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Abstract

We consider point magnetic charges as the sources of the magnetostatic
fields, like the point electric charges for the electrostatic fields. Forms of
the mutual effects of electric and magnetic charges on themselves and on
each other are presented in the forms of vectorial relations. Using these
relations incorrectness of a usual manner which eventually leads to the
deviation from the classical physics and to the rejection of the Galilean
transformations and to the resort to the special relativity is proven. Static
potential energy of a distribution of electric and magnetic charges is pre-
sented with a careful view on the actual essence of each involved term;
this itself shows a sample of the usual carelessness existing in the present
current electromagnetic theory even in its static discussions. Almost all
the fundamental relations in the present current electromagnetic theory
are rewritten in new forms by using the fundamental vectorial relations
presented at the beginning of the article. In a more detailed argument
the proportion of the curl of the dynamic field of one kind (ie magnetody-
namic or electrodynamic) to the time derivative of the static field of the
other kind (ie electrostatic or magnetostatic) is established; meanwhile
the proportion of the current density of one kind to the time derivative
of the field of the same kind is also shown. Lenz’s law is obtained in its
new form. Static and dynamic inductances are presented. By presenting
an aspect which views the space full of much tiny electrostatic and mag-
netostatic dipoles, the possibility of the proportion of the static fields to
the dynamic fields is shown.

The way in which the electromagnetic wave propagates through these
dipoles is easily explained by using the mentioned fundamental relations,
and by obtaining the new form of Maxwell’s equations and deducing the
wave equations from them, this simple explanation is endorsed. By de-
ducing the dynamic potential energy and explaining its difference with the
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static potential energy of a set of charges, the Poynting vector is obtained
in its new form. It is shown that the fields of an electromagnetic wave
are continuous across the boundary interfaces. Fresnel coefficients are ob-
tained in their quite new forms, and it is explained that the coefficient
appearing in the fundamental relations showing the relations between two
electric and magnetic charges moving relative to each other, µ, must be
construed as a world constant. The reflectance and transmittance are
introduced in this new approach, and it is shown that sum of them is
identical with one.

1 Introduction

We know that the present current electromagnetic theory, so far it con-
cerns the discussion about electrostatic fields, has often the same attrac-
tiveness as the logical discussions of the mathematics and the same consis-
tency as the classical mechanics; but from the point where the interference
of the magnetic and electric fields commences, it becomes containing not
only of some kind of unnatural complexity but also of sudden unexpected
contrariety to the classical mechanics, eg easily and in simple forms the
law of action and reaction is breached by this theory. It seems that the
origin of this problem should be searched in this fact that in spite of this
fact that the method of simplifying of problems and in fact the method
of subjective modelling of physical problems had been the usual man-
ner of the great theoretical physicists in discovering the physical laws,
using of this manner for the electromagnetism has been neglected and
instead, much efforts have been made to substantiate some abstract and
subsidiary concepts, like field, and to justify deviation from the classical
mechanics logic mathematically by which unnecessary complexities of the
theory have been increased and consequently the attractiveness of it has
been decreased.

When a high school student reads that the magnetic needle of a com-
pass turns beside a wire carrying current and that a force is exerted on a
hanging wire carrying current in a fixed magnetic field, the acceptance of
this matter that this is the same law of action and reaction (and so there
is also some force on the wire due to the compass needle and on the fixed
magnet due to the wire) will be much more logical for him or her than ig-
noring the general validity of this law and attributing the force exerted on
the compass needle directly to some vague field around the wire to which
he or she should attribute more genuineness than to the agent causing
this field! It is much more logical and desirable for him or her to visualize
two electric and magnetic point charges moving toward each other on two
different parallel lines and then to deduce the form of forces they exert on
each other by comparing the situation with the mentioned forces exerted
on the compass needle and on the hanging wire. This simple work has
been done and in the following section has found its mathematical and
in fact vectorial form. (There you can see the form of the force that two
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moving electric and magnetic charges exert on each other. I recommend
and emphasize to study the 15th article of this book (after study of this
(13th) article) for probable physical reason for the existence of such form
of force.) Just this same simple act has had some interesting consequences
to which we proceed in this article. What is certain is that surely many
of the scientists will be glad if some way is found through which the elec-
tromagnetic theory can be founded totally on the classical physics and in
the frame of Galilean transformations, since the reason presented for the
deviation from this physics and the choice of other transformations has
been the inability to find just such a way.

2 Fundamental relations

We can consider origin in the form of point magnetic charges for the
magnetostatic fields as we consider origin in the form of point electric
charges for the electrostatic fields. We show the magnetic point charge by
“b ” and we assume the signs + (referring to N pole) and − (referring to S
pole) for the two kinds of magnetic charge. Now with these definitions if q
and q′ are two point electric charges and b and b′ are two point magnetic
charges and r̂ is the outward radial unit vector for each charge (see Fig.
1), then the following relations will be always true. In these relations the
constant values k, k′ and k′′ are positive.

Electrostatic force arising from q exerted on q′:

Fq′ = kqq′r̂q′/r2 = q′Eq′ (1)

Electrostatic field arising from q in the place of q′:

Eq′ = Fq′/q′ = kqr̂q′/r2 (2)

Magnetostatic force arising from b exerted on b′:

Fb′ = k′bb′r̂b′/r2 = b′Bb′ (3)

Magnetostatic field arising from b in the place of b′:

Bb′ = Fb′/b′ = k′br̂b′/r2 (4)

And when in an inertial reference the point magnetic charge b has a
relative velocity vb relative to the point electric charge q, then we shall
have the following relations. (It is obvious that vq = −vb; see Fig. 2.)

Electrodynamic force arising from b exerted on q:

F∗
q = k′′qbvq × r̂q/r2 =

k′′

k′
qvq ×Bq (5)
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Electrodynamic field arising from b in the place of q:

E∗
q = F∗

q/q = k′′bvq × r̂q/r2 =
k′′

k′
vq ×Bq =

−k′′

k′
vb ×Bq (6)

Magnetodynamic force arising from q exerted on b:

F∗
b = −k′′qbvb × r̂b/r2 =

−k′′

k
bvb ×Eb (7)

Magnetodynamic field arising from q in the place of b:

B∗
b = F∗

b/b = −k′′qvb × r̂b/r2 =
−k′′

k
vb ×Eb =

k′′

k
vq ×Eb (8)

We determine “C ” for the unit of electric charge and “An ” for the
unit of magnetic charge. We define k = 1/(4πε), k′ = 1/(4πε′) and k′′ =
µ/(4π). Since from the units viewpoint we have k : kg.m3.C−2.s−2, k′ :
kg.m3.An−2.s−2 and k′′ : kg.m2.C−1.An−1.s−1, we have ε : C2.s2.kg−1.m−3,
ε′ : An2.s2.kg−1.m−3 and µ : kg.m2.C−1.An−1.s−1.

At present it is usual to define B (and in fact b) from the relation
(5), namely F∗

q = (k′′/k′)qvq × Bq, instead of reaching the definition of
magnetostatic field B in the manner presented above. In this usual ap-
proach the coefficient k′′/k′ is equal to one for vacuum and is considered
without any units, ie the unit An.s.m−1 is considered equivalent to the
unit C. So the quantity of (µε)−1/2 will have the unit of speed, and µε′ is
equal to one for vacuum and without any units. (This usual approach is
unnecessary, I think. This usual definition of B is equivalent to say that
considering the definition of electrostatic charge (and then knowing the
quantity of k) and having the other quantities experimentally, we obtain
the amount of k′′b from (5) ie from F∗

q = k′′qbvq × r̂q/r2, which we name
it (ie k′′b) as C1 at present. Now if we apply a pair of the same b ex-
perimentally for the relation (3), ie F = k′b2r̂/r2, again having the other
quantities experimentally, the amount of k′b2 will be obtained which we
name it as C2. Now having k′′b = C1 and k′b2 = C2, if we want to have
k′′ = k′, we shall obtain b = C2/C1 and k′′ = k′ = C2

1/C2. Then we
define the amount of applied b equivalent to C2/C1 units of An in order
that we shall have k′′/k′ = 1. With such a definition, after experimen-
tal measuring in vacuum, it is obtained that k′′/k = c−2 in which c is a
quantity as big as the speed of light in vacuum. Now having k′′ = k′ and
k′′ = k/c2 we obtain the amount of c−2, which is certainly very small,
for the ratio of the coefficient of the relation (8) to the coefficient of the
relation (6), ie for (k′′/k)/(k′′/k′) = k′/k. It may be thought that in
this manner the ratio of the magnitude of the magnetodynamic field to
the magnitude of the electrostatic field is much less than the ratio of the
magnitude of the electrodynamic field to the magnitude of the magneto-
static field, or in other words if the magnitudes of the electrostatic and
magnetostatic fields are almost the same, the magnetodynamic field will
be much less than the electrodynamic field; while this is not the case at
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all and the ratio of these two coefficients, ie (k′′/k)/(k′′/k′) = k′/k, with
the supposition of having k, depends on the k′, which in turn is equal to
C2/b2 according to the above explanations, and the amount of the mag-
nitude of C2/b2 depends on the definition presented for magnetic charge
(b) completely. It is obvious that if, in this quantity, b is defined much
less than C2/C1 units of An, then the ratio k′/k will be increased very
much. In fact, what is important in the discussion of electromagnetism is
that we see from the relations (5) and (7) that the ratio of the magnitude
of F∗

q to the magnitude of F∗
b is equal to one, ie the magnitudes of the

electrodynamic and magnetodynamic forces are the same. Unfortunately
at present it is usual improperly that by using the wrong deductions and
confusing the dynamic and static fields with each other, a relation like
Fm/Fe ≤ (v/c)(v1/c) is concluded and so what is understood wrongly is
that the magnetic field is much insignificant against the electric field (see
Foundations of Electromagnetic Theory by Reitz, Milford and Christy,
Addison-Wesley, 1979).)

Relation (8) in the form of B∗
b = −k′′qvb × r̂b/r2 is in fact the same

final conclusion obtained from the experiences and experiments of Biot,
Savart and Ampere. On the basis of the above eight relations we can
present the electromagnetic theory in a simple form by using the logic of
the classical physics, as we shall do in this article. Problem, complexity
and deviation from the classical physics logic occur when we try to ignore
the existent distinction between stared forces and fields (relations (5) to
(8)) and nonstared ones (relations (1) to (4)). For example if, as at present
is current, we claim that Bq = k′br̂q/r2, which is the magnetostatic field
arising from the magnetic charge b in the place of the electric charge q,
is in fact the same B∗

q = −k′′q1vq × r̂q/r2, which is the magnetodynamic
field arising from the electric charge q1 in the place of the electric charge
q, with this condition that the charge q1 is in the same place of the charge
b, and consequently we substitute B∗

q for Bq in the relation (5), ie F∗
q =

(k′′/k′)qvq × Bq, then we shall obtain F∗
q = k′′2qq1/(k′r2)vq × (vq1 ×

r̂q), and on the other hand in a similar manner we shall have F∗
q1 =

k′′2q1q/(k′r2)vq1 × (vq × r̂q1) which is not identical with −F∗
q , because

considering that r̂q1 = −r̂q it can be seen easily that the expression vq1 ×
(vq × r̂q) = vq × (vq1 × r̂q) is not an identity; ie the law of action and
reaction is breached easily (even without any limit condition); besides,
in principle Bq and B∗

q cannot indicate only a single vector field, since
otherwise it will be necessary that the vectors r̂q and vq × r̂q be always
parallel with each other which is not the case obviously.

3 Static potential energy

As this section, please study the whole section 3.1 of the paper “Inde-
pendence of capacitance from dielectric”, and then study the following
paragraph.

In a quite similar manner “the magnetostatic potential energy of an
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elective distribution of the external magnetic charge with the density ρB

is

UB = 1/2

∫
Vh

H ·BρB dv

in which H is the magnetic displacement vector, and we have ∇ · H =
ρB in which H = ε′0B + PB in which PB is an elective distribution of
magnetostatic polarization and B is arising from both PB and ρB , while
BρB is the field arising only from ρB . ”

4 Modifying and completing the current
relations

When the partial charges dv
∑

i
Niqi (in which Ni is the volume density of

the number of the charges qi’s) locating in r1 are moving with respective
velocities vi’s, according to the relation (8) the partial magnetodynamic
field arising from these partial charges in the point r2 is

dB∗(r2) =
µ

4π

1

k

∑
i

(vi ×Eir2) =
µ

4π

∑
i

(vi × dv1Niqi
r2 − r1

|r2 − r1|3
)

=
µ

4π
(
∑

i

Niqivi)×
r2 − r1

|r2 − r1|3
dv1 =

µ

4π
J(r1)× (r2 − r1)/|r2 − r1|3dv1,

in which J is the electric current density. In a quite similar manner, by
using the relation (6), we can obtain dE∗(r2) = −µ/(4π)J′(r1) × (r2 −
r1)/|r2 − r1|3dv1, in which J′ is the magnetic current density. Therefore:

B∗(r2) =
µ

4π

∫
V

J(r1)× (r2 − r1)

|r2 − r1|3
dv1,E

∗(r2) = − µ

4π

∫
V

J′(r1)× (r2 − r1)

|r2 − r1|3
dv1

(9)
If we operate the operator ∇2· on both sides of the recent relations, we
shall finally obtain

∇ ·B∗ = 0,∇ ·E∗ = 0 (10)

(Notice that it doesn’t mean that ∇ ·B = 0 and ∇ ·E = 0.)

We have the continuity equations (∂ρE/∂t)+∇·J = 0 and (∂ρB/∂t)+
∇ · J′ = 0 . Steady current is a current in which the local charge den-
sity is invariant with time, ie the charges are not compressible and then
∂ρ/∂t = 0 and then it is necessary to have ∇ · J = 0 and ∇ · J′ = 0 for
steady electric and magnetic currents. If we operate the operator ∇2× on
both sides of the relation (9), we shall finally conclude that if the currents
are steady, then we shall have:

∇×B∗(r) = µJ(r),∇×E∗(r) = −µJ′(r). (11)

The curl of the vectors

AB(r2) =
µ

4π

∫
V1

J(r1)

|r2 − r1|
dv1, AE(r2) = − µ

4π

∫
V1

J′(r1)

|r2 − r1|
dv1 (12)
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will be equal to B∗(r2) and E∗(r2) respectively; moreover, these vectors
have divergences and known normal components on the region bound-
aries, and then are determined uniquely. We call these unique vectors as
magnetic vector potential and electric vector potential respectively.

If we define A as a vector whose components are the areas enclosed
by projections of the supposed directed closed spatial curve C on the yz-,
zx-, and xy-plane, then it is obvious that:

∮
C

r× dl = î
∮

C
(ydz − zdy) +

ĵ
∮

C
(zdx−xdz)+k̂

∮
C

(xdy−ydx) = î(Ax+Ax)+ĵ(Ay+Ay)+k̂(Az+Az) =

2A ⇒ 1/2
∮

C
r× dl = A

Now if this curve is in fact a circuit carrying electric current I or
magnetic current I ′ and on definition mB = IA and mE = −I ′A are
magnetodynamic dipole moment and electrodynamic dipole moment re-
spectively, then we shall have:

mB =
1

2
I

∮
C

r× dl, mE = −1

2
I ′

∮
C

r× dl. (13)

By using some mathematical tricks and considering the relations (13) it
can be shown that the magnetic vector potential of a point magnetody-
namic dipole with the moment mB locating in r′ is

AB(r) = (
µ

4π
)mB × (r− r′)

|r− r′|3 , (14)

and the electric vector potential of a point electrodynamic dipole with the
moment mE locating in r′ is

AE(r) = (
µ

4π
)mE × (r− r′)

|r− r′|3 . (15)

MB(r′) = dmB/dv′ and ME(r′) = dmE/dv′ are in turn the magneto-
dynamic dipole moment density and the electrodynamic dipole moment
density (like the static cases PB(r′) = dpB/dv′ and PE(r′) = dpE/dv′).
Then considering the relations (14) and (15) we can write

dAB(r) =
µ

4π

MB(r′)× (r− r′)

|r− r′|3 dv′, dAE(r) =
µ

4π

ME(r′)× (r− r′)

|r− r′|3 dv′

(16)
in which r′ is the location of the point dipole M(r′)dv′.

Considering the manner presented in many of the electromagnetic text-
books we conclude that the magnetodynamic polarization current density
is JMB = ∇×MB , and in a quite similar manner it can be concluded that
the electrodynamic polarization current density is JME = −∇×ME .

If we make use of µ0 (related to the free space) instead of µ and inte-
grate the equations (16) over the volume of the dynamic polarized matter,
V , to obtain the proper expressions for the respective vector potentials
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and take the curl of these potentials in order to obtain the respective dy-
namic fields, then using some mathematical tricks we shall finally obtain
the expression

−µ0∇
1

4π

∫
V

MB(r′) · r− r′

|r− r′|3 dv′ + µ0MB(r) (17)

for the magnetodynamic field in point r arising from the distribution of
the magnetodynamic polarized matter, and the expression

−µ0∇
1

4π

∫
V

ME(r′) · r− r′

|r− r′|3 dv′ + µ0ME(r) (18)

for the electrodynamic field in point r arising from the distribution of the
electrodynamic polarized matter. (The reason for using zero subscript is
that we want to make distinct the role of the dynamic polarized matter
from the role of the free space. So substituting µ0 for µ, curls of the
integrals of the relations (16), which finally lead to the relations (17) and
(18), will show the contribution of the dynamic polarized matter, without
any regarding to free space, for making the dynamic field.) If we add the
role of the nonpolarization conventional current densities, J and J′, in
making the dynamic fields (given by the relations (9)) to the expressions
(17) and (18), the following general relations for the dynamic fields, arising
from the polarization and nonpolarization currents, will be obtained:

B∗(r) =
µ0

4π

∫
V

J(r′)× (r− r′)

|r− r′|3 dv′−µ0∇
1

4π

∫
V

MB(r′)· (r− r′)

|r− r′|3 dv′+µ0MB(r),

(19)

E∗(r) = −µ0

4π

∫
V

J′(r′)× (r− r′)

|r− r′|3 dv′−µ0∇
1

4π

∫
V

ME(r′)· (r− r′)

|r− r′|3 dv′+µ0ME(r)

(20)
As we said JMB and JME are in turn the curls of MB and −ME , and
since the divergence of a curl is zero, the divergences of these dynamic
polarization currents are zero (these currents are steady). Therefore, if
we suppose that J and J′ are the (nonpolarization) transport currents and
in addition their divergences are zero (they are steady), then according
to the relation (11) we shall have ∇×B∗ = µ0(J + JMB ) and ∇×E∗ =
−µ0(J

′ + JME ). Considering the curl form of the dynamic polarization
currents, we can write the recent relations in the following forms:

∇× (
1

µ0
B∗ −MB) = J, ∇× (

1

µ0
E∗ −ME) = −J′ (21)

We define the magnetic intensity vector, H∗, and the electric intensity
vector, D∗, as H∗ = 1/µ0B

∗−MB and D∗ = 1/µ0E
∗−ME respectively.

Then:
∇×H∗ = J, ∇×D∗ = −J′ (22)
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5 Deduction of Maxwell’s equations

We now proceed to the fundamental discussions of this article more. Con-
sider Fig. 3 which shows a piece of a U-shaped wire with a mobile wire
on it, set in a uniform magnetostatic field B being perpendicular to the
area limited by the wires.

Notice that in the following discussion there is no necessity that the
wires to be good conductors, and they can be, for example, from wood.
Suppose that the mobile wire has a velocity v, as in the figure. According
to the relation (6) we know that E∗ = (k′′/k′)v ×B is the force exerted
on the electric charge unit in the mobile wire. If we choose the unit vector
n̂ normal to the area surrounded by the wires by using the right-hand rule
so that the thumb indicates the direction of n̂ while the other four fingers
are in the direction of E∗, then depending on the direction of v we shall
have:

ΦB =

∫
S

B · n̂da = ∓BLX ⇒ dΦB

dt
= ∓BL

dx

dt
= ∓BL(±v) = −BLv

or

− d

dt

∫
S

B · n̂da = BvL.

Now we want to find an appropriate expression for BvL. As said, we know
E∗ = (k′′/k′)v × B, ie in each point of the mobile wire the magnitude
of E∗ is equal to (k′′/k′)vB and its direction is the same direction of the
vector v ×B along the mobile wire. So we can write E∗ = (k′′/k′)vB ⇒
(k′/k′′)E∗L = BvL, and since E∗ is uniform in all points of the mobile
wire, we can write E∗L =

∫
L

E∗ · dl, and since E∗ is zero, in principle,
in other points of the loop, we can expand the integral to the whole
loop and write E∗L =

∮
c
E∗ × dl. It is obvious that if the wires are

conductor, they will cause produce of a velocity for the electric charge
unit in the whole loop (even in the mobile wire itself) which , of course,
this velocity produces an electrodynamic field normal to the path in the
external magnetostatic field and then its respective E∗ · dl is zero and we
again have the same general relation E∗L =

∮
c
E∗ ·dl. Then we can write

(k′/k′′)
∮

c
E∗ · dl = BvL and then:

− d

dt

∫
S

B · n̂da =
k′

k′′

∮
C

E∗ · dl ⇒
∮

C

E∗ · dl = −k′′

k′
d

dt

∫
S

B · n̂da.

With attention to the above discussion and with notice to the right
side of the recent relation we see that the quantity being changed with
time is the area of integration not B, but obviously it should be pre-
sentable that this is equivalent to this task that we assume the integra-
tion area is a time-constant and B changes with time. Thus

∮
C

E∗ · dl =

−k′′/k′
∫

S
∂B/∂t · n̂da. With some attention and sharp-sightedness we

should understand that a mathematical careful analysis should be able to
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generalize the recent equation for each position and each circuit. (Mean-
while, remembrance of this point that the circuit may be non-conductor
is recommended.) By using Stokes’ theorem the recent equation will take
the form

∫
S
∇ × E∗ · n̂da = −k′′/k′

∫
S

∂B/∂t · n̂da , which with its ap-
plying to the partial area da we obtain (∇×E∗ + (k′′/k′)∂B/∂t) · n̂ = 0,
and since this relation must be valid for each n̂ without any attention to
its direction, ∇ × E∗ + (k′′/k′)∂B/∂t = 0. (For realizing the validity of
Stokes’ theorem here, we can suppose that in each point in the space there
is an infinitesimal closed circuit perpendicular to B in that point, which
certainly the time-changes of B cause the induction of some E∗’s, which
these E∗’s will cancel each others in the common parts of the adjacent
small circuits, or in other words, for small conductor circuits, the inner
currents will cancel each others. Thus, in fact, in each given time, E∗ is
a well-behaved point vector function in the space.)

Now we return just to the beginning of the above discussion and make
some changes in it. So, instead of notice to the relation (6) we consider
the relation (8), ie B∗ = −k′′/kv × E which is the force exerted on the
magnetic charge unit in the mobile wire in Fig. 4.

If we choose n̂ normal to the area surrounded by the wires by using
the right-hand rule so that the thumb indicates the direction of ñ while
the other four fingers are in the direction of B*, then depending on the
direction of v we shall have:

ΦE =

∫
S

E · n̂da = ±ELX ⇒ dΦE

dt
= ±EL

dX

dt
= ±EL(±v) = ELv

or d/dt
∫

S
E · n̂da = EvL.

Now we know B∗ = −(k′′/k)v × E, ie in each point in the mobile
wire the magnitude of B∗ is equal to (k′′/k)vE and its direction is the
same direction of the vector E × v along the mobile wire. Thus B∗ =
(k′′/k)vE ⇒ (k/k′′)B∗L = EvL, and since with a discussion similar to
the previous discussion we can write B∗L =

∮
C

B∗ · dl, we have EvL =

(k/k′′)
∮

C
B∗ · dl, and then

d

dt

∫
S

E · n̂da = (k/k′′)

∮
C

B∗ · dl ⇒
∮

C

B∗ · dl = (k′′/k)

∫
S

∂E

∂t
· n̂da,

and with a discussion similar to the previous one, we shall obtain
∇×B∗ − (k′′/k)∂E/∂t = 0. (Notice that existence of magnetic current
is not necessary, because as we said the circuit could be non-conductor.)

We said before that if the currents were steady, ie the charge densities
were not being changed with time, we would have the relations (11),
and now we have shown in fact that under the same condition, ie if the
currents are steady, we have ∇ × B∗ = (k′′/k)∂E/∂t and ∇ × E∗ =
−(k′′/k)∂B/∂t. This condition is implied by perceiving this fact that as
the charge density hasn’t been changed during the displacement of the
mobile wire, the charge density won’t also be changed in the position of
the point loop, which is in fact a point of the line of the current being
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in fact the same movement of the sources, during the displacement of the
sources causing the time variation of the static fields. (The movement of
the sources is in fact the same currents in the relations (9) which ultimately
lead to the relations (11).) Thus we have

J′ = ε′
∂B

∂t
, J = ε′

∂E

∂t
, (23)

and in any case:

∇×B∗ = µε
∂E

∂t
, ∇×E∗ = −µε

∂B

∂t
. (24)

Now again we return to the beginning of the previous discussions re-
lated to the loop circuit. Depending on the kind of material used for the
wires (including the mobile wire) the force exerted on the unit charge, ie
E∗, can move the charges in the circuits and cause them to reach the final
state of equilibrium in motion very soon and thus produce an electric cur-
rent. The work which E∗ does in transferring the unit electric charge from
one end of the mobile wire to its other end is E∗L or (k′′/k′)BvL. We
can attribute this work, E , to some potential difference formed between
the two ends of the mobile wire, V. Consequently we have

(

∮
C

E∗·dl = The work done on the unit electric charge in a complete cycle)

= (k′′/k′)BvL & (k′/k′′)

∮
C

E∗ · dl = (− d

dt

∫
S

B · n̂da = −dΦB

dt
)

⇒ V = E = −(k′′/k′)
dΦB

dt
,

and then, considering the circulation direction on the loop for showing n̂,
which is in agreement with the right-hand rule mentioned at the beginning
of this section, Lenz’s law is obtained which states: “If, passing the time,
ΦB is increased in the circuit, E has such form that as a result of the
electric current arising from it, some magnetodynamic flux is produced
that wants to decrease ΦB . And if, passing the time, ΦB is decreased in
the circuit, E has such form that as a result of the electric current arising
from it, some magnetodynamic flux is produced that wants to increase
ΦB . ”

And referring to the next loop discussion we see that the work done
by B∗ in transferring the unit magnetic charge from one end to the other
end of the mobile wire is B∗L or (k′′/k)EvL, which we show it by B, and
we can attribute it to a potential difference, V ′, formed between the two
ends of the mobile wire. Consequently we have

(

∮
C

B∗·dl = The work done on the unit magnetic charge in a complete cycle)

=(k′′/k)EvL & (k/k′′)

∮
C

B∗·dl =(
d

dt

∫
S

E·n̂da=
dΦE

dt
) ⇒ V ′= B=(k′′/k)

dΦE

dt
.

11



Here with attention to this fact that the electrodynamic field arising from
a magnetic current is obtained by using the left-hand rule, no right-hand
rule, (so that the thumb of the left hand indicates the direction of the
magnetic current while its other four fingers are in the direction of the
electrodynamic field; pay attention to the relation (8) in comparison with
the relation (6)) and considering the mentioned circulation direction on
the loop for showing n̂, we have Lenz’s law again which states: “If, passing
the time, ΦE is increased in the circuit, B has such form that as a result of
the magnetic current arising from it, some electrodynamic flux is produced
that wants to decrease ΦE . And if, passing the time, ΦE is decreased in
the circuit, B has such form that as a result of the magnetic current arising
from it, some electrodynamic flux is produced that wants to increase ΦE . ”

The above two results can also be shown as:

E = −µε′
dΦB

dt
, B = µε

dΦE

dt
(25)

With attention to the relation (9) and by using the identity Jdv = Idl, in
the case of a rigid and motionless isolated circuit we have:

B∗(r2) =
µ

4π
I1

∫
1

dl1 × (r2 − r1)

|r2 − r1|3
& (The circuit is rigid and motionless.)

⇒ dB∗(r2)

dI1
= B∗(r2)/I1, (26)

Φ∗
B =

∫
S

B∗(r2) · n̂da ⇒ dΦ∗
B

dI1
=

∫
S

dB∗(r2)

dI1
· n̂da, (27)

(26) & (27) & (The circuit is rigid and motionless.) ⇒
dΦ∗

B

dI1
=

Φ∗
B

I1
, (28)

(The circuit is rigid and motionless.) & Φ∗
B =

∫
S

B∗(r2) · n̂da

⇒ dΦ∗
B

dt
=

∫
S

dB∗(r2)

dt
·n̂da =

∫
S

dB∗(r2)

dI1

dI1

dt
·n̂da =

dΦ∗
B

dI1

dI1

dt
& (28) ⇒

dΦ∗
B

dt
=

Φ∗
B

I1

dI1

dt
(29)

In a similar manner we have dΦ∗
E/dt = (dΦ∗

E/dI ′1)(dI ′1/dt) or dΦ∗
E/dt =

(Φ∗
E/I ′1)(dI ′1/dt). We define L∗

B = dΦ∗
B/dI and L∗

E = dΦ∗
E/dI ′ as mag-

netodynamic and electrodynamic inductances respectively. The magne-
todynamic inductance, L∗

B , is in fact not useful so much, and its chief
role is in fact giving order to the magnetostatic dipoles of the medium
and so producing the magnetostatic inductance LB = dΦB/dI. Proba-
bly in many cases we have ΦB = a′Φ∗

B practically which itself is arising
from B = a′B∗ which we prescribe this as the definition of the medium
being “magnetolinear ” in which a′ is the proportion constant which is
nonnegative. By presenting similar matters we can attain to the relation

12



E = aE∗ which we prescribe it as the definition of the medium being
“electrolinear ” in which a is the proportion constant that is nonnegative.
Trying to justify these proportions we suppose (and probably posterity
will show) that the space of any substance is full of some much tiny elec-
trostatic and magnetostatic dipoles that have almost random orientations
in general state. By exerting a dynamic field in this space some of the
relevant dipoles which have weaker bonds will be put into order in the
direction of the field, and it is natural that they will produce a relevant
static field in the same direction of the dynamic field in a point of the
space between the dipoles. It is obvious that if for instance the exerted
dynamic field becomes twofold, in addition to the oriented previous group
of the relevant static dipoles another equinumber group of these dipoles,
which of course have stronger bonds, will be put into order in the direction
of the field, and therefore the static field will become twofold in the same
point between the dipoles. In this same manner the proportion of the ex-
erted dynamic field to the static field produced in the space between the
dipoles as a result of the orientation of the dipoles in the direction of the
dynamic field will become meaningful. We should know that these tiny
dipoles don’t belong to the substance in question, but have penetrated it.

We suppose that ΦB to be a point function of I (what that I don’t think
that is valid, for instance, for the ferromagnetic materials). Therefore,
dΦB/dI = a′dΦ∗

B/dI or LB = a′L∗
B . (We should know that we can say

dΦB/dI = ΦB/I still, because ΦB = a′Φ∗
B and dΦ∗

B/dI = Φ∗
B/I, and

I think that the necessity of distinguishing between ΦB/I and dΦB/dI
which is necessary sometimes is because of the deviation from linearity of
substances (pay attention to the definition of linearity presented above).)
Thus

dΦ∗
B

dt
=

dΦ∗
B

dI

dI

dt
= L∗

B
dI

dt
=

LB

a′
dI

dt
& E = −µε′

dΦB

dt

dI

dt
= −µε′LB

dI

dt

⇒ E = −µε′a′L∗
B

dI

dt
.

(The relation that is under consideration instead of this relation in the
present electromagnetic books has the form E = −LdI/dt in which L =
dΦ/dI, and of course the magnetodynamic flux is in mind from Φ, without
any coefficient like a′ that can show the intervention of the role of the
medium in E . Now since E is measurable practically, if we make the
conditions so that all the effective parameters remain unaltered except
that the mediums of experiment are made altered in the magnetic respect,
then if E will be altered with altering the mediums, the aspect presented
in this article will be confirmed practically.) In a quite similar manner we
obtain LE = aL∗

E and B = µεaL∗
EdI ′/dt for an electrolinear medium.

So far only isolated circuits have been under study, so that the totality
of the flux passing through the circuit was due to the current of the circuit
itself. We can eliminate this limitation by supposing that there exist n
circuits with respective numbers 1, 2, 3, · · · , n. In this state, if we suppose
that the medium is full-linear (ie both magnetolinear and electrolinear),

13



then we shall have

Ei = −µε′
n∑

j=1

dΦBij

dt
= −µε′

n∑
j=1

dΦBij

dIj

dIj

dt
= −µε′

n∑
j=1

MBij

dIj

dt

and

Bi = µε

n∑
j=1

dΦEij

dt
= µε

n∑
j=1

dΦEij

dI ′j

dI ′j
dt

= µε

n∑
j=1

MEij

dI ′j
dt

.

It is obvious that MEii = LEi and MBii = LBi . We know that MBij =
dΦBij /dIj = a′dΦ∗

Bij
/dIj = a′Φ∗

Bij
/Ij and since M∗

Bij
= dΦ∗

Bij
/dIj , we

have M∗
Bij

= Φ∗
Bij

/Ij and also MBij = a′M∗
Bij

; and in a similar manner

M∗
Eij

= Φ∗
Eij

/I ′j and also MEij = aM∗
Eij

. Now suppose that i = 2 and
j = 1, then

Φ∗
B21 =

∫
S2

B∗
21 · n̂da2 =

∫
S2

[
µ

4π
I1

∮
C1

dl1 × (r2 − r1)

|r2 − r1|3
] · n̂da2

=
µ

4π
I1

∫
S2

(

∮
C1

dl1 × (r2 − r1)

|r2 − r1|3
) · n̂da2;

and by using the mathematical relation
∮

C1
(dl1 × (r2 − r1)/|r2 − r1|3) =

∇2 ×
∮

C1
(dl1/|r2 − r1|) we have the relation M∗

B21 = Φ∗
B21/I1 =

µ/(4π)
∫

S2
∇2×(

∮
C1

(dl1/|r2−r1|))·n̂da2 and so, by using Stokes’ theorem,

we have M∗
B21 = µ/(4π)

∮
C2

∮
C1

(dl1 · dl2/|r2 − r1|), which is in fact the

same Neumann’s formula for the mutual inductance. In a similar manner
we shall have M∗

E21 = −µ/(4π)
∮

C2

∮
C1

(dl1 · dl2/|r2 − r1|). (dl1 and dl2
are in the directions of the respective currents, and as it is seen we have
M∗

Bij
= M∗

Bji
and M∗

Eij
= M∗

Eji
.)

We want to see in a simple manner how an electromagnetic wave prop-
agates through the space carrying the wave with attention to the supposi-
tion of the existence of the much tiny static dipoles filling up this supposed
full-linear space. This matter can be perceived by observing Fig. 5 in
which it is supposed that the + enclosed with the square is the represen-
tative of the accelerated electric charge or in fact the oscillator producing
the electromagnetic wave. (Use properly the right and left hand rules
in each point for finding the next movements.) Meanwhile we see easily
why E∗ and B∗ are perpendicular to each other. This aspect shows that
how beautiful the electric and magnetic fields are complementaries to each
other or in fact producers of each other, not as two elements as if being
quite distinct from each other that have been set by the side of each other
by chance, ie the aspect pursued in the present electromagnetic texts! It
also shows a produced current due to the turn or in fact orientation of the
static dipoles. With attention to the proportion of the static field to the
dynamic one in the above supposed full-linear medium, these currents are
obviously unidirectional with the fields generating them (compare with
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the relations (23)). It is obvious that the time changes of the wave, for
instance the sinusoidal changes of the wave, are related to the changes
of the source movement. More explanations about this aspect will be
presented in the next section. The confirmation for this aspect and, in
principle, the confirmation of this matter that the space through which
the wave passes should contain some static charges as wave carrier is that
like the other cases in physics that we reach to a wave equation, the equa-
tions by which we reach to the wave equation should be valid for each
section of the carriers making the wave path, and this matter requires
existence of some static charges in the whole wave path in order that the
fundamental equations can be executed for them. We now proceed to
these fundamental equations. We have the following equations instead of
Maxwell’s equations with this supposition that the electromagnetic wave
carrier mediums are full-linear and considering the discussions presented
so far.

∇·B∗ = 0 & ∇·E∗ = 0 & ∇×B∗ = µεa
∂E∗

∂t
& ∇×E∗ = −µε′a′

∂B∗

∂t
(30)

It may be said that while considering the discussions about the static
fields we know that the curl of the static fields must be zero, considering
the proportion of the static to the dynamic field in a full-linear medium
we can deduce from the two last equations of (30) that the curl of the
static fields of one kind is proportional to the time derivative of the static
fields of the other kind or in other words to the respective generated
currents (see (23)). The answer to this problem should be searched in
the potential discontinuity in a continuous distribution of the static point
dipoles (eg it is clear that in passing through a dipole layer, the potential
finds a jump, which is in fact the same potential changing in passing across
the infinitesimal thickness of the layer (see Classical Electrodynamics by
Jackson, John Wiley & Sons, 1962)). After accepting the existence of
such a discontinuity, it is natural that we should also accept that the curl
of the static field is no longer identical with zero in each point of this
distribution, because otherwise the existence of a continuous potential
would be necessary.

By using the relation B∗(r2) = µ/(4π)
∫

L
(Idl× (r2 − r1)/|r2 − r1|3),

which is the same relation of (9) in which we have made use of the relation
Jdv = Idl for a wire carrying electric current I, the magnetodynamic field
arising from the electric current I in a long straight wire, lying along the
x-axis from minus infinity to plus infinity, will be B∗ = µIk̂/(2πa) in
a distance “a” from the wire on the y-axis. Now we proceed to another
different problem. We consider an infinite long wire along the x-axis which
carries the current I from minus infinity to plus infinity. We suppose that
there is a uniform magnetostatic field B along the whole length of the
wire. We proceed to accounting the electrodynamic force exerted on the
unit length of the wire by using the relation (5):

dF∗
dq = (k′′/k′)dqvdq ×B = (k′′/k′)dq(dl/dt)×B = (k′′/k′)Idl×B
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⇒ (dF∗
dq/dl) = (k′′/k′)Iî×B

This means that if, for example, B is in the positive or negative direction
of the z-axis, the force will be in the negative or positive direction of
the y-axis respectively. Another usual mistake is replacing B∗, arising
from another current-carrying wire parallel to this wire, instead of B in
the recent relation and, with this contrivance, justifying the attractive
force between two parallel wires with same directions for currents and the
repulsive force between them with different directions for their currents;
while we should say that as we said the magnetodynamic field B∗ causes
production of the magnetostatic field B in the magnetolinear medium
around the wire, ie we have B = a′B∗. And then we should substitute
a′B∗ for B in the recent formula.

6 Wave equations and Poynting vectors

By using the equations (30) we have:

(∇×∇×B∗ = −∇2B∗) = (µεa
∂

∂t
(∇×E∗) = µεa

∂

∂t
(−µε′a′

∂B∗

∂t
)

= −µ2εε′aa′
∂2B∗

∂t2
) ⇒ ∇2B∗ = µ2εε′aa′

∂2B∗

∂t2
(31)

and

(∇×∇×E∗ = −∇2E∗) = (−µε′a′
∂

∂t
(∇×B∗) = −µε′a′

∂

∂t
(µεa

∂E∗

∂t
)

= −µ2εε′aa′
∂2E∗

∂t2
) ⇒ ∇2E∗ = µ2εε′aa′

∂2E∗

∂t2
(32)

The equations (31) and (32) are wave equations indicating electromagnetic
wave propagating with the speed v = (µ2εε′aa′)−1/2 in the full-linear
medium of a and a′.

We have these cases: With attention to Lenz’s law and Kirchhoff’s
loop law, immediately after closing the circuit in Fig. 6(a) we have
V − (−E) − IR = 0 ⇒ V = IR − E ; and immediately after opening the
circuit in Fig. 7(a) we have V + E − IR = 0 ⇒ V = IR− E .

Similarly with attention to Lenz’s law and Kirchhoff’s loop law, im-
mediately after closing the circuit in Fig. 6(b) we have V ′−(−B)−I ′R′ =
0 ⇒ V ′ = I ′R′−B; and immediately after opening the circuit in Fig. 7(b)
we have V ′ +B− I ′R′ = 0 ⇒ V ′ = I ′R′−B. Thus if a source V is exerted
to a circuit, we have V = IR− E in which E is the induced electromotive
force, and if a source V ′ is exerted to a circuit, we have V ′ = I ′R′ − B in
which B is the induced magnetomotive force.

In the following discussion we suppose that none of the circuits are in
any external field. Now we have:

V = IR− E & dq = Idt & E = −µε′
dΦB

dt
⇒ Vdq = µε′IdΦB + I2Rdt

(33)
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V ′ = I ′R′−B & db = I ′dt & B = µε
dΦE

dt
⇒ V ′db = −µεI ′dΦE+I ′2R′dt

(34)
The left side terms in the relations (33) and (34) are the work done on
the partial charge, and the second terms on the right are that part of this
work which is wasted in the circuit in the form of heat, and the first terms
on the right are the work done in the circuit for opposing the induced
motive forces and in fact in the case of rigidity and immobility of the
circuit this work will be spent totally for making the field around the cir-
cuit and naturally will be stored in it as the potential energy. For better
understanding of this matter we should say that it is only after ordering
the tiny static dipoles of the medium by the dynamic field arising from
the current, and so producing the static field, that the recent work will be
stored in this static field as the potential energy (because in the expres-
sions E = −µε′dΦB/dt and B = µεdΦE/dt we see the static fluxes, not the
dynamic ones). Of course attention to this point is important that this po-
tential energy is only that portion of the static potential energy presented
in the section 3 that easily, ie without any necessity to changing the struc-
tural composition of the mentioned dipoles, is changeable to other forms
of energy particularly heat (notice that if it is supposed that the static
potential energy of a nonzero charge to be changeable to heat (or other
forms of energy) totally, it will be required that all the differential parts
of the charge to disintegrate from one another and then the structural
composition of the charge to be changed). Suppose that our system is
full-linear and includes n stationary circuits. For accounting the magnetic
or electric potential energy (mentioned above) arising from the currents
of the system, it is sufficient to integrate the expressions µε′

∑n

i=1
IidΦBi

and −µε
∑n

i=1
I ′idΦEi from the zero flux situation to the final values of

the fluxes. (In these two expressions ΦBi and ΦEi are arising from all the
currents, not only arising from the current in the circuit i.) Since this
energy is independent of the way in which the currents are brought to
their final set of values, we choose a way in which at any instant of time
all the currents will be at the same fraction of their final values. We call
this fraction as α. Now in the first degree, before all, we have:

Φ∗
Bi

=

∫
Si

B∗
i · n̂da ⇒

dΦ∗
Bi

dIj
=

∫
Si

dB∗
i

dIj
· n̂da : (1− 35)

B∗
i =

n∑
j=1

B∗
ij ⇒

dB∗
i

dIj
=

dB∗
ij

dIj
: (2− 35)

dB∗
ij

dIj
=

B∗
ij

Ij
: (3− 35)

(2− 35) & (3− 35) ⇒ dB∗
i

dIj
=

B∗
ij

Ij
: (4− 35)

(1− 35) & (4− 35) =⇒
dΦ∗

Bi

dIj
=

Φ∗
Bij

Ij
(35)
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(we are attentive that each of the expressions of both sides of the equality
(35) is related only to the structural shape of the circuit and that it is
unimportant that B∗

ij and Ij belong to which instant of time and then
we suppose that in the right side of this relation Ij and B∗

ij are the final
values of these quantities.)

Now we show the electric and magnetic currents which have not reached
to their final values and are related to the circuit j as (Ij)

′ and (I ′j)
′ re-

spectively. We have:

dΦ∗
Bi

d(Ij)′
=

Φ∗
Bij

Ij
⇒ dΦ∗

Bi
= Φ∗

Bij

d(Ij)
′

Ij
: (1− 36)

Φ∗
Bij

=
ΦBij

a′
& Φ∗

Bi
=

ΦBi

a′
: (2− 36)

(1− 36) & (2− 36) ⇒ dΦBi = ΦBij

d(Ij)
′

Ij
: (3− 36)

(Ij)
′ = αIj ⇒ d(Ij)

′ = Ijdα ⇒ d(Ij)
′

dIj
= dα (4− 36)

(3− 36) & (4− 36) =⇒ dΦBi = ΦBij dα (36)

Now we know that dΦBi =
∑n

j=1
∂ΦBi/∂(Ij)

′d(Ij)
′ and the expression

(36) is in fact the same ∂ΦBi in the recent relation and so dΦBi =∑n

j=1
ΦBij ∂α/∂(Ij)

′d(Ij)
′ and since α is related to each (Ij)

′ in the one-

variable form of α = (Ij)
′/Ij , the sign ∂ will become changed into d and

we shall have dΦBi =
∑n

j=1
ΦBij dα = ΦBidα in which ΦBi is arising from

all the currents. In a similar manner we have dΦEi = ΦEidα. Thus∫ 1

α=0

µε′
n∑

i=1

αIiΦBidα = µε′
n∑

i=1

IiΦBi

∫ 1

α=0

αdα = µε′/2

n∑
i=1

IiΦBi = U∗
B

and∫ 1

α=0

−µε

n∑
i=1

αI ′iΦEidα = −µε

n∑
i=1

I ′iΦEi

∫ 1

α=0

αdα = −µε/2

n∑
i=1

I ′iΦEi = U∗
E .

We know B∗ = ∇×AB and E∗ = ∇×AE and

ΦBi =

∫
Si

Bi ·n̂da =

∫
Si

a′B∗ ·n̂da = a′
∫

Si

∇×ABi ·n̂da = a′
∮

Ci

ABi ·dli

and

ΦEi =

∫
Si

Ei · n̂da =

∫
Si

aE∗ · n̂da = a

∫
Si

∇×AEi · n̂da = a

∮
Ci

AEi ·dli.

(We have attention that the direction of n̂ is determined by considering
the direction of the current in the circuit i and by using the right-hand
rule, and so the circulation is also in the direction of the current.) And so
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U∗
B = 1/2µε′a′

∑
i

∮
Ci

IiABi · dli and U∗
E = −1/2µεa

∑
i

∮
Ci

I ′iAEi · dli.
In a general state each“circuit ” is a closed path in a given linear medium
which traces a current density line. So we can set Jdv instead of Iidli
and J′dv instead of I ′idli and

∫
V

instead of
∑

i

∮
Ci

. So we have U∗
B =

1/2µε′a′
∫

V
J · ABdv and U∗

E = −1/2µεa
∫

V
J′ · AEdv. Now using the

vector identity ∇ · (F ×G) = (∇ × F) ·G − F · (∇ ×G) and using the
equations (11) we obtain

U∗
B = 1/2ε′a′

∫
V

(∇×B∗)·ABdv = 1/2ε′a′(

∫
V

B∗·(∇×AB)dv−
∮

S

(AB×B∗)·n̂da)

and

U∗
E = 1/2εa

∫
V

(∇×E∗)·AEdv = 1/2εa(

∫
V

E∗·(∇×AE)dv−
∮

S

(AE×E∗)·n̂da).

We take the volume V and the closed surface S infinitely large (an infinite
sphere about the center of which our system has been set). Now we know
that B∗ and E∗ fall off as fast as r−2 (r is the radius of this sphere) and AB

and AE fall off as fast as r−1 and S is proportional to r2. Thus the second
integrals, surface integrals, in both the recent relations fall off as fast as
r−2r−1r2 = r−1 so that when the volume and surface go to infinity these
integrals will become zero, and considering that ∇ × AB = B∗ = B/a′

and ∇×AE = E∗ = E/a we obtain

U∗
B =

1

2
ε′a′

∫
Vh

B∗ · B
a′

dv =
1

2
ε′

∫
Vh

B∗ ·Bdv

& (37)

U∗
E =

1

2
εa

∫
Vh

E∗ · E
a

dv =
1

2
ε

∫
Vh

E∗ ·Edv

in which Vh is the whole space. As we said before, the dynamic po-
tential energies, U∗

B and U∗
E , are not separate from the static potential

energies, UB and UE , but they are only those parts of the static potential
energies which are related to the energy spent for orienting the tiny static
dipoles and do not include the energy needed for gathering the partial
ingredient parts of the dipoles themselves from infinity differential by dif-
ferential. These dynamic energies are easily changeable to other forms of
energy especially heat. Now we return to the equations (30). We have

∇×B∗ = µε
∂E

∂t
⇒ E∗ ·∇×B∗ = µεE∗ · ∂E

∂t
=

1

2
µε

∂

∂t
(E∗ ·E) : (1−38)

∇×E∗ = −µε′
∂B

∂t
⇒ B∗·∇×E∗ = −µε′B∗·∂B

∂t
= −1

2
µε′

∂

∂t
(B∗·B) : (2−38)

∇ · (E∗ ×B∗) = B∗ · ∇ ×E∗ −E∗ · ∇ ×B∗ : (3− 38)
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(1−38) & (2−38) & (3−38) =⇒ ∇·( 1

µ
E∗×B∗) = − ∂

∂t
(
1

2
ε′B∗·B+

1

2
εE∗·E)

(38)
With attention to the equations (37) we show the right side of the relation
(38) by −∂u/∂t in which u is the energy density consisting of sum of the
densities of the electrodynamic and magnetodynamic potential energies
(which are changeable to heat). The left side of this relation can be
written as ∇ · S in which S is the same 1/µE∗ × B∗ and we call it as
Poynting vector. Thus

∇ · S +
∂u

∂t
= 0. (39)

This equation is a continuity equation and states that if the energy den-
sity is decreased (or increased) in a point, then necessarily some energy
has gone out of this point (or some energy has entered into this point).
Therefore, S is the local current of energy per unit time per unit area (as
unitary investigation of S shows this matter too).

What we deduce from the above discussion is that S = 1/µE∗×B∗ also
shows the direction of propagation of the wave, the wave that its energy is
easily changeable to other forms of energy especially heat. Now we want
as far as possible to present a simple physical interpretation about this
matter that E∗×B∗ shows the direction of propagation of the electromag-
netic wave considering the tiny particle (or in fact dipole) model about
which we have explained before. For simplicity consider the orientational
movement of only the positive charges (ie N-poles and positive electric
charges) of the dipoles. Suppose that some electric current is flowing in
the positive direction of a straight wire set along the x-axis as in Fig. 8.
This current causes the moving (or in fact the orientation) of the positive
magnetic charges of the magnetostatic tiny dipoles of the medium in a
range the extent of which is determined by the physical conditions of the
medium, indicated here by A, toward the negative direction of the y-axis,
according to the right-hand rule. This movement causes the moving of the
positive electric charges of the electrostatic tiny dipoles of the medium in
a range which is again determined by the same physical conditions, indi-
cated here by B, toward the positive direction of the x-axis, according to
the left-hand rule. This recent movement of the electric particles causes
not only the returning of A to its initial equilibrium state but also the
moving of the positive magnetic particles in the range A′ toward the neg-
ative direction of the y-axis, and this recent movement of the magnetic
particles, in turn, not only restores B to its initial equilibrium state but
also causes the moving of the positive electric particles in the range B′,
and in this manner the wave movement will be transferred. Now we may
encounter with this question that whether this wave movement doesn’t
have continuity as in Fig. 8. The answer to this question is that this is
only one half of the work and the other half is that the current in the
wire also causes the moving of the magnetic particles of the medium in
the range A1 according to the right-hand rule, and this movement, which
is not restored to its initial equilibrium state as a result of a similar agent,
causes the moving of the positive electric particles in the range A in the
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negative direction of the x-axis according to the left-hand rule, and this
recent movement, in turn, not only restores A1 to its initial equilibrium
state but also causes the moving of the positive magnetic particles in the
range B toward the positive direction of the y-axis, both according to the
right-hand rule. Again in this manner the wave movement will be trans-
ferred. Consequently on the whole we have the wave movement of Fig.
9.

The physical interpretation presented above is raw but properly shows
that why in each point of the medium of the wave propagation E∗ and
B∗ are perpendicular to each other in such a way that E∗ × B∗ shows
the direction of propagation of the wave. From the above discussions
we can deduce that the maximums and minimums of E∗ and B∗ occur
simultaneously, because otherwise at some part of a period the direction
of propagation of the wave would be reversed and this is not possible (or
at least this is not the case in the discussions presented in this article, on
supposition).

7 Sinusoidal waves and Fresnel coefficients

We can rewrite the wave equations (31) and (32) as

∂2E∗

∂t2
= v2∇2E∗

& (40)

∂2B∗

∂t2
= v2∇2B∗

in which v = (µ2εε′aa′)−1/2 is the speed of propagation of the wave. (In
this article we suppose that the mediums of propagation of the electromag-
netic wave are isotropic such that the speed of the wave in all the directions
is the same.) A particular solution to these wave equations for, for exam-
ple, the x component of the vector E∗ is E∗

x = f1(û ·r−vt)+f2(û ·r+vt)
which exhibits a plane wave moving in the sense of the unit vector û with
the absolute speed |v|. Then E∗

x(r, t) = E∗
x0 cos k(û · r− vt) can be a solu-

tion, and since cos k(û ·r−vt) = cos k(û ·r+(2π/k)−vt), we conclude that
λ = 2π/k represents the spatial period of the wave or the wave length,
and k = 2π/λ, which is the number of the wave lengths in distance 2π,
is called as the wave number, and with the definition of the angular fre-
quency of the wave, ω, and the period of the wave,T , and the frequency of
the wave, ν, by the relation ω = kv = 2πv/λ = 2π/(λ/v) = 2π/T = 2πν
and with the definition of kû = k (as the wave vector) we shall have
E∗

x = E∗
x0 cos(k · r − ωt) (which is also equal to the real part of the

E∗
x0e−i(ωt−k·r)). Then we suppose that we have

B∗ = B∗
x0 cos(k · r− ωt)̂i + B∗

y0 cos(k · r− ωt)ĵ + B∗
z0 cos(k · r− ωt)k̂

and

E∗ = E∗
x0 cos(k · r− ωt)̂i + E∗

y0 cos(k · r− ωt)ĵ + E∗
z0 cos(k · r− ωt)k̂
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From the equations (30), by relevant differentiations, it is easily obtained
that

k ·E∗ = 0 & k ·B∗ = 0

& (41)

k×E∗ = µε′a′ωB∗ & k×B∗ = −µεaωE∗

which indicates that the orthogonal system (E∗, B∗, k) is right-handed.
We consider a medium (generally the vacuum (we should notice that the
vacuum is not empty of the mentioned tiny dipoles, while the free space
is so)) as the reference medium and we show the speed of the electro-
magnetic wave in it by c. We show the ratio of the c to the speed of the
electromagnetic wave in each medium by n and we call it as the refractive
index of that medium (n = c/v and then v = c/n). Therefore, we have
k = ω/v = nω/c. Considering this matter, from the last two relations of
(41) we shall have:

B∗ =
n

µε′a′c
û×E∗

& (42)

E∗ = − n

µεac
û×B∗

It is obvious that [n/(µε′a′c)] · [n/(µεac)] = 1. It is proper here to see the
following deduction:

(42) ⇒ B∗

E∗ =
1

µε′a′v
=

√
µ2εε′aa′

µε′a′
=

√
µεa

√
µε′a′

⇒
√

µε′a′B∗−√µεaE∗ = 0

⇒ µε′a′B∗2
+ µεaE∗2

= 2
√

µ2εε′aa′E∗B∗

⇒ E∗ ×B∗ = (
1

2
µε′a′B∗ ·B∗ +

1

2
µεaE∗ ·E∗)

û√
µ2εε′aa′

⇒ 1

µ
E∗ ×B∗ = (

1

2
ε′B∗ ·B +

1

2
εE∗ ·E)vû

=⇒ S = uv, (43)

and we know that the relation (43) is an expectable relation, comparable
with the relation J = ρEv.

Now we proceed to the boundary conditions. We have ∇ · B∗ = 0.
Considering a pillbox-shaped surface, as in Fig. 10, which its height is in-
finitesimal, and applying the divergence theorem over the volume enclosed
by this surface we obtain∫

V

∇ ·B∗dv =

∫
S1

B∗ · n̂1da +

∫
S2

B∗ · n̂2da : (1′)

∇ ·B∗ = 0 : (2′)

(1′) & (2′) =⇒
∫

S1

B∗ · n̂1da =

∫
S2

B∗ · (−n̂2)da
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and since S1 = S2 and n̂1 = −n̂2, considering n̂1 as n̂ we shall have
B∗

1n = B∗
2n.

In a similar manner we shall obtain E∗
1n = E∗

2n. Then the normal
components of the fields are continuous across the boundary interface.
Now from the equation ∇×B∗ = µεa∂B∗/∂t we have∫

S

∇×B∗ · n̂da =

∫
S

µεa
∂E∗

∂t
· n̂da

in which S is the area enclosed by the loop in Fig. 11.
If the width of this rectangular loop is infinitesimal, by applying Stokes’

theorem and with attention to this fact that the flat area enclosed by the
loop approaches zero and therefore the second integral approaches zero, we
shall obtain B∗

1t = B∗
2t. In a similar manner we shall obtain E∗

1t = E∗
2t.

(It is necessary to notice that the orientation of this loop is optional.)
Then the tangential components of the fields are continuous across the
boundary interface too, and then altogether we should say that the dy-
namic fields connected to an electromagnetic wave are continuous across
the boundary interfaces.

With attention to Fig. 12 we suppose that the electrodynamic fields of
the incident, reflected, and transmitted waves of a plane electromagnetic
wave at the boundary of a dielectric with the refractive index n2, set in a
space with the refractive index n1, are as follows:

E∗
1 = E∗

10p cos(k1 · r− ω1t) + E∗
10s cos(k1 · r− ω1t) &

E∗
1′ = E∗

1′0p cos(k1′ · r− ω1′t) + E∗
1′0s cos(k1′ · r− ω1′t) & (44)

E∗
2 = E∗

20p cos(k2 · r− ω2t) + E∗
20s cos(k2 · r− ω2t)

These three fields must be in phase in r = 0 in different times, then
ω1 = ω1′ = ω2 = ω; and they must be also in phase in each point on
the boundary interface, z = 0, at t = 0, so we have the relations k1 · r =
k1′ · r = k2 · r on the boundary, from which the three consequences of the
coplanarity of the wave vectors, the law of reflection, and Snell’s law are
easily obtained in the manner followed by many of the electromagnetic and
optics books. Now we want to obtain the Fresnel coefficients. Substituting
the first relation of (42) into the boundary condition B∗

1 + B∗
1′ = B∗

2 we
obtain n1/(µ1ε

′
1a

′
1)(û1 × E∗

1 + û1′ × E∗
1′) = n2/(µ2ε

′
2a

′
2)û2 × E∗

2 which
with the cross product of the unit vector n̂ = k̃, which is normal to
the interface, multiplied by the two sides of the recent relation we shall
have n1/(µ1ε

′
1a

′
1)n̂× (û1 × E∗

1 + û1′ × E∗
1′) = n2/(µ2ε

′
2a

′
2)n̂× (û2 × E∗

2).
Expanding the vector products in the recent relation, and considering only
the components normal to the plane of incidence (ie the plane of k̂1 and
n̂), which are distinguished by the subscript s, and with attention to this
fact that θ1 = θ1′ , we conclude that

n1/(µ1ε
′
1a

′
1) cos θ1(E

∗
1s −E∗

1′s) = n2/(µ2ε
′
2a

′
2) cos θ2E

∗
2s. (45)
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The other boundary condition, ie E∗
1 +E∗

1′ = E∗
2, also necessitates having

separately the relation:

E∗
1s + E∗

1′s = E∗
2s. (46)

By solving the equations (45) and (46) for E∗
1′s and E∗

2s, we shall have

E∗
1′s = r12sE

∗
1s & E∗

2s = t12sE
∗
1s (47)

in which

r12s =
n1/(µ1ε

′
1a

′
1) cos θ1 − n2/(µ2ε

′
2a

′
2) cos θ2

n1/(µ1ε′1a
′
1) cos θ1 + n2/(µ2ε′2a

′
2) cos θ2

(48)

& t12s =
2n1/(µ1ε

′
1a

′
1) cos θ1

n1/(µ1ε′1a
′
1) cos θ1 + n2/(µ2ε′2a

′
2) cos θ2

. (49)

And also by substituting the second relation of (42) into the boundary
condition E∗

1 + E∗
1′ = E∗

2 and performing similar operations and consid-
ering the other boundary condition, ie B∗

1 + B∗
1′ = B∗

2, we shall obtain

B∗
1′s = r12pB

∗
1s & B∗

2s = t12pB
∗
1s (50)

in which

r12p =
n1/(µ1ε1a1) cos θ1 − n2/(µ2ε2a2) cos θ2

n1/(µ1ε1a1) cos θ1 + n2/(µ2ε2a2) cos θ2
(51)

& t12p =
2n1/(µ1ε1a1) cos θ1

n1/(µ1ε1a1) cos θ1 + n2/(µ2ε2a2) cos θ2
. (52)

Also, for the components parallel to the plane of incidence, which are
distinguished by the subscript p, we have

E∗
2p = −n2/(µ2ε2a2c)û2 ×B∗

2s = −n2/(µ2ε2a2c)û2 × t12pB
∗
1s

= n2n1t12p/(µ2ε2a2cµ1ε
′
1a

′
1c)û2 × (û1 ×E∗

1p)

⇒ E∗
2p = n2n1/(µ2ε2a2cµ1ε

′
1a

′
1c)|t12p|E∗

1p, (53)

B∗
2p = n2/(µ2ε

′
2a

′
2c)û2 ×E∗

2s = n2/(µ2ε
′
2a

′
2c)û2 × t12sE

∗
1s

= −n2n1t12s/(µ2ε
′
2a

′
2cµ1ε1a1c)û2 × (û1 ×B∗

1p)

⇒ B∗
2p = n2n1/(µ2ε

′
2a

′
2cµ1ε1a1c)|t12s|B∗

1p, (54)

E∗
1′p =

−n1

µ1ε1a1c
û1′×B∗

1′s =
−n1

µ1ε1a1c
û1′×r12pB

∗
1s = −r12pû1′×(û1×E∗

1p)

=⇒ E∗
1′p = |r12p|E∗

1p, (55)

B∗
1′p =

n1

µ1ε′1a
′
1c

û1′×E∗
1′s =

n1

µ1ε′1a
′
1c

û1′×r12sE
∗
1s = −r12sû1′×(û1×B∗

1p)

=⇒ B∗
1′p = |r12s|B∗

1p. (56)

For obtaining more confidence to the correctness of the above relations
and expressions obtained for Fresnel coefficients, it is proper to examine
them when θ1 = θ2 = 0, because the isotropy of the mediums, which is our
supposition in this article, necessitates having (E∗

1′p/E∗
1p) = (E∗

1′s/E∗
1s)

or |r12p| = |r12s| in this state, ie we should have an identity in the form
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of r12p = r12s or r12p = −r12s when θ1 = θ2 = 0. A simple investigation
shows that only the relation r12p = −r12s is an identity when θ1 = θ2 = 0
(in this investigation we need the obvious relation n1v1 = n2v2). Likewise,
the isotropy of the mediums necessitates having (E∗

2p/E∗
1p) = (E∗

2s/E∗
1s)

or (n2n1/(µ2ε2a2cµ1ε
′
1a

′
1c))|t12p| = |t12s| in the case of θ1 = θ2 = 0,

which again a simple investigation shows that we have the identity t12s =
(n2n1/(µ2ε2a2cµ1ε

′
1a

′
1c))t12p when θ1 = θ2 = 0. The isotropy of the

mediums in the case of θ1 = θ2 = 0 for B∗ also necessitates the identi-
ties |r12s| = |r12p| and (n2n1/(µ2ε

′
2a

′
2cµ1ε1a1c))|t12s| = |t12p|, but as said

before we have the identity r12s = −r12p for the first and a simple investi-
gation shows that we have the identity t12p = (n2n1/(µ2ε

′
2a

′
2cµ1ε1a1c))t12s

for the second, both when θ1 = θ2 = 0.

With attention to the relation n/(µεa) = c2µε′a′/n we can write

r12p =
(µ1ε

′
1a

′
1/n1) cos θ1 − (µ2ε

′
2a

′
2/n2) cos θ2

(µ1ε′1a
′
1/n1) cos θ1 + (µ2ε′2a

′
2/n2) cos θ2

(57)

t12p =
2(µ1ε

′
1a

′
1/n1) cos θ1

(µ1ε′1a
′
1/n1) cos θ1 + (µ2ε′2a

′
2/n2) cos θ2

. (58)

Now with definition of nE = n/(µε′a′) we have

r12s =
nE1 cos θ1 − nE2 cos θ2

nE1 cos θ1 + nE2 cos θ2
, t12s =

2nE1 cos θ1

nE1 cos θ1 + nE2 cos θ2
(59)

& r12p =
nE2 cos θ1 − nE1 cos θ2

nE2 cos θ1 + nE1 cos θ2
, t12p =

2nE2 cos θ1

nE2 cos θ1 + nE1 cos θ2
. (60)

And with attention to the relation n/(µε′a′) = c2µεa/n and definition of
nB = n/(µεa) we have

r12s =
nB2 cos θ1 − nB1 cos θ2

nB2 cos θ1 + nB1 cos θ2
, t12s =

2nB2 cos θ1

nB2 cos θ1 + nB1 cos θ2
(61)

& r12p =
nB1 cos θ1 − nB2 cos θ2

nB1 cos θ1 + nB2 cos θ2
, t12p =

2nB1 cos θ1

nB1 cos θ1 + nB2 cos θ2
. (62)

and also
n2n1/(µ2ε

′
2a

′
2cµ1ε1a1c) =

nB1nE2

c2

and
n2n1/(µ2ε2a2cµ1ε

′
1a

′
1c) =

nE1nB2

c2
.

Before continuing I should mention a point. Attention to this fact
that in the relations (5) and (7) of the fundamental relations k′′ which is
proportional to µ shows the relation between two electric and magnetic
charges only when they are moving relative to each other (and the situ-
ation is not like the static situation in which two electric charges or two
magnetic charges, which are stationary relative to each other, can polarize
the space between themselves and depending on this polarization of the
medium can change k and k′ in fact) states that µ should be the same for
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all the mediums and in fact it should be a world constant. Now consider-
ing this matter and in fact accepting it and with attention to the relation
n1 sin θ1 = n2 sin θ2, if the magnetic characteristics of the two mediums
are the same, ie if we have a′1 = a′2 and ε′1 = ε′2, then we shall see that

r12s =
n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2
=

sin(θ2 − θ1)

sin(θ2 + θ1)
, (63)

t12s =
2n1 cos θ1

n1 cos θ1 + n2 cos θ2
=

2 cos θ1 sin θ2

sin(θ1 + θ2)
, (64)

r12p =
n2 cos θ1 − n1 cos θ2

n2 cos θ1 + n1 cos θ2
=

tan(θ1 − θ2)

tan(θ1 + θ2)
, (65)

t12p =
2n2 cos θ1

n2 cos θ1 + n1 cos θ2
=

sin 2θ1

sin(θ1 + θ2) cos(θ1 − θ2)
, (66)

and since (εa)−1 = c2µ2a′ε′/n2, µ1 = µ2, ε′1 = ε′2 and a′1 = a′2, we con-
clude that n2n1/(µ2ε2a2cµ1ε

′
1a

′
1c) = n1/n2 and n2n1/(µ2ε

′
2a

′
2cµ1ε1a1c) =

n2/n1 and (n1/n2)t12p = 2 cos θ1 sin θ2/(sin(θ1 + θ2) cos(θ1 − θ2)) and
(n2/n1)t12s = sin(2θ1)/ sin(θ1 + θ2) too. In a similar manner we have the
following relations for the condition in which the electric characteristics
of the two mediums are the same, ie when a1 = a2 and ε1 = ε2:

r12s =
n2 cos θ1 − n1 cos θ2

n2 cos θ1 + n1 cos θ2
=

tan(θ1 − θ2)

tan(θ1 + θ2)
, (67)

t12s =
2n2 cos θ1

n2 cos θ1 + n1 cos θ2
=

sin 2θ1

sin(θ1 + θ2) cos(θ1 − θ2)
, (68)

r12p =
n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2
=

sin(θ2 − θ1)

sin(θ2 + θ1)
, (69)

t12p =
2n1 cos θ2

n1 cos θ1 + n2 cos θ2
=

sin 2θ2

sin(θ1 + θ2)
, (70)

and also n2n1/(µ2ε2a2cµ1ε
′
1a

′
1c) = n2/n1 and n2n1/(µ2ε

′
2a

′
2cµ1ε1a1c) =

n1/n2 and then (n2/n1)t12p = 2 sin θ1 cos θ2/ sin(θ1+θ2) and (n1/n2)t12s =
2 cos θ1 sin θ2/(sin(θ1 + θ2) cos(θ1 − θ2)).

In Brewster’s incident angle θ1 = θB in which θB + θ2 = π/2 and then
1/ tan(θB +θ2) = 0 if the magnetic characteristics of the two mediums are
the same, we shall have r12p = 0 and so in the reflection we can only have
an electromagnetic wave which the vibration of its E∗ is perpendicular to
the plane of incidence; and if the electric characteristics of the two medi-
ums are the same, we shall have r12s = 0 and so in the reflection we can
only have an electromagnetic wave which the vibration of its E∗ lies in the
plane of incidence. If the laboratory works show that in Brewster’s angle
we have the first state in the mediums under experimentation, we should
conclude that in these mediums the magnetic characteristics are the same
and are not changed from a medium to another medium practically.
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Finally we pay our attention to the energy or the intensity of the
electromagnetic wave. We have

S = (E∗ ×B∗)/µ = (E∗ × (
n

µε′a′c
û×E∗))/µ =

n

µ2ε′a′c
E∗2

û

⇒ 〈S〉av =
1

2

n

µ2ε′a′c
E∗2

0 û,

S = (E∗ ×B∗)/µ = ((
−n

µεac
û×B∗)×B∗)/µ =

n

µ2εac
B∗2

û

⇒ 〈S〉av =
1

2

n

µ2εac
B∗2

0 û.

On definition we have the following relations:

Rs =
(−n̂) · 〈S1′s〉av

n̂ · 〈S1s〉av
, Ts =

n̂ · 〈S2s〉av

n̂ · 〈S1s〉av
, (71)

Rp =
(−n̂) · 〈S1′p〉av

n̂ · 〈S1p〉av
, Tp =

n̂ · 〈S2p〉av

n̂ · 〈S1p〉av
, (72)

and in terms of the Fresnel coefficients we shall have

Rs = r2
12s, Ts =

1/2(n2/(µ2
2ε

′
2a

′
2c)) cos θ2

1/2(n1/(µ2
1ε

′
1a

′
2c)) cos θ1

t212s, (73)

Rp = r2
12p, Tp =

1/2(n2/(µ2
2ε

′
2a

′
2c)) cos θ2

1/2(n1/(µ2
1ε

′
1a

′
1c)) cos θ1

· n2
2n

2
1

µ2
2ε

2
2a

2
2c

2µ2
1ε

′2
1 a′21 c2

t212p. (74)

By using some simple algebraic operations and accepting that µ is a world
constant it is easily seen that we have always

Rs + Ts = 1, Rp + Tp = 1. (75)

8 Conclusion

As it was seen, by using an obvious and simple supposition, mentioned
in the introduction and formed mathematically in the fundamental rela-
tions, all of the relations of the electromagnetic theory were modified and
perfected in a sense consistent with the classical physics, and in addition
to this, new relations and theories were presented for showing themselves
in practice and experiment.

What is perhaps more important than the carefulness in the details of
the presented discussions is attention to the validity and stability of the
front opened for defending the classical physics and mathematical logic of
the classical mechanics.
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