Essai sur l'Hypothèse de Riemann

MADANI Bouabdallah

De tous les mathématiciens de renom sollicités, seul M. Andrzej Schinzel (IMPAN, Pologne), et que je remercie infiniment, a accepté d'examiner mon texte début janvier et il en ait résulté 3 observations.

Les 2 premières ont été solutionnées et la 3^{ème} a fait l'objet d'un désaccord. J'ai demandé l'arbitrage sur ce point à MM. P. Deligne, R. Langlands, E. Bombieri (IAS, Princeton), Umberto Zannier (SNS; Italie) et Mme C. Rousseau(U.M.I.) Je n'ai pas eu de réponse.

Que signifie ce silence ? Censure, boycott ?

Je serai heureux d'avoir l'avis des mathématiciens sur les possibles erreurs du texte.

Abstract

J.P. Gram (1903) writes p.298 in 'Note sur les zéros de la fonction zéta de Riemann' : 'Mais le résultat le plus intéressant qu'ait donné ce calcul consiste en ce qu'il révèle l'irrégularité qui se trouve dans la série des α . Il est très probable que ces racines sont liées intimement aux nombres premiers.

La recherche de cette dépendance, c'est-à-dire la manière dont une α donnée est exprimée au moyen des nombres premiers sera l'objet d'études ultérieures.'

Also the proof of the Riemann hypothesis is based on the definition of an application between the set \mathcal{P} of the prime numbers and the set \mathcal{S} of the zeros of ζ .

Résumé: Comme la fonction ζ de Riemann est en relation étroite avec la distribution des nombres premiers, la démonstration de l'Hypothèse de Riemann repose sur la définition d'une application entre l'ensemble \mathcal{P} des nombres premiers et l'ensemble \mathcal{S} des zéros de ζ .

Hypothèse de Riemann

Les zéros de la fonction ζ de Riemann appartiennent tous à la droite critique $x = \frac{1}{2}$.

Introduction

$$\begin{split} \mathcal{P} &= \{2,3,5,7,11,13,17,19,23,29,31,\dots\}, \\ \mathcal{S} &= \{ \ s_j : j \in \mathbb{N}^* \ \text{et} \ \zeta(s_j) = 0 \} \subset \mathbb{C}, \\ D &= \{ c_{jk} = (a_{jk},b_{jk}) \in \mathbb{R}^* \times \mathbb{R}^* : \sqrt{{a_{jk}}^2 + {b_{jk}}^2} = p_j \in \mathcal{P} \}, \\ E &= \{ z_k = (x_k,y_k) \in \mathbb{R} \times \mathbb{R} : {x_k}^2 + {y_k}^2 > 0 \}, \end{split}$$

et les fonctions

$$f: D \times E \to \mathbb{C}, (c_{jk}, z_k) \mapsto (a_{jk} + i. b_{jk}).(x_k + i. y_k),$$

 $prl: D \times E \to D,$
 $h: D \to \mathcal{P}$ surjective, $c_{jk} \mapsto p_j = \sqrt{a_{jk}^2 + b_{jk}^2},$
 $g: \mathcal{P} \to \mathcal{S}, p_j \mapsto s_i.$

Etude

On suppose que l'Hypothèse de Riemann est fausse alors $\exists j \in \mathbb{N}^*, \exists s'_j \in \mathcal{S}$,

 $\exists \ \delta_j \ \text{v\'erifiant} \ 0 < \delta_j < \frac{1}{2} \ , \ \exists \ t_j \in \mathbb{R}_+^* \ \text{et} \ \exists \ (a_{jm}, b_{jm}) \in \mathbb{R}^* \times \mathbb{R}^* \ \text{tels que} :$

$$- s_j' = (\frac{1}{2} + \delta_j) + i.t_j,$$

$$- \zeta(s_i') = 0,$$

$$- a_{jm}^2 + b_{jm}^2 = p_j^2.$$

Mais $\zeta(s_j') = 2^{s_j'} \cdot \pi^{s_j'-1} \cdot \sin(\frac{\pi s_j'}{2}) \cdot \Gamma(1-s_j') \cdot \zeta(1-s_j')$ avec $1-s_j' = (\frac{1}{2} - \delta_j) - i \cdot t_j$ et en vertu de la conjugaison des zéros alors :

-
$$\zeta(s_j'') = \zeta((\frac{1}{2} - \delta_j) + i.t_j) = 0,$$

-
$$a_{\text{in}}^2 + b_{\text{in}}^2 = p_i^2 \text{ avec } (a_{\text{in}}, b_{\text{in}}) \in \mathbb{R}^* \times \mathbb{R}^*$$
 (1)

Nous obtenons alors les systèmes :

$$x_{\rm m}.a_{\rm jm} - y_{\rm m}.b_{\rm jm} = \frac{1}{2} + \delta_j,$$
 (2)

$$x_{m}.b_{im} + y_{m}.a_{im} = t_{i}$$
(3)

et

$$x_n. a_{jn} - y_n. b_{jn} = \frac{1}{2} - \delta_j$$
 (4)

$$x_n. b_{jn} + y_n. a_{jn} = t_j$$
 (5)

avec
$$a_{jm} = \frac{\left(\frac{1}{2} + \delta_j\right) \cdot x_m + t_j \cdot y_m}{x_m^2 + y_m^2}$$
, $b_{jm} = \frac{-\left(\frac{1}{2} + \delta_j\right) \cdot y_m + t_j \cdot x_m}{x_m^2 + y_m^2}$ et

$$a_{jn} = \frac{\left(\frac{1}{2} - \delta_j\right) \cdot x_n + t_j \cdot y_n}{x_n^2 + y_n^2}, \quad b_{jn} = \frac{-\left(\frac{1}{2} - \delta_j\right) \cdot y_n + t_j \cdot x_n}{x_n^2 + y_n^2}.$$

1) Exploitation des données.

De (3) nous tirons $x_m = \frac{t_j - y_m \cdot a_{jm}}{b_{jm}}$ et que nous reportons dans (2) d'où :

$$t_{j}. a_{jm} - y_{m}. (a_{jm}^{2} + b_{jm}^{2}) = (\frac{1}{2} + \delta_{j}). b_{jm},$$

$$t_{j} = \frac{(\frac{1}{2} + \delta_{j}). b_{jm}}{a_{jm}} + y_{m}. \frac{p_{j}^{2}}{a_{jm}} = x_{n}. b_{jn} + y_{n}. a_{jn}.$$
(6)

De (5) nous tirons $x_n = \frac{t_j - y_n.a_{jn}}{b_{jn}}$ et que nous reportons dans (4) d'où :

$$t_{j} = \frac{\left(\frac{1}{2} - \delta_{j}\right) \cdot b_{jn}}{a_{jn}} + y_{n} \cdot \frac{p_{j}^{2}}{a_{jn}} = x_{m} \cdot b_{jm} + y_{m} \cdot a_{jm}.$$
 (7)

(6) et (7) donnent
$$\frac{\left(\frac{1}{2} - \delta_j\right) \cdot b_{jn}}{a_{jn}} + y_n \cdot \frac{p_j^2}{a_{jn}} = \frac{\left(\frac{1}{2} + \delta_j\right) \cdot b_{jm}}{a_{jm}} + y_m \cdot \frac{p_j^2}{a_{jm}},$$

puis
$$\frac{(\frac{1}{2} + \delta_j).b_{jm}}{a_{jm}} - \frac{(\frac{1}{2} - \delta_j).b_{jn}}{a_{jn}} = y_n.\frac{p_j^2}{a_{jn}} - y_m.\frac{p_j^2}{a_{jm}}$$

et enfin
$$p_j^2 = \frac{(a_{jn} b_{jm} - a_{jm} b_{jn}) + 2.\delta_{j.}(a_{jn} b_{jm} + a_{jm} b_{jn})}{2(a_{im}.y_n - a_{in} y_m)}$$
 (8)

Comme $0 < \delta_j < \frac{1}{2}$ alors 0 < 2. $\delta_j < 1$ et (8) donne

$$p_j^2 < \frac{a_{jn} b_{jm}}{(a_{jm}.y_n - a_{jn}.y_m)} = \frac{A}{B}$$
 (9)

On remplace dans (9) a_{jm} , b_{jm} et a_{jn} par leurs expressions d'où :

$$A = \frac{A'}{(x_{m}^{2} + y_{m}^{2}).((x_{n}^{2} + y_{n}^{2})} \text{ où}$$

$$A' = \left[\left(\frac{1}{2} - \delta_{j} \right).x_{n} + t_{j}.y_{n} \right]. \left[-\left(\frac{1}{2} + \delta_{j} \right).y_{m} + t_{j}.x_{m} \right]$$

$$A' = t_{j}^{2}.x_{m}.y_{n} + t_{j}. \left[\left(\frac{1}{2} - \delta_{j} \right).x_{n}.x_{m} - \left(\frac{1}{2} + \delta_{j} \right).y_{m}.y_{n} \right] - \left(\frac{1}{4} - \delta_{j}^{2} \right).x_{n}.y_{m}$$

$$B = \frac{B'}{(x_{m}^{2} + y_{m}^{2}).((x_{n}^{2} + y_{n}^{2})} \text{ où}$$

$$B' = \left[\left(\frac{1}{2} + \delta_{j} \right). x_{m}. y_{n} + t_{j}. y_{m}. y_{n} \right]. (x_{n}^{2} + y_{n}^{2}) - \left[\left(\frac{1}{2} - \delta_{j} \right). x_{n}. y_{m} + t_{j}. y_{m}. y_{n} \right]. (x_{m}^{2} + y_{m}^{2})$$

Comme $x_m^2 + y_m^2 = \frac{\left(\frac{1}{2} + \delta_j\right)^2 + t_j^2}{p_i^2}$ et $x_n^2 + y_n^2 = \frac{\left(\frac{1}{2} - \delta_j\right)^2 + t_j^2}{p_i^2}$ alors B' devient:

$$B' = \left[\left(\frac{1}{2} + \delta_j \right) \cdot x_m \cdot y_n + t_j \cdot y_m \cdot y_n \right] \cdot \left(\frac{\left(\frac{1}{2} - \delta_j \right)^2 + t_j^2}{p_j^2} \right) - \left[\left(\frac{1}{2} - \delta_j \right) \cdot x_n \cdot y_m + t_j \cdot y_m \cdot y_n \right] \cdot \left(\frac{\left(\frac{1}{2} + \delta_j \right)^2 + t_j^2}{p_i^2} \right)$$

et $p_i^2 < \frac{A}{R} = \frac{p_j^2 \cdot A'}{R''}$ avec

$$B'' = \left[\left(\frac{1}{2} + \delta_j \right) \cdot \mathbf{x}_{\mathbf{m}} \cdot \mathbf{y}_{\mathbf{n}} + t_j \cdot \mathbf{y}_{\mathbf{m}} \cdot \mathbf{y}_{\mathbf{n}} \right] \cdot \left(\left(\frac{1}{2} - \delta_j \right)^2 + t_j^2 \right) - \left[\left(\frac{1}{2} - \delta_j \right) \cdot \mathbf{x}_{\mathbf{n}} \cdot \mathbf{y}_{\mathbf{m}} + t_j \cdot \mathbf{y}_{\mathbf{m}} \cdot \mathbf{y}_{\mathbf{n}} \right] \cdot \left(\left(\frac{1}{2} + \delta_j \right)^2 + t_j^2 \right).$$
Alors (9) devient $(B'' < A' \iff 0 < A' - B'')$.

Le développement de B'' donne :

$$B'' = \left(\frac{1}{2} + \delta_{j}\right) \cdot \left(\frac{1}{2} - \delta_{j}\right)^{2} \cdot x_{m} \cdot y_{n} + \left(\frac{1}{2} + \delta_{j}\right) \cdot t_{j}^{2} \cdot x_{m} \cdot y_{n} + \left(\frac{1}{2} - \delta_{j}\right)^{2} \cdot t_{j} \cdot y_{m} \cdot y_{n} \\ - \left(\frac{1}{2} - \delta_{j}\right) \cdot \left(\frac{1}{2} + \delta_{j}\right)^{2} \cdot x_{n} \cdot y_{m} - \left(\frac{1}{2} - \delta_{j}\right) \cdot t_{j}^{2} \cdot x_{n} \cdot y_{m} - \left(\frac{1}{2} + \delta_{j}\right)^{2} \cdot t_{j} \cdot y_{m} \cdot y_{n},$$

$$\begin{split} B'' &= \left(\frac{1}{4} - \delta_j^2\right) \cdot \left[\left(\frac{1}{2} - \delta_j\right) \cdot \mathbf{x}_{\mathrm{m}} \cdot \mathbf{y}_{\mathrm{n}} - \left(\frac{1}{2} + \delta_j\right) \cdot \mathbf{x}_{\mathrm{n}} \cdot \mathbf{y}_{\mathrm{m}}\right] + \\ t_j \cdot \mathbf{y}_{\mathrm{m}} \cdot \mathbf{y}_{\mathrm{n}} \cdot \left[\left(\frac{1}{2} - \delta_j\right)^2 - \left(\frac{1}{2} + \delta_j\right)^2\right] = -2 \cdot \delta_j \cdot t_j \cdot \mathbf{y}_{\mathrm{m}} \cdot \mathbf{y}_{\mathrm{n}} + \\ t_j^2 \cdot \left[\left(\frac{1}{2} + \delta_j\right) \cdot \mathbf{x}_{\mathrm{m}} \cdot \mathbf{y}_{\mathrm{n}} - \left(\frac{1}{2} - \delta_j\right) \cdot \mathbf{x}_{\mathrm{n}} \cdot \mathbf{y}_{\mathrm{m}}\right]. \end{split}$$

$$\begin{aligned} & \text{Alors } A' - B'' = t_j^2 \cdot \left[-\left(\frac{1}{2} + \delta_j\right) \cdot \mathbf{x}_{\text{m}} \cdot \mathbf{y}_{\text{n}} + \left(\frac{1}{2} - \delta_j\right) \cdot \mathbf{x}_{\text{n}} \cdot \mathbf{y}_{\text{m}} + \mathbf{x}_{\text{m}} \cdot \mathbf{y}_{\text{n}} \right] + \\ & + t_j \cdot \left[\left(\frac{1}{2} - \delta_j\right) \cdot \mathbf{x}_{\text{n}} \cdot \mathbf{x}_{\text{m}} - \left(\frac{1}{2} + \delta_j\right) \cdot \mathbf{y}_{\text{m}} \cdot \mathbf{y}_{\text{n}} + 2 \cdot \delta_j \cdot \mathbf{y}_{\text{m}} \cdot \mathbf{y}_{\text{n}} \right] \\ & - \left(\frac{1}{4} - \delta_j^2\right) \cdot \left[\left(\frac{1}{2} - \delta_j\right) \cdot \mathbf{x}_{\text{m}} \cdot \mathbf{y}_{\text{n}} - \left(\frac{1}{2} + \delta_j\right) \cdot \mathbf{x}_{\text{n}} \cdot \mathbf{y}_{\text{m}} + \mathbf{x}_{\text{n}} \cdot \mathbf{y}_{\text{m}} \right] \end{aligned}$$

$$\begin{split} A' - B'' &= \left(\frac{1}{2} - \delta_j\right).\, t_j^2.\, (x_m.y_n + x_n.y_m) + t_j.\left(\frac{1}{2} - \delta_j\right).\, (x_m.x_n - y_m.y_n) - \\ \left(\frac{1}{2} - \delta_j\right).\left(\frac{1}{4} - \delta_j^2\right).\, (x_m.y_n - x_n.y_m). \end{split}$$

$$0 < t_j^2 \cdot (\mathbf{x}_{\mathrm{m}} \cdot \mathbf{y}_{\mathrm{n}} + \mathbf{x}_{\mathrm{n}} \cdot \mathbf{y}_{\mathrm{m}}) + t_j \cdot (\mathbf{x}_{\mathrm{m}} \cdot \mathbf{x}_{\mathrm{n}} - \mathbf{y}_{\mathrm{m}} \cdot \mathbf{y}_{\mathrm{n}}) - \left(\frac{1}{4} - \delta_j^2\right) \cdot (\mathbf{x}_{\mathrm{m}} \cdot \mathbf{y}_{\mathrm{n}} - \mathbf{x}_{\mathrm{n}} \cdot \mathbf{y}_{\mathrm{m}})$$
(10).

L'étude de cette inégalité amène à envisager 2 cas :

a)
$$x_m \cdot y_n + x_n \cdot y_m = 0$$
,

b)
$$x_m, y_n + x_n, y_m \neq 0$$
.

a)
$$\mathbf{x}_{\mathbf{m}}.\mathbf{y}_{\mathbf{n}} + \mathbf{x}_{\mathbf{n}}.\mathbf{y}_{\mathbf{m}} = 0 \iff \mathbf{x}_{\mathbf{m}}.\mathbf{y}_{\mathbf{n}} = -\mathbf{x}_{\mathbf{n}}.\mathbf{y}_{\mathbf{m}} \text{ et}$$

(10) $\implies \mathbf{0} < \mathbf{t}_{\mathbf{j}}.(\mathbf{x}_{\mathbf{m}}.\mathbf{x}_{\mathbf{n}} - \mathbf{y}_{\mathbf{m}}.\mathbf{y}_{\mathbf{n}}) - \left(\frac{1}{4} - \delta_{\mathbf{j}}^{2}\right).\mathbf{2}.\mathbf{x}_{\mathbf{m}}.\mathbf{y}_{\mathbf{n}}.$
Et $\mathbf{x}_{\mathbf{m}}.\mathbf{y}_{\mathbf{n}} + \mathbf{x}_{\mathbf{n}}.\mathbf{y}_{\mathbf{m}} = 0 \implies \mathbf{x}_{\mathbf{m}}.\mathbf{x}_{\mathbf{n}} - \mathbf{y}_{\mathbf{m}}.\mathbf{y}_{\mathbf{n}} = -\frac{\mathbf{y}_{\mathbf{m}}}{\mathbf{y}_{\mathbf{n}}}.((\mathbf{x}_{\mathbf{n}})^{2} + \mathbf{y}_{\mathbf{n}})^{2})$

Il faut distinguer ici 3 éventualités :

$$\alpha$$
) - $\frac{y_m}{y_n}$. $((x_n^2 + y_n^2) > 0$,

$$\beta$$
) $-\frac{y_m}{y_n}$. $((x_n^2 + y_n^2) < 0$

$$\alpha) - \frac{y_{m}}{y_{n}} \cdot ((x_{n}^{2} + y_{n}^{2}) > 0,$$

$$\beta) - \frac{y_{m}}{y_{n}} \cdot ((x_{n}^{2} + y_{n}^{2}) < 0,$$

$$\gamma) - \frac{y_{m}}{y_{n}} \cdot ((x_{n}^{2} + y_{n}^{2}) = 0.$$

$$\alpha) - \frac{y_m}{y_n}.((x_n^2 + y_n^2) > 0 \iff x_m.x_n > y_m.y_n, \text{ il implique}:$$

 y_m et y_n de signes contraires donc y_m . $y_n < 0$ et 2 possibilités

*
$$v_m > 0$$
 et $v_n < 0$

*
$$y_m > 0$$
 et $y_n < 0$
 x_m . $(x_n, y_m) = -x_m^2$. $y_n > y_m^2$. $y_n \iff 0 > y_n$. $(x_m^2 + y_m^2) \implies (x_m^2 + y_m^2) > 0$

*
$$y_n > 0$$
 et $y_m < 0$
 $(x_m, y_n).x_n = -x_n^2.y_m > y_n^2.y_m \Leftrightarrow 0 > y_m.(x_n^2 + y_n^2) \Rightarrow (x_n^2 + y_n^2) > 0$

$$\beta$$
) $-\frac{y_m}{y_n}$ $((x_n^2 + y_n^2) < 0 \iff x_m, x_n < y_m, y_n, il implique)$

 y_m et y_n de même signe donc $y_m, y_n > 0$ et 2 possibilités :

*
$$v_m < 0$$
 et $v_n < 0$

*
$$y_{m} < 0$$
 et $y_{n} < 0$
($x_{m}.y_{n}$). $x_{n} = -x_{n}^{2}.y_{m} > y_{n}^{2}.y_{m} \Leftrightarrow 0 > y_{m}.(x_{n}^{2} + y_{n}^{2}) \Rightarrow (x_{n}^{2} + y_{n}^{2}) > 0$
 $x_{m}.(x_{n}.y_{m}) = -x_{m}^{2}.y_{n} > y_{m}^{2}.y_{n} \Leftrightarrow 0 > y_{n}.(x_{m}^{2} + y_{m}^{2}) \Rightarrow (x_{m}^{2} + y_{m}^{2}) > 0$

*
$$y_m > 0$$
 et $y_n > 0$
 $(x_m.y_n).x_n = -x_n^2.y_m < y_n^2.y_m \Leftrightarrow 0 < y_m.(x_n^2 + y_n^2) \Rightarrow (x_n^2 + y_n^2) > 0$
 $x_m.(x_n.y_m) = -x_m^2.y_n < y_m^2.y_n \Leftrightarrow 0 < y_n.(x_m^2 + y_m^2) \Rightarrow (x_m^2 + y_m^2) > 0$

La contraposée des éventualités α) et β) impliquent que $-\frac{y_m}{v_n}$ $((x_n^2 + y_n^2) = 0.$

$$\gamma$$
) $-\frac{y_m}{v_n}$ $((x_n^2 + y_n^2) = 0 \text{ induit} :$

$$y_m = 0 \operatorname{car} (x_n^2 + y_n^2) \neq 0,$$

$$-x_{n}.y_{m} = x_{m}.y_{n} = 0 \text{ d'où } y_{n} = 0 \text{ car } (x_{m}^{2} + y_{m}^{2}) \neq 0,$$

 x_m . $x_n - 0 = \frac{0}{0}$, ce qui est impossible.

$$x_{m}. y_{n} + x_{n}. y_{m} = 0 \implies x_{m}. x_{n} = \frac{0}{0}$$

<u>Lemme 1</u>: x_m . $y_n + x_n$. $y_m \neq 0$.

b)
$$x_m.y_n + x_n.y_m \neq 0$$
 et

$$0 < t_j^2 \cdot (x_m \cdot y_n + x_n \cdot y_m) + t_j \cdot (x_m \cdot x_n - y_m \cdot y_n) - \left(\frac{1}{4} - \delta_j^2\right) \cdot (x_m \cdot y_n - x_n \cdot y_m).$$

$$\Delta = (x_m.x_n - y_m.y_n)^2 + (1 - 4.\delta_i^2).[(x_m.y_n)^2 - (x_n.y_m)^2].$$

2 cas possibles:

- $x_m.y_n + x_n.y_m < 0$
- $x_m, y_n + x_n, y_m > 0$.
- $x_m.y_n + x_n.y_m < 0$ implique :

a)
$$t_j \cdot (y_m, y_n - x_m, x_n) + (\frac{1}{4} - \delta_j^2) \cdot (x_m, y_n - x_n, y_m) < t_j^2 \cdot (x_m, y_n + x_n, y_m) < 0$$

b)
$$x_m.y_n + x_n.y_m < 0$$
 (11)

c)
$$(y_m.y_n - x_m.x_n) < 0$$
 (12)

d)
$$(x_m \cdot y_n - x_n \cdot y_m) < 0$$
 (13)

(11) et (12)
$$\implies$$
 $y_n.(x_m + y_m) < x_n.(x_m - y_m)$

(12) et (13)
$$\implies$$
 $y_n.(x_m + y_m) < x_n.(x_m + y_m).$

Il y a 2 possibilités :

$$x_n.(x_m - y_m) < x_n.(x_m + y_m) \implies 0 < x_n.y_m$$
 (14)

$$x_n.(x_m + y_m) < x_n.(x_m - y_m) \implies x_n.y_m < 0$$
 (15)

(11) et (14):
$$0 < x_n, y_m \implies x_m, y_n < 0$$

(15):
$$x_n.y_m < 0$$
 et supposons que $x_m.y_n > 0$ alors

(13) donne
$$0 < x_m.y_n < x_n.y_m < 0$$
 contradiction.

Donc
$$x_n, y_m < 0 \implies x_m, y_n < 0$$
.

(14) et (15) induisent donc $\mathbf{x_m} \cdot \mathbf{y_n} < \mathbf{0}$ et la contraposée conduit à $\mathbf{x_n} \cdot \mathbf{y_m} = \mathbf{0}$. Or $\mathbf{x_n} \cdot \mathbf{y_m} = \frac{(\mathbf{t_j} - \mathbf{y_n} \cdot \mathbf{a_{jn}}).(\mathbf{t_j} - \mathbf{x_m} \cdot \mathbf{b_{jm}})}{\mathbf{a_{jm}}.\mathbf{b_{jn}}}$

Or
$$x_n$$
. $y_m = \frac{(t_j - y_n.a_{jn}).(t_j - x_m.b_{jm})}{a_{jm}.b_{jn}}$

Et donc
$$(t_j - y_n. a_{jn}). (t_j - x_m. b_{jm}) = 0$$

On pose
$$t_{j1} = x_m$$
. b_{jm} et $t_{j2} = y_n$. a_{jn}

Mais
$$t_{j1} = x_m \cdot b_{jm} \implies (y_m = 0 \text{ et } 0 < x_m \cdot x_n)$$

et
$$t_{j2} = y_n \cdot a_{jn} \implies (x_n = 0 \text{ et } y_m \cdot y_n < 0)$$

par identification respectivement de (3) et (5).

En remplaçant $y_m = 0$ dans (10) on obtient :

$$-x_{m}.y_{n}.\left[t_{j}^{2}-\left(\frac{1}{4}-\delta_{j}^{2}\right)\right] < t_{j}.x_{m}.x_{n} \text{ avec } x_{m}.y_{n} < 0 \text{ et } 0 < x_{m}.x_{n}$$

et comme $\left[t_i^2 - \left(\frac{1}{4} - \delta_i^2\right)\right] < t_i^2$, il faut envisager 2 possibilités :

*
$$-x_{m}.y_{n}.t_{j}^{2} < t_{j}.x_{m}.y_{n} \iff -x_{m}.y_{n}.t_{j} < x_{m}.x_{n}$$
 (16)

*
$$t_{j}.x_{m}.x_{n} < -x_{m}.y_{n}.t_{j}^{2} \iff x_{m}.x_{n} < -x_{m}.y_{n}.t_{j}$$
 (17)

(16):
$$0 < x_m \cdot (x_n + y_n \cdot t_i)$$
 implique:

a)
$$x_m > 0$$
 et $(x_n + y_n.t_j) > 0 \implies (y_n < 0, x_n > 0$ et $x_n + y_n.t_j > 0)$
 $\implies x_n > -y_n.t_j \implies \frac{x_n}{-y_n} > t_j.$

b)
$$x_m < 0$$
 et $(x_n + y_n.t_j) < 0 \implies (y_n > 0, x_n < 0$ et $x_n + y_n.t_j < 0)$
 $\Rightarrow x_n < -y_n.t_j \Rightarrow \frac{x_n}{y_n} < -t_j \implies t_j < -\frac{x_n}{y_n}$

Donc a) et b) donnent tous les deux $\mathbf{t_j} < -\frac{\mathbf{x_n}}{\mathbf{y_n}}$ et la contraposée induit que $\mathbf{x_m} = \mathbf{0}$ d'où $t_{j1} = \mathbf{0}$ et $\mathbf{0} < \mathbf{0} \cdot \mathbf{x_n}$, ce qui est impossible.

(17):
$$x_m \cdot (x_n + y_n \cdot t_i) < 0$$
 implique:

a)
$$x_m > 0$$
 et $(x_n + y_n \cdot t_j) < 0 \implies (y_n < 0$ et $x_n < -y_n \cdot t_j > 0) \implies t_j > -\frac{x_n}{y_n}$

b)
$$x_m < 0$$
 et $(x_n + y_n.t_j) > 0 \implies (y_n > 0$ et $x_n > -y_n.t_j < 0) \implies t_j > -\frac{x_n}{y_n}$
Donc a) et b) donnent tous les deux $t_j > -\frac{x_n}{y_n}$ et la contraposée induit que $x_m = 0$ d'où $t_{j1} = 0$ et $0 < 0.x_n$, ce qui est impossible.

En remplaçant $x_n = 0$ dans (10) on obtient :

.
$$y_{\rm m}$$
. $y_{\rm n}$. $t_{\rm j} < x_{\rm m}$. $y_{\rm n}$. $\left[t_{\rm j}^2 - \left(\frac{1}{4} - \delta_{\rm j}^2\right)\right]$ avec $x_{\rm m}$. $y_{\rm n} < 0$ et $y_{\rm m}$. $y_{\rm n} < 0$ et comme $\left[t_{\rm j}^2 - \left(\frac{1}{4} - \delta_{\rm j}^2\right)\right] < t_{\rm j}^2$, il faut envisager 2 possibilités :

*
$$x_m. y_n. t_j^2 < t_j. y_m. y_n \iff x_m. y_n. t_j < y_m. y_n$$
 (18)

*
$$t_{j}.y_{m}.y_{n} < x_{m}.y_{n}.t_{j}^{2} \iff y_{m}.y_{n} < x_{m}.y_{n}.t_{j}$$
 (19)

(18):
$$y_n \cdot (x_m - y_m \cdot t_i) < 0$$
 implique:

a)
$$y_n > 0$$
 et $(x_m.t_j - y_m) < 0 \implies (x_m < 0$ et $x_m.t_j - y_m < 0)$
 $\implies -y_m < -x_m.t_j \implies \frac{-y_m}{x_m} < -t_j \iff t_j > \frac{y_m}{x_m}$

b)
$$y_n < 0$$
 et $(x_m.t_j - y_m) > 0 \implies (x_m > 0$ et $x_m.t_j - y_m > 0)$
 $\implies x_m.t_j > y_m \implies t_j > \frac{y_m}{x_m}$

Donc a) et b) donnent tous les deux $t_j > \frac{x_n}{y_n}$ et la contraposée induit que $y_n = 0$ d'où $t_{j2} = 0$ et y_m . 0 < 0, ce qui est impossible.

(19):
$$0 < y_n . (x_m - y_m . t_j)$$
 implique:

a)
$$y_n > 0$$
 et $(x_m.t_j - y_m) > 0 \implies (x_m < 0$ et $x_m.t_j - y_m > 0)$
 $\implies x_m.t_j > y_m \implies t_j < \frac{y_m}{x_m}$

b)
$$y_n < 0$$
 et $(x_m.t_j - y_m) < 0 \Longrightarrow (x_m > 0$ et $x_m.t_j - y_m < 0)$
 $\Longrightarrow t_j < \frac{y_m}{x_m}$

Donc a) et b) donnent tous les deux $\mathbf{t_j} < \frac{\mathbf{x_n}}{\mathbf{y_n}}$ et la contraposée induit que $\mathbf{y_n} = \mathbf{0}$ d'où $\mathbf{t_{j2}} = \mathbf{0}$ et $\mathbf{y_m}$. $\mathbf{0} < \mathbf{0}$, ce qui est impossible.

<u>Lemme 2</u>: $x_m.y_n + x_n.y_m < 0$ est impossible.

•
$$x_m. y_n + x_n. y_m > 0.$$

$$\Delta = (x_m. x_n - y_m. y_n)^2 + (1 - 4. \delta_j^2).[(x_m. y_n)^2 - (x_n. y_m)^2] \ge 0 \text{ car } t_j \in \mathbb{R}_+^*.$$

$$\alpha$$
) $\Delta = 0 \implies t_j = \frac{-(x_m \cdot x_n - y_m \cdot y_n)}{2 \cdot (x_m \cdot y_n + x_n \cdot y_m)} > 0.$

On a donc $(x_m. x_n - y_m. y_n) \neq 0$ et $(x_m. y_n)^2 - (x_n. y_m)^2 < 0$ qui induisent $x_m. y_n + x_n. y_m > 0$ et $x_m. y_n - x_n. y_m < 0 \implies (x_m. x_n - y_m. y_n) < 0$.

Comme $t_j = x_m \cdot b_{jm} + y_m \cdot a_{jm} = x_n \cdot b_{jn} + y_n \cdot a_{jn}$ et que $t_j = \frac{-(x_m \cdot x_n - y_m \cdot y_n)}{2 \cdot (x_m \cdot y_n + x_n \cdot y_m)}$

l'identification conduit à :

$$\begin{split} a_{jm} &= \frac{y_n}{2.(x_m.y_n + x_n.y_m)} \text{ , } b_{jm} = \frac{-x_n}{2.(x_m.y_n + x_n.y_m)} \text{ et } \\ a_{jn} &= \frac{y_m}{2.(x_m.y_n + x_n.y_m)} \text{ , } b_{jm} = \frac{-x_m}{2.(x_m.y_n + x_n.y_m)}. \end{split}$$

Or
$$a_{jm}^2 + b_{jm}^2 = a_{jn}^2 + b_{jn}^2 = p_j^2$$
 et donc
$$p_j^2 = \frac{x_n^2 + y_n^2}{4..(x_m.y_n + x_n.y_m)^2} = \frac{x_m^2 + y_m^2}{4..(x_m.y_n + x_n.y_m)^2}$$
 ce qui entraine que $x_n^2 + y_n^2 = x_m^2 + y_m^2$ qui n'est vrai que si $\delta_j = 0$.

Il s'ensuit que $\Delta \neq 0$.

$$\beta) \ \Delta > 0 \implies t_{j} = \frac{-(\mathbf{x}_{\mathbf{m}}.\mathbf{x}_{\mathbf{n}} - \mathbf{y}_{\mathbf{m}}.\mathbf{y}_{\mathbf{n}}) \pm \sqrt{\Delta}}{2.(\mathbf{x}_{\mathbf{m}}.\mathbf{y}_{\mathbf{n}} + \mathbf{x}_{\mathbf{n}}.\mathbf{y}_{\mathbf{m}})} > 0$$

$$t_{j1} = \frac{-(\mathbf{x}_{\mathbf{m}}.\mathbf{x}_{\mathbf{n}} - \mathbf{y}_{\mathbf{m}}.\mathbf{y}_{\mathbf{n}}) + \sqrt{\Delta}}{2.(\mathbf{x}_{\mathbf{m}}.\mathbf{y}_{\mathbf{n}} + \mathbf{x}_{\mathbf{n}}.\mathbf{y}_{\mathbf{m}})} > 0 \text{ et } t_{j2} = \frac{-(\mathbf{x}_{\mathbf{m}}.\mathbf{x}_{\mathbf{n}} - \mathbf{y}_{\mathbf{m}}.\mathbf{y}_{\mathbf{n}}) - \sqrt{\Delta}}{2.(\mathbf{x}_{\mathbf{m}}.\mathbf{y}_{\mathbf{n}} + \mathbf{x}_{\mathbf{n}}.\mathbf{y}_{\mathbf{m}})} > 0,$$

$$(\mathbf{x}_{\mathbf{m}}.\mathbf{x}_{\mathbf{n}} - \mathbf{y}_{\mathbf{m}}.\mathbf{y}_{\mathbf{n}}) < 0,$$

$$\sqrt{\Delta} < -(\mathbf{x}_{\mathbf{m}}.\mathbf{x}_{\mathbf{n}} - \mathbf{y}_{\mathbf{m}}.\mathbf{y}_{\mathbf{n}}).$$

Comme $t_j = x_m$. $b_{jm} + y_m$. $a_{jm} = x_n$. $b_{jn} + y_n$. a_{jn} alors pour t_{j1} , on obtient $a_{jm} = \frac{y_n}{2.(x_m.y_n + x_n.y_m)}$, $b_{jm} = \frac{-x_n - \frac{\sqrt{\Delta}}{x_{jm}}}{2.(x_m.y_n + x_n.y_m)}$ et

$$\begin{aligned} &a_{jn} = \frac{y_m}{2.(x_m.y_n + x_n.y_m)} \text{, } b_{jm} = \frac{-x_m - \frac{\sqrt{\Delta}}{x_{jn}}}{2.(x_m.y_n + x_n.y_m)} \\ &\text{et sachant que } a_{jm}^2 + b_{jm}^2 = a_{jn}^2 + b_{jn}^2 = p_j^2 \text{ alors } (\frac{x_n^2 - x_m^2}{x_m.x_n}).(\frac{\Delta}{x_m.x_n} - 2.\sqrt{\Delta}) = 2.\frac{\delta_j}{p_j^2}. \end{aligned}$$

Le même traitement pour t_{j2} conduit à $(\frac{\mathbf{x}_{jn}^2 - \mathbf{x}_{jm}^2}{\mathbf{x}_{jm}.\mathbf{x}_{jn}}).(\frac{\Delta}{\mathbf{x}_{jm}.\mathbf{x}_{jn}} + 2.\sqrt{\Delta}) = 2.\frac{\delta_j}{p_j^2}$ induisant

$$\frac{\Delta}{x_{\text{m.}} x_{\text{n}}} + 2.\sqrt{\Delta} = \frac{\Delta}{x_{\text{m.}} x_{\text{n}}} - 2.\sqrt{\Delta} \iff \sqrt{\Delta} = -\sqrt{\Delta} \implies \Delta = 0 \implies \delta_j = 0 \text{ en contradiction avec}$$
 l'hypothèse $0 < \delta_j < \frac{1}{2}$.

Ce résultat découle de $p_j^2 < \frac{a_{jn} b_{jm}}{(a_{jm}.y_n - a_{jn} y_m)}$ venant lui-même de l'application de l'hypothèse $0 < \delta_j < \frac{1}{2}$.

Lemme 3: $\delta_i = 0$.

Conclusion.

L'exploitation des données conduit dans les 3 cas étudiés résultants de l'inégalité

 $p_j^2 < \frac{a_{jn}\,b_{jm}}{(a_{jm}.y_n-\,a_{jn}\,y_m)}$ à des contradictions avec les hypothèses de l'étude.

Le lemme 3 entraine alors

-
$$s'_j = s''_j = \frac{1}{2} + i.t_j$$
,

- l'application $g: \mathcal{P} \longrightarrow \mathcal{S}, \ p_j \longmapsto s_j = \frac{1}{2} + i.t_j$ est bijective.

<u>Théorème</u>: L'Hypothèse de Riemann est vérifiée.

madanibouabdallah@hotmail.fr.