated indices is implied. Despite
that one has chosen the v.e.v conditions (2.17) on the scalars, one must not
forget the equations which result from their variations. Hence, performing a
variation of I1 + I2 + I3 w.r.t the remaining scalars φ1, φa, φab, φa5, and taking
into account the v.e.v of eq-(2.17) which minimize the potential (2.16a), yields

2 F a
b∧F b

a + F (1)∧F (1) + F (5)∧F (5) + F a∧Fa + F a5∧Fa5 = 0. (2.19a)

F (1) ∧ F a + F ab ∧ F c ηbc = 0. (2.19b)

F (1) ∧ Fab + F c ∧ F d5 εabcd = 0. (2.19c)

F (1) ∧ Fa5 + F bc ∧ F d εabcd = 0. (2.19d)

From eqs-(2.19) one can infer that F 1 = F a = 0, a = 1, 2, 3, 4 are solutions
compatible with eqs-(2.19b, 2.19c, 2.19d), while the non-zero values F ab, F 5, F a5

will be constrained to obey

2 F a
b ∧ F b

a + F (5) ∧ F (5) + F a5 ∧ Fa5 = 0. (2.19e)

Therefore, when F 1 = F a = 0 the action (2.18) will then reduce to
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S =
4
5

v
∫

M

d4x
(

F ab
µν F cd

ρσ εabcd

)
εµνρσ. (2.20)

A solution to the the zero torsion condition F a = 0 can be simply found by
setting fa

µ = 0 in eq-(2.6c), and which in turn, furnishes the Levi-Civita spin
connection ωab

µ (ea
µ) in terms of the tetrad ea

µ. Upon doing so, the field strength
F ab in eq-(2.6e) when fa

µ = 0 and ωab
µ (ea

µ) becomes then F ab = Rab(ωab
µ )+4ea∧

eb, where Rab = 1
2Rab

µν dxµ ∧ dxν is the standard expression for the Lorentz-
curvature two-form in terms of the Levi-Civita spin connection. Finally, the
action (2.20) becomes the Macdowell-Mansouri-Chamseddine-West action [17],
[18]

S =
4
5

v
∫

d4x ( Rab + 4 ea ∧ eb ) ∧ ( Rcd + 4 ec ∧ ed ) εabcd. (2.21)

comprised of the Gauss-Bonnet term R∧R; the Einstein-Hilbert term R∧e∧e,
and the cosmological constant term e ∧ e ∧ e ∧ e.

In order to have the proper dimensions of (length)−2 in the above curvature
R + e ∧ e terms, one has to introduce the suitable length scale parameter l in
the terms 1

l2 e ∧ e. A vacuum solution to a theory based on the action (2.21)
is (Anti) de Sitter space Rab + 4

l2 ea ∧ eb = 0 ⇒ Rab = − 4
l2 ea ∧ eb. The (Anti)

de Sitter throat size can be set to be equal to the length scale l. If we wish to
recover the same results as those found in [16] obtained after the elimination of
the v.e.v and consistent with the correct value of the observed vacuum energy
density one requires to set l ∼ RH where RH is the Hubble scale. A value of
l = LPlanck = LP would yield a huge cosmological constant. The (Anti) de
Sitter throat size can be set to the Hubble scale due to the key presence of
the numerical factor < φ5 >= v in (2.20) which implies that the gravitational
constant G = L2

Planck (in natural units of h̄ = c = 1) and the vacuum energy
density ρ are fixed in terms of the throat-size of the (Anti) de Sitter space l and
|v| as

8
5

1
l2
|v| ∼ 1

16πG
=

1
16πL2

P

; |ρ| ∼ 4
5

1
l4
|v|. (2.22a)

Eliminating the vacuum expectation value (vev) value v from eq-(2.22a) yields
a geometric mean relationship among the three scales:

1
32π l2

1
L2

P

∼ |ρ|. (2.22c)

By setting the throat-size of the (Anti) de Sitter space l = RH , to coincide
precisely with the Hubble radius RH ∼ 1061 LP , the relation (2.22c) furnishes
the correct order of magnitude for the observed vacuum energy density [16]

|ρ| ∼ 1
32π

1
R2

H

1
L2

P

∼ (
LP

RH
)2

1
L4

P

∼ 10−122 (MPlanck)4. (2.22d)

A value of l = Lp would yield a huge vacuum energy density (cosmological
constant). The (Anti) de Sitter throat size must be of the order of the Hubble
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scale. The reason one can obtain the correct numerical value of the cosmological
constant is due to the key presence of the numerical factor < φ5 > = v in
(2.21) and whose value is not of the order of unity because it would have led to
l ∼ LP , and in turn, to a huge cosmological constant. The value of v is of the
order of (RH/LP )2 ∼ 10122.

One should emphasize that our results in this section are based on a very
different action (2.10) (plus the terms in eqs-(2.14,2.15)) than the invariant
gravitational action studied by Chameseddine [26] based on the constrained
gauge group U(2, 2) broken down to U(1, 1) × U(1, 1). In general, our action
(2.10) is comprised of many more terms displayed by in eq-(2.12) than the action
chosen by Chamseddine

I =
∫

M

Tr (Γ5 F ∧ F ) .

Secondly, our procedure furnishes the correct value of the cosmological constant
via the key presence of the v.e.v < φ5 >= v in all the terms of the action (2.21).
Thirdly, by invoking the equations of motion (2.19) resulting from a variation
of I1 + I2 + I3 w.r.t the scalar components of ΦA, one does not need to impose
by hand the zero torsion constraints as done by [26]. The condition F a = 0
results from solving eqs-(2.19).

To sum up, ordinary gravity with the correct value of the cosmological con-
stant emerges from a very specific vacuum solution. Furthermore, there are
many other vacuum solutions of the more fundamental action associated with
the expressions I1 + I2 + I3 of eqs-(2.10, 2.14. 2.15) and involving all of the
terms in eq-(2.12). For example, for constant field configurations ΦA, the in-
clusion of all the gauge field strengths in eq-(2.12) contain the Euler type terms
F ab∧F cdεabcd; theta type terms F 1∧F 1;F 5∧F 5 corresponding to the Maxwell
aµ and Weyl dilatation bµ fields, respectively; Pontryagin type terms F a

b ∧ F b
a;

torsion squared terms F a ∧ F a, etc ... all in one stroke.
At this stage we may provide the relation of the action (2.21) to the Confor-

mal Gravity action based in gauging the conformal group SO(4, 2) ∼ SU(2, 2)
in 4D . The operators of the Conformal algebra can be written in terms of the
Clifford algebra generators as [25]

Pa =
1
2
Γa (1 − Γ5); Ka =

1
2
Γa (1 + Γ5); D = − 1

2
Γ5, Lab =

1
2

Γab.

(2.23)
Pa ( a = 1, 2, 3, 4) are the translation generators; Ka are the conformal boosts; D
is the dilation generator and Lab are the Lorentz generators. The total number
of generators is respectively 4+4+1+6 = 15. From the above realization of the
conformal algebra SO(4, 2) ∼ SU(2, 2) generators (2.23), after straightforward
algebra using (Γa)2 = −1 for a = 1, 2, 3, 4; (Γ5)2 = 1; {Γa,Γ5} = 0; the explicit
evaluation of the commutators yields

[Pa, D] = Pa; [Ka, D] = −Ka; [Pa, Kb] = − 2gab D + 2 Lab
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[Pa, Pb] = 0; [Ka,Kb] = 0; ....... (2.24)

which is consistent with the SU(2, 2) ∼ SO(4, 2) commutation relations. Notice
that the Ka, Pa generators in (2.23) are both comprised of anti-Hermitian Γa

and Hermitian ±ΓaΓ5 generators, respectively, and the dilation D operator is
Hermitian.

Having established this, a real-valued tetrad V a
µ field and its real-valued

partner Ṽ a
µ can be defined in terms of the real-valued gauge fields ea

µ, fa
µ , as

follows

ea
µ − fa

µ = V a
µ ; ea

µ + fa
µ = Ṽ a

µ . (2.25)

such that
ea
µ Γa + fa

µ ΓaΓ5 = V a
µ Pa + Ṽ a

µ Ka. (2.26)

The components of the torsion and conformal-boost curvature two-forms of
conformal gravity are given respectively by the linear combinations of eqs-(2.6c,
2.6d)

F a
µν − F a5

µν = F̃ a
µν [P ]; F a

µν + F a5
µν = F̃ a

µν [K] ⇒

F a
µν Γa + F a5

µν Γa Γ5 = F̃ a
µν [P ] Pa + F̃ a

µν [K] Ka. (2.27)

The components of the curvature two-form corresponding to the Weyl dila-
tion generator are F 5

µν (2.6b). The Lorentz curvature two-form is contained

in F ab
µν dxµ ∧ dxν (2.6e) and the Maxwell curvature two-form is F 1

µν dxµ ∧ dxν

(2.6a).
To sum up, the real-valued tetrad gauge field V a

µ (that gauges the trans-
lations Pa ) and the real-valued conformal boosts gauge field Ṽ a

µ (that gauges
the conformal boosts Ka) of conformal gravity are given, respectively, by the
linear combination of the gauge fields ea

µ ± fa
µ associated with the Γa, Γa Γ5

generators of the Clifford algebra Cl(1, 3) of the tangent space of spacetimeM4

after performing a Wick rotation −i Γ0 = Γ4.
A different basis given fully in terms of anti-Hermitian generators of the form

Pa =
1
2
Γa (1 − i Γ5); Ka =

1
2
Γa (1 + i Γ5); D =

i

2
Γ5, Lab =

1
2

Γab.

(2.28)
leads to a different algebra SO(6) ∼ SU(4) and whose commutators differ
from those in (2.24)

[Pa, D] = Ka; [Ka, D] = − Pa; [Pa, Kb] = − 2gab D

[Pa, Pb] = [Ka, Kb] =
1
2
Γab = Lab; ....... (2.29)

The anti-Hermitian generators Pa,Ka,D, Lab are associated to the SO(6) ∼
SU(4) algebra and which can be explicitly established from the one-to-one cor-
respondence
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Pa =
1
2
Γa (1 − i Γ5) ←→ − Σa5; Ka =

1
2
Γa (1 + i Γ5) ←→ Σa6

D =
i

2
Γ5 ←→ Σ56; Lab =

1
2

Γab ←→ Σab (2.30)

The SO(6) Lie algebra in 6D associated to the anti-Hermitian generators ΣAB

(A,B = 1, 2, ...., 6) is defined by the commutators

[ΣAB , ΣCD] = gBC ΣAD − gAC ΣBD − gBD ΣAC + gAD ΣBC . (2.31)

where gAB is a diagonal 6D metric with signature (−,−,−,−,−,−). One can
verify that the realization (2.28) and correspondence (2.30) is consistent with
the SO(6) ∼ SU(4) commutation relations (2.29). The extra U(1) Abelian
generator in U(4) = U(1)× SU(4) is associated with the unit 1 generator.

In general the unitary compact group U(p+q;C) is related to the noncompact
unitary group U(p, q;C) by the Weyl unitary trick [20] mapping the anti-
Hermitian generators of the compact group U(p + q;C) to the anti-Hermitian
and Hermitian generators of the noncompact group U(p, q;C) as follows : The
(p+q)×(p+q) U(p+q;C) complex matrix generator is comprised of the diagonal
blocks of p×p and q×q complex anti-Hermitian matrices M†

11 = −M11; M†
22 =

−M22, respectively. The off-diagonal blocks are comprised of the q× p complex
matrix M12 and the p × q complex matrix −M†

12, i.e. the off-diagonal blocks
are the anti-Hermitian complex conjugates of each other. In this fashion the
(p + q) × (p + q) U(p + q;C) complex matrix generator M is anti-Hemitian
M† = −M such that upon an exponentiation U(t) = etM it generates a unitary
group element obeying the condition U†(t) = U−1(t) for t = real. This is what
occurs in the U(4) case.

In order to retrieve the noncompact U(2, 2;C) case, the Weyl unitary trick
requires leaving M11,M22 intact but performing a Wick rotation of the off-
diagonal block matrices i M12 and −i M†

12. In this fashion, M11,M22 still retain
their anti-Hermitian character, while the off-diagonal blocks are now Hermitian
complex conjugates of each-other. This is precisely what occurs in the realiza-
tion of the Conformal group generators in (2.23). For example, Pa,Ka both
contain anti-Hermitian Γa and Hermitian pieces ΓaΓ5. Notice now that despite
the name ”unitary” group U(2, 2;C), the exponentiation of the Pa and Ka gen-
erators does not furnish a truly unitary matrix obeying U† = U−1. The complex
extension of U(p+q, C) is Gl(p+q;C). Since the algebras U(p+q;C), U(p, q;C)
differ only by the Weyl unitary trick, they both have identical complex exten-
sions GL(p + q;C) [20]. The technical problem with the general linear groups
like GL(N,R) is that (its covering) admits infinite-dimensional spinorial rep-
resentations but not finite-dimensional ones. For a thorough discussion of the
physics of infinite-component fields and the perturbative renormalization prop-
erty of metric affine theories of gravity based on (the covering of ) GL(4, R) we
refer to [21].
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At the beginning of this section we had the anti-Hermitian generators Γa

obeying (Γa)2 = −1 for a = 1, 2, 3, 4 (no summation over the a indices is
implied) and where Γ4 was defined by a Wick rotation as Γ4 = −i Γ0. The group
U(2, 2) consists of the 4× 4 complex matrices which preserve the sesquilinear
symmetric metric gαβ associated to the following quadratic form in C4

< u, u > = ūα gαβ uβ = ū1u1 + ū2u2 − ū3u3 − ū4u4. (2.32)

obeying the sesquilinear conditions

< λ v, u > = λ̄ < v, u >; < v, λ u > = λ < v, u > . (2.33)

where λ is a complex parameter and the bar operation denotes complex con-
jugation. The metric gαβ can be chosen to be given precisely by the chirality
(Γ5)αβ 4 × 4 matrix representation whose entries are 12×2, − 12×2 along the
main diagonal blocks, respectively, and 0 along the off-diagonal blocks. The
U(2, 2) = U(1) × SU(2, 2) metric-preserving group transformations are gener-
ated by the generators given explicitly in (2.23) and by the unit operator.

The Lie algebra SU(2, 2) ∼ SO(4, 2) corresponds to the conformal group in
4D. The special unitary group SU(p + q;C) in addition to being sesquilinear
metric-preserving is also volume-preserving. One can view gαβ as a spin-space
metric since the complex vector components uα can be interpreted as spinors;
spinors are the left/right ideal elements of the Clifford algebra Cl(4, C) and can
be visualized as the respective columns and rows of a 4× 4 complex matrix.

The group U(4) consists of the 4 × 4 complex matrices which preserve the
sesquilinear symmetric metric gαβ associated to the following quadratic form
in C4

< u, u > = ūα gαβ uβ = ū1u1 + ū2u2 + ū3u3 + ū4u4. (2.34)

The metric gαβ is now chosen to be given by the unit 1αβ diagonal 4 × 4 ma-
trix. The U(4) = U(1) × SU(4) metric-preserving group transformations are
generated by the 15 + 1 anti-Hermitian generators ΣAB , i 1 given in (2.28).

In the most general case one has the following isomorphisms of Lie algebras
[20]

SO(5, 1) ∼ SU∗(4) ∼ SL(2,H); SO∗(6) ∼ SU(3, 1);

SO(4, 2) ∼ SU(2, 2); SO(3, 3) ∼ SL(4, R); SO(6) ∼ SU(4). (2.35)

where the asterisks in SU∗(4), SO∗(6) denote the noncompact versions of the
compact groups SU(4), SO(6) and SL(2,H) is the special linear Mobius algebra
over the field of quaternions H. All these algebras are related to each other via
the Weyl unitary trick, therefore they admit an specific realization in terms of
the Cl(4, C) generators.

It is well known among the experts that U(4) can also be realized in terms
of SO(8) generators as follows : Given the Weyl-Heisenberg ”superalgebra”
involving the N fermionic creation and annihilation (oscillators) operators

12



{ai, a
†
j} = δij , {ai, aj} = 0, {a†i , a

†
j} = 0; i, j = 1, 2, 3, ..... N. (2.36)

one can find a realization of the U(N) algebra bilinear in the oscillators as
E j

i = a†i aj and such that the commutators

[E j
i , E l

k ] = a†i aj a†k al − a†k al a†i aj =

a†i (δjk − a†k aj) al − a†k (δli − a†i al) aj = a†i (δjk) al − a†k (δli) aj =

δj
k E l

i − δl
i E j

k . (2.37)

reproduce the commutators of the Lie algebra U(N) since

−a†i a†k aj al + a†k a†i al aj = − a†k a†i al aj + a†k a†i al aj = 0. (2.38)

due to the anti-commutation relations (2.36) yielding a double negative sign
(−)(−) = + in (2.38). Furthermore, one also has an explicit realization of the
Clifford algebra Cl(2N) Hermitian generators by defining the even-number and
odd-number generators as

Γ2j =
1
2

(aj + a†j); Γ2j−1 =
1
2i

(aj − a†j). (2.39)

The Hermitian generators of the SO(2N) algebra are defined as usual Σmn =
i
2 [Γm,Γn] where m,n = 1, 2, ....2N . Therefore, the U(4), SO(8), Cl(8) alge-
bras admit an explicit realization in terms of the fermionic Weyl-Heisenberg
oscillators ai, a

†
j for i, j = 1, 2, 3, 4. U(4) is a subalgebra of SO(8) which is a

subalgebra of Cl(8). The Conformal algebra in 8D is SO(8, 2) and also admits
an explicit realization in terms of the Cl(8) generators similarly as the real-
ization of SO(4, 2) ∼ SU(2, 2) in terms of the Cl(4, C) generators displayed
in (2.23). The compact version of SO(8, 2) is SO(10) which is a GUT group
candidate. U(5), SO(10), Cl(10) admit a realization in terms of the fermionic
Weyl-Heisenberg oscillators ai, a

†
j for i, j = 1, 2, 3, 4, 5.

The group U(5) played a key role in the construction of the deformed Born’s
reciprocal complex gravitational theory in 4D [22] with a Hermitian complex
metric g(µν) + ig[µν] where the anti-symmetric component can be identified with
the Kalb-Ramond field Bµν in string theory. Born’s reciprocal relativity in flat
spacetimes is based on the principle of a maximal speed limit (speed of light)
and a maximal proper force (which is also compatible with a maximal and
minimal length duality) and where coordinates and momenta are unified on a
single footing. In particular, a deformed Born’s complex reciprocal general rela-
tivity theory in curved spacetimes (without the need to introduce star products)
was constructed as a local gauge theory of the deformed version of the origi-
nal Quaplectic group proposed by [23] that is given by the semi-direct product
of U(1, 3) with the deformed (noncommutative) Weyl-Heisenberg group corre-
sponding to noncommutative coordinates and momenta generators [Za, Zb] 6= 0.
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The Hermitian metric is complex-valued with symmetric and nonsymmetric
components and there are two different complex-valued Hermitian Ricci ten-
sors Rµν ,Sµν . The deformed Born’s reciprocal gravitational action linear in
the Ricci scalars R,S with Torsion-squared terms and BF terms is the most
natural action. Nonsymmetric metrics were first considered by Einstein [24] in
an attempt to unify Gravity with Electromagnetism.

After this thorough discussion about unitary groups, we shall explain next
how both algebras U(2, 2) and U(4) can be encoded, separately, in the Cl(4, C)⊕
Cl(4, C) decomposition of the complex Clifford algebra Cl(5, C) after selecting
the appropriate basis of generators displayed in (2.23) and (2.28). Complex
Clifford algebras have a periodicity of 2 given by Cl(N + 2; C) = Cl(N ;C) ⊗
M(2, C) where M(2, C) is the 2 × 2 matrix algebra over the complex numbers
C. Therefore, in even dimensions Cl(2m;C) = M(2m, C) is the 2m×2m matrix
algebra over the complex numbers C; and in odd dimensions Cl(2m + 1; C) =
Cl(2m;C) ⊕ Cl(2m,C) so that Cl(5, C) = Cl(4, C) ⊕ Cl(4, C). Real Clifford
algebras have a periodicity of 8 : Cl(N + 8;R) = Cl(N) ⊗ M(16, R) where
M(16;R) is the 16×16 matrix algebra over the reals R. To sum up, Cl(5, C) =
Cl(4, C) ⊕ Cl(4, C) = M(4, C) ⊕M(4, C). The first Clifford algebra Cl(4, C)
factor will carry the Conformal Gravitational and Maxwell degrees of freedom
associated with U(2, 2). The second Clifford algebra Cl(4, C) factor will carry
the U(4) Yang-Mills degrees of freedom.

U(2, 2) admits the compact subgroup U(2) × U(2) = SU(2) × SU(2) ×
U(1) × U(1) after symmetry breaking. The groups U(2, 2), U(4) are not large
enough to accommodate the Standard Model Group SU(3)×SU(2)×U(1) as its
maximally compact subgroup. The GUT groups SU(5), SU(2)×SU(2)×SU(4)
are large enough to achieve this goal. In general, the group SU(m + n) has
SU(m)×SU(n)×U(1) for compact subgroups. For this reason, the second step
needed to be able to generate the minimal extension of the Standard Model
group SU(3)c×SU(2)L×U(1)Y involves the inclusion of the extra components
of a poly-vector valued field AM in C-spaces (Clifford spaces).

Tensorial Generalized Yang-Mills in C-spaces (Clifford spaces) based on
poly-vector valued (anti-symmetric tensor fields) gauge fields AM (X) and field
strengths FMN (X) have ben studied in [19], [25] where X = XMΓM is a C-space
poly-vector valued coordinate

X = ϕ 1 + xµ γµ + xµ1µ2 γµ1∧γµ2 + xµ1µ2µ3 γµ1∧γµ2∧γµ3 + ....... (2.40)

In order to match dimensions in each term of (2.40) a length scale parame-
ter must be suitably introduced. In [25] we introduced the Planck scale as
the expansion parameter in (2.40). The scalar component ϕ of the spacetime
poly-vector valued coordinate X was interpreted by [27] as a Stuckelberg time-
like parameter that solves the problem of time in Cosmology in a very elegant
fashion.
AM (X) = AI

M (X) ΓI is a poly-vector valued gauge field whose gauge group
is based on the Clifford algebra Cl(5, C) = Cl(4, C) ⊕ CL(4, C) spanned by
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16 + 16 generators. The expansion of the poly-vector AI
M is also of the form

AI
M = ΦI 1 + AI

µ γµ + AI
µ1µ2

γµ1∧γµ2 + AI
µ1µ2µ3

γµ1∧γµ2∧γµ3 + ....... (2.41)

In order to match dimensions in each term of (2.41) another length scale param-
eter must be suitably introduced. For example, since Aµνρ has dimensions of
(length)−3 and Aµ has dimensions of (length)−1 one needs to introduce another
length parameter in order to match dimensions. This length parameter does not
need to coincide with the Planck scale. The Clifford-algebra-valued gauge field
AI

µ(xµ)ΓI in ordinary spacetime is naturally embedded into a far richer object
AI

M (X) in C-spaces. The advantage of recurring to C-spaces associated with
the 4D spacetime manifold is that one can have a (complex) Conformal Gravity,
Maxwell and U(4)× U(4) Yang-Mills unification in a very geometric fashion.

To briefly illustrate how it can be attained, let us write in 4D the several
components of the C-space poly-vector valued Cl(5, C) gauge field A(X) as

AI
0 = ΦI ; AI

µ; AI
µν ; AI

µνρ = εµνρσ ÃI
σ; AI

µνρσ = εµνρσ Φ̃I . (2.42)

where ΦI and Φ̃I correspond to the scalar (pseudo-scalars) components of the
poly-vector gauge field. Let us freeze all the degrees of freedom of the poly-
vector C-space coordinate X in A(X) except those of the ordinary spacetime
vector coordinates xµ. As we have shown in this section, Conformal Gravity
and Maxwell are encoded in the components of AA

µ ΓA where ΓA span the 16
basis elements of the Cl(4, C) algebra. The antisymmetric tensorial gauge field
of rank three AA

µνρ is dual to the vector ÃA
σ and has 4 independent spacetime

components (σ = 1, 2, 3, 4), the same number as the vector gauge field AI
µ.

Therefore, there is another copy of the Conformal Gravity-Maxwell multiplet
based on the algebra U(2, 2) encoded in the field ÃA

σ .
In order to accommodate the Standard Model Group SU(3)c × SU(2)L ×

U(1)Y one must not forget that there is an additional U(4) group associ-
ated to the second factor algebra Cl(4, C) in the decomposition of Cl(5, C) =
CL(4, C) ⊕ Cl(4, C). Hence, the basis of 32 generators of Cl(5, C) given by
ΓI (I = 1, 2, 3....., 32) appearing in AI

µ ΓI , and in the dual to the rank 3 anti-
symmetric tensor in C-spaceAI

µνρ ΓI = εµνρσ ÃI
σ ΓI will provide another copy of

the Conformal Gravitational-Maxwell multiplet (based on the algebra U(2, 2))
and of the U(4) Yang-Mills multiplet.

To conclude, the combination of the fields AI
µ ΓI and ÃI

µ ΓI , when ΓI are
the 32 generators of the (complex) Cl(5, C) algebra, by doubling the number
of Cl(4, C) degrees of freedom in the internal group space and doubling the
number of degrees of freedom in spacetime, will yield two copies of a Conformal
Gravity-Maxwell-like multiplet which can be assembled into a Complex Gravity-
Maxwell-like theory and a U(4)×U(4) Yang-Mills multiplet in 4D, as required,
if one wishes to incorporate the SU(3) and SU(2) groups.

As mentioned previously, a complex gravitational theory in 4D involves
a Hermitian complex metric g(µν) + ig[µν] where the symmetric components
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g(µν) belong to the usual metric in ordinary gravity; the anti-symmetric com-
ponent can be identified with the Kalb-Ramond field Bµν in string theory.
The complex Maxwell-like field can be assigned to a dyon-field with complex
charges/couplings, i.e; charges with both electric and magnetic components.

A breaking of U(4) × U(4) −→ SU(2)L × SU(2)R × SU(4) leads to the
Pati-Salam GUT group [8] which contains the Standard Model Group, which
in turn, breaks down to the ordinary Maxwell Electro-Magnetic (EM) U(1)EM

and color (QCD) group SU(3)c after the following chain of symmetry breaking
patterns

SU(2)L × SU(2)R × SU(4) → SU(2)L × U(1)R × U(1)B−L × SU(3)c →

SU(2)L × U(1)Y × SU(3)c → U(1)EM × SU(3)c. (2.43)

where B−L denotes the Baryon minus Lepton number charge; Y = hypercharge
and the Maxwell EM charge is Q = I3 + (Y/2) where I3 is the third component
of the SU(2)L isospin. A recent exposition of the algebraic structures behind
the GUT groups SO(10), SU(5), SU(2)× SU(2)× SU(4) can be found in [31].

Having explained how one generates the Standard model group and Gravity
one must not forget the scalar ΦI , Φ̃I multiplets and the rank two antisymmet-
ric tensor field AI

µν multiplet. The scalar ΦI admits the 25 = 32 components
φ, φi, φ[ij], φ[ijk], φ[ijkl], φ[ijklm] associated with the Cl(5, C) gauge group. Sim-
ilar results apply to the Φ̃I components. The φ and φ̃ fields are gauge-singlets
that can be identified with the dilaton and axion scalar fields in modern Cos-
mology. The other scalar fields carry gauge charges and some of them can be
interpreted as the Higgs scalars that will break the Weyl Conformal symmetry
leading to ordinary gravity, and break the U(4)×U(4) symmetry leading to the
Standard Model Group. The rank two antisymmetric tensor field AI

µν multi-
plet leads to a generalized Yang-Mills theory based on tensorial antisymmetric
gauge fields of rank two [19]. Such antisymmetric fields do appear in the massive
spectrum of strings and in the physics of membranes. Therefore, the Clifford
gauge field theory in C-spaces presented here yields findings compatible with
string/M theory.

Despite the appealing nature of our construction one can improve it. It is
more elegant not to have to recur to the algebra Cl(5, C) but instead to stick
to the Cl(4, C) algebra associated with the tangent space of a complexified 4D
spacetime (like it occurs in Twistor theory). In this case one has then a U(4)×
U(4) Yang-Mills sector corresponding to AA

µ ΓA, ÃA
µ ΓA, respectively, where

the ΓA generators, A = 1, 2, 3, ...., 16 belong to the 16-dim Cl(4, C) algebra.
The key question is now : How do we incorporate gravity into the picture ?
The answer to this question lies in the novel physical interpretation behind the
anti-symmetric tensor gauge field of rank two AA

µν ΓA. It has been shown in [25]
when we constructed the generalized gravitational theories in curved C-spaces
(Clifford spaces) that covariant derivatives in C-spaces of a poly-vector AM (X)
with respect to the area bivector coordinate xµν involves generalized connections
(with more indices) in C-space and which are related to the Torsion T ρ

µν =
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T a
µν V ρ

a and Riemannian curvature Rσ
µνρ = Rab

µν V σ
a Vbρ tensors of the underlying

spacetime (V a
µ is the tetrad/vielbein field). The generalized curvature scalar

in curved C-spaces [25] admits an expansion in terms of sums of powers of
ordinary curvature and torsion tensors; i.e. it looks like a higher derivative
theory. Therefore, the components Aa

µν Γa and Aab
µν Γab of the anti-symmetric

tensor gauge field of rank two AA
µν ΓA can be identified with the Torsion and

Riemannian curvature two-forms as follows

( Aa
µν Γa ) dxµν ←→ (T a

µν Pa) dxµ ∧ dxν . (2.44a)

( Aab
µν Γab ) dxµν ←→ (Rab

µν Σab) dxµ ∧ dxν . (2.44b)

where Pa corresponds to the Poincare group translation operator and Σab =
1
4 [Γa,Γb] = 1

2Γab is the Lorentz generator. This is not surprising since the
area-bivector differential dxµν has a similar structure as dxµ ∧ dxν . The only
subtletly arises in the Pa ↔ Γa correspondence because we know [Pa, Pb] = 0
but [Γa,Γb] = 2 Γab. A more accurate correspondence would be like the one
displayed in (2.27)

( Aa
µν Γa + Aa5

µν Γa Γ5 ) dxµν ←→ (F̃ a
µν [P ] Pa + F̃ a

µν [K] Ka ) dxµ∧dxν (2.45)

where the torsion two form is defined in terms of the spin connection ωab =
ωab

µ dxµ and vielbein one forms V a = V a
µ dxµ as F̃ a[P ] = T a = dV a + ωa

b ∧ V b;
the curvature two form is defined as Rab = dωab+ωa

c∧ωcb. The conformal-boost
field strength is F̃ a

µν [K].
Therefore, in this more natural fashion by performing the key identifications

(2.44, 2.45) relating C-space quantities to the curvature and torsion of ordinary
spacetime, we may encode gravity as well, in addition to the U(4)×U(4) Yang-
Mills structure without having to use the Cl(5, C) algebra which has an intrinsic
5D nature, but instead we retain only the Cl(4, C) algebra that is intrinsic to
the complexified 4D spacetime. A real slice must be taken in order to extract
the real four-dimensional theory from the four complex dimensional one ( 8 real
dimensions ) with complex coordinates z1, z2, z3, z4. A real slice can be taken for
instance by setting z3 = z̄1, z4 = z̄2. In our opinion, this is the most important
result of this work. How Gravity and U(4)×U(4) Yang-Mills unification in 4D
can be obtained from a Cl(4, C) gauge theory in the C-space (Clifford space)
comprised of poly-vector valued coordinates ϕ, xµ, xµν , xµνρ..... and poly-vector
valued gauge fields A0, Aµ, Aµν , Aµνρ, ....... A0 = Φ is the Clifford scalar. The
only caveat with the C-space/spacetime correspondence of eqs-(2.44,2.45) is that
it involves imposing constraints among the Aµν and Aµ components of a poly-
vector AM since the field strengths Fµν are defined in terms of Aµ. In doing
so, one needs to verify that no inconsistencies arise in C-space. Poly-vector
valued coordinates correspond to −1-branes (instantons whose world history is
a point); 0-branes (points whose world history is a line described by xµ); 1-
branes (strings whose world history are areas described by the area-coordinates
xµν), 2-branes (membranes whose world history are described by volumes xµνρ
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), etc.... In this way, a unified description of p-branes, for different values of p,
was attained in [25]

Other approaches, for instance, to Grand Unification with Gravity based on
spinors, C-spaces and Clifford algebras have been proposed by [30], [28] and [29],
respectively. A proposal to unify the Gravity and Standard Model gauge groups
by using algebraic spinors of the standard four-dimensional Clifford algebra, in
left-right symmetric fashion was presented by [30].

The Gravity-Yang-Mills-Maxwell-Matter GUT model by [29] relies on the
Cl(8) algebra in 8D leading to the observed three fermion families and their
masses, force strengths coupling constants, mixing angles, ...... In the model
by [28] the 16-dim C-space metric GMN (corresponding to 4D Clifford algebra)
has enough components in principle to accommodate ordinary gravity and the
SU(3) × SU(2) × U(1) gauge degrees of freedom in the decomposition of the
C-space metric Gµν = gµν + Ai

µ Aj
ν gij .

In the standard Kaluza-Klein compactification procedure from higher to
lower dimensions, the isometry group of the physical internal space carries the
corresponding gauge degrees of freedom of the (Maxwell) Yang-Mills theory in
lower dimensions. The Killing symmetry vectors associated with the group of
isometries of the internal manifold are the generators of the corresponding Lie
algebra. For example, the group of isometries associated to an 8D internal space
given by CP 2×S3×S1 is large enough to accommodate SU(3)×SU(2)×U(1),
because CP 2 = SU(3)/U(2), S3 ∼ SU(2), S1 ∼ U(1). However, the 12 gen-
erators 1, γ5, γµγ5, γµν orthogonal to the generator γµ in the 16-dim C-space
associated with the Cl(3, 1) algebra in 4D, clearly cannot generate the group
SU(3) × SU(2) × U(1). Therefore, the Extended Gravitational Theory in the
C-space [25] associated with the Cl(3, 1) algebra in 4D does not contain enough
physical degrees of freedom to generate a Grand Unified Theory (GUT) of or-
dinary gravity with the other forces in Nature.

Another geometric approaches to unification (see [28] and the many refer-
ences therein) have been based in gauging the transformations in C-space which
leave invariant the norm-squared of a polyvector X given by the scalar part of
the Clifford geometric product of < X̃∗ X >s where the tilde operation rep-
resents a reversal in the order of the gamma factors and ∗ denotes a complex
conjugation of the components of X. These transformations (poly-rotations or
spin gauge transformations) are of the form X′ = R X L such that RR̃∗ = 1
and LL̃∗ = 1; i.e. the combined right/left actions can be assigned to the direct
product group U(4)×U(4) which is large enough to accommodate the Standard
model group but it leaves out Conformal Gravity. A Weyl unitary trick yields
U(2, 2) × U(4) which includes the Conformal Gravity-Maxwell-like theory but
the remaining group U(4) is not large enough to accommodate SU(3)×SU(2);
i.e U(4) contains separately SU(3) and SU(2), but it does not contain them
simultaneously. For this reason, one needs to recur to the dual gauge field
ÃI

σ of the antisymmetric rank 3 tensor gauge field AI
µνρ in C-space in order

to incorporate all the degrees of freedom involving Gravity and the Standard
Model.
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If one wishes to incorporate string theory into the picture, one needs to
start with the geometrical C-space (Clifford space) corresponding to the 5 com-
plex dimensional spacetime ( 10 real dimensions) and associated to the complex
Clifford algebra Cl(5, C). In this case the Cl(5, C) symmetry is the one associ-
ated with the tangent space to the 5-complex dim-spacetime. This is another
arena where the extended gravitational theory of the C-space belonging to the
Cl(5, C) algebra has enough of degrees of freedom to retrieve the physics of
the Standard Model and Gravity in four real dimensions. 10 real dimensions is
the dimensions of the anomaly-free superstring theory. If one wishes to incor-
porate F theory the natural setting would be a 6 complex dim space (12 real
dimensional) corresponding the Cl(6, C) algebra isomorphic to the 8×8 matrix
algebra over the complex numbers.

To finalize, Complex, Quaternionic and Octonionic Gravity in connection to
GUT have been analyzed further in [32], [33]. Star Product deformations of the
Clifford Gauge Field Theory discussed in this work, furnishing Noncommutative
versions of the action, etc.... are straightforward generalizations of the work by
[26]. The wedge star product of two Clifford-valued one-forms is defined as

A ∧∗ A =
(

(AA
µ ∗ AB

ν ) ΓA ΓB

)
dxµ ∧ dxν =

1
2

(
(AA

µ ∗s AB
ν ) [ΓA, ΓB ] + (AA

µ ∗a AB
ν ) {ΓA, ΓB}

)
dxµ ∧ dxν . (2.44)

In the case when the coordinates don’t commute [xµ, xν ] = θµν (constants), the
cosine (symmetric) star product is defined by [26]

f ∗sg ≡ 1
2

(f ∗ g + g ∗ f) = f g +
(

i

2

)2

θµν θκλ (∂µ ∂κf) (∂ν ∂λg) + O(θ4).

(2.45)
and the sine (anti-symmetric Moyal bracket) star product is

f ∗a g ≡ 1
2

(f ∗ g − g ∗ f) =
(

i

2

)
θµν (∂µf) (∂νg) +(

i

2

)3

θµν θκλ θαβ (∂µ ∂κ ∂αf) (∂ν ∂λ ∂βg) + O(θ5). (2.46)

Notice that both commutators and anticommutators of the gammas appear in
the star deformed products in (2.44). For example, in the U(1) Abelian gauge
field theory case, the deformed field strength in C-spaces is

F = D ∗ A = d ∗ A + A ∗ A = (ΓM∂M ) ∗ (ΓNAN ) + (ΓMAM ) ∗ (ΓNAN ).
(2.47)

The star product deformations of the gauge field strengths in the case of
U(2, 2) were given by [26] and the expressions are very cumbersome. In four
dimensions, the star product deformed action studied by [26] reads

I = i

∫
M

Tr
(
Γ5 F̃ ∗ F̃

)
= i

∫
M

d4x εµνρσ Tr
(
Γ5 F̃µν ∗ F̃ρσ

)
=
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i

∫
M

d4x εµνρσ
(
2 F̃ 1

µν ∗s F̃ 5
ρσ + εabcd F̃ ab

µν ∗s F̃ cd
ρσ

)
. (2.48)

The generalization of the action (2.48) to C-spaces is the subject of future
investigations.
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