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Abstract: Since the very begining of quantum theory there started a debate on the proper role 
of space and time in it. Some authors assumed that space and time have their own algebraic 

operators. On that basis they supposed that quantum particles had “coordinates of position”, 
even though those coordinates were not possible to determine with infinite precision. 

Furthermore, time in quantum physics was taken to be on an equal foot, by means of a so-called 
“Heisenberg’s fourth relation of indeterminacy” concerning time and energy. In this paper, the 
proper role of space and time in the core of non-relativistic quantum phsysics is analyzed. We 
will find that, rigorously, that relation for time and energy shows a different root. For the role 

of space, it will be discussed that there is no “coordinate of position” in the conceptual 
structure of quantum physics because quantum particles are not  point-like objects. 

 
 
1. Introduction 

It could be thought that some of the paradoxes typical in non-relativistic 
quantum physics perhaps have their origin in the specific role of time as a physical 
quantity in the quantum theory. In fact this is a very debated matter. It was even pointed 
out by Von Neumann:  

 
“(…) an essential weakness that is, in fact, the main weakness of the quantum mechanics: 
its non-relativistic character, which distinguishes time t of the three space coordinates x, y, 

z, and presupposes a concept of objective simultaneity. In fact, while all the other 
quantities (especially those x, y, z closely connected with t by Lorentz transformations) are 
represented by operators, an ordinary numeric parameter corresponds to the time t, just as 

in the classic mechanics.” 
 
There is no doubt that the elementary quantum theory was elaborated in a non 

concordant format with the einsteinian relativity, but it is erroneous to suppose that the 
space coordinates are represented by means of operators. The truth is that t is given the 
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same treatment as space coordinates (x, y, z); none of those magnitudes possesses a 
functional operator associated to her. Let us see the reason of this.  

 
 

2. The birth of a non-mechanical “mechanics” 
Quantum theory was developed following the same recipes as hamiltonian 

mechanics because of two crucial reasons, partly historical and partly logical. Since the 
victory in the XVIII century of the newtonian natural philosophy, most of the scientists 
had the conviction that any fundamental theory of the matter –and, generally speaking, 
of the whole physics- had to be some kind of “mechanics”; that is to say, a group of 
equations of motion for particles that interact among them obeying some law of forces 
that could be more or less complex. The field notion introduced later on by Faraday in 
the XIX century did not change substantially the situation. In fact, the one who 
mathematically elaborated Faraday’s ideas, the famous James Clerk Maxwell, obtained 
his equations imagining a mechanical ether subjected to Newton laws. It was natural, 
therefore, that the new theory of quanta were called “quantum mechanics”, a not very 
fortunate name for a parcel of physics born with the purpose of explaining spectroscopic 
series, distributions of electromagnetic frequencies, specific heats, and a diversity of 
quantities deeply far from the genuine mechanical magnitudes.  

On the other hand, and also in the XIX century, the mathematical methods of 
Hamilton demonstrated to embrace the mechanical description of particles as much as 
that of waves too. This supposed an absolute novelty in the traditional procedures of 
classic mechanics. Many authors have often speculated if with something more than 
perspicacity -as if Hamilton had lacked it- the brilliant Irishman had been able to take a 
step more and to discover himself the mathematical framework of the future quantum 
theory. It does not seem that the state of things were so simple1:  

 
“(…). It has been said that if Hamilton has advanced a little more, he would have 
discovered the equation of Schroedinger. It is not this way; he lacked experimental 

authority to give that jump. In the days of Hamilton it was considered that the classical 
Mechanics was rigorously certain and justifications based on the experience to consider did 

not exist that went an approach to a broader theory. (…).” 
 
Neverthless, that experimental arguments did exist in the begining of the XXth 

century. So, it was almost unavoidable to appeals to the hamiltonian formalism in the 
nascent quantum physics, as long as its physical referents -the quantum objects- 
manifested as much a corpuscular as a wave-like behaviour. And it was made this way, 
decorating the analytic mechanics of Hamilton with the algebra of operators of Von 

                                                 
1 Goldstein (1990), p. 596. 
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Neumann on the functional space of Hilbert. This cocktail of famous names often 
darkens the relative simplicity of the situation. In the analytic mechanics of Hamilton, a 
system of n particles is described by means of 3n couples of conjugated dynamic 
variables that are usually represented as qk and pk in its canonical form. These variables 
obey the relationships expressed in the brackets of Poisson:  

 
{qk , pl} = δkl ; {qk , ql} = {pk , pl} = 0. 

 
We define with it a 6n-dimensional point in the space of phases of the system. 

And evolution in time is characterized by means of the hamiltonian functional of these 
dynamic variables, H = H(qk , pl) that are assumed to be not explicitly dependent of t:  
 

dqk/dt = {qk , H},  dpl/dt = {pl , H} 
 
 In all the physical theories, except in General Relativity, it is supposed that space 
and time (or the space-time if we speak about Special Relativity) constitute a merely 
passive stage in which the natural processes occur, a sort of indispensable inert 
background to describe the physical phenomena. This makes necessary to distinguish 
among the space-time coordinates (t, x, y, z) and the dynamical variables qn and pn 
corresponding to the space of phases. The first ones on their own are good to label 
mathematically the different points of space and time; this is the reason why they could 
be denominated “field variables”, although they were only acting with respect to a 
metric field that defined distances among these points. On the contrary, qn and pn are 
dynamical variables associated, for example, to the position and the impulse of a certain 
physical object. They do not label in a generic way all the points of a continuous 
manifold (as space-time) used as basic framework to formalize our theories; they only 
refer to the points that the physical object in question occupies in fact. Otherwise, qn and 
pn specify the states of specific material systems, while coordinates t, x, y, z characterize 
the continuous space-time adopted as our background manifold where we can immerse 
this specific material systems.  
 Now we find easier to distinguish, firstly, among the variable of position of a 
point-like particle, qx, and the space coordinate of the point that this particle occupies in 
a certain instant, x. It is true that we have the algebraic relationship qx =  x (and similarly 
for the rest of coordinates), but we must make a difference between the point-like 
particle (as a physical entity endowed with mass-energy, position, speed and 
acceleration) and the geometric coordinate x of a fixed point in a preexistent empty 
space.  
 We cannot forget the essential role carried out by symmetries in our 
understanding of physical laws. This laws are not modified when we change the 
position of the origin of our reference system (space-temporary symmetry of 
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displacements), neither when we rotate their axes a certain angle (space symmetry of 
rotations). The Lorentz transformations add the equivalence of systems in relative 
inertial motion, what is put forwards in the symmetry of space-time rotations. But again 
we must underline an outstanding distinction: the mandatory fulfilment of certain 
symmetry requirements in nature, only concerns to the physical laws (that is to say, to 
the formal representation of the entirety of phenomena and physically permissible 
processes), not necessarily to the individual and concrete physical systems. A lot of 
situations will show material systems that, because of the asymmetry of their 
configuration, for instance, will not be rotationally symmetrical. And it does not mean 
that the rotational symmetry of the natural laws has been infringed.  
 The symmetries of spatial displacements are generated by means of the total 
impulse, P, time symetries depend on total energy2, H, and the generator of rotational 
symmetries is the total angular momentum, J. If all these symmetries are on an equal 
foot, we may wonder about the priority usualli given to hamiltonian functional, H, 
representing the time evolution of the physical systems. In our description of nature, 
what is the priority of time displacements upon the spatial ones owed to? The answer 
must be sought in the historical tradition of analytical mechanics, mostly engaged to the 
study of point-like masses and rigid bodies, all which trivially transform under spatial 
displacements. However, the case of classical fields (electromagnetic, distribution of 
speeds or densities in a fluid, etc.) is very different, because those displacements in 
space are anything but trivial. In such situations, P and H get the same importance; so, 
in Special Relativity energy and linear momentum constitute the components of a 
tetravector in space-time.  
 The accented formal similarity among the qx behavior and of x under time 
displacements and spatial rotations, has notably darkened the background differences 
between both magnitudes. And the use of the notation x for the particles position 
(equally for the other coordinates) has still carried bigger confusion to such an extent 
that we will hardly find many textbooks where the distinction among both variables is 
explicitly pointed out. Even more, the bold efforts of some authors to include the time 
coordinate, t, as conjugated canonical variable of H, were bound to be a failure 
(provided we stay inside the orthodox hamiltonian scheme). The hamiltonian functional 
H depends on the original canonical variables, qn and pn (and sometimes also on t); 
therefore time cannot be itself an independent canonical variable. The mistake is 
consequence, again, of confusing space-time coordinates (a mathematical label assigned 
to the points of the space-time) with dynamical variables (estates that characterize the 
physical systems located in space-time).  
 
 

                                                 
2 We should not assume that H always stands for the total energy of a physical system.  
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3. Space and time in quantum physics 
 In the elementary quantum theory the situation is completely similar: the 
existence of a space-time background, continuous and inert, is presupposed, the points 
of which are specified by means of space-time coordinates that are classical variables 
without dispersion (“c-numbers” of Dirac). The symmetries and space-time 
transformations are expressed in terms of such coordinates. The dynamical variables, on 
the other hand,  are indeed quantized, due to which they are substituted by self-adjoint 
operators in a Hilbert space. All the hamiltonian formulae conserve their validity by 
only replacing the Poisson brackets for quantum commutators, according to the rule {A 

, G} →  (i  )−1 [ Â , Ĝ]. In particular, the canonical variables are substituted by 
operators that obey the following commutation relationships:  
 

[ ] [ ] [ ] 0 , , ;  , ==δ= lklkkllk ppqqipq ˆˆˆˆˆˆ  

 
We arrive now at one of the keys of this controversy: the substitution of 

dynamical variables for operators and Poisson brackets for quantum commutators, 
expose the inherent limitations of representing by means of typical point-particles 
magnitudes, quantum estates that are in no way associated to point-like objects. In fact, 
we usually preserve the notation qi for the cartesian component of the position of the 
quantum particle, considered as a material point, and similarly for the momentum 
components, pj. But it happens to be that pj has its corresponding differential operator, 
unlike the variable qx, which is replaced by the so-called “multiplication operator”, x⋅( ). 
This last one is not a genuine operator because of its lack of true self-functions. The 
Dirac deltas are not even authentic functions in a rigorous mathematical sense, for 
which no quantum state can be developed as linear superposition of self-functions of the 
operator position.  
 The operator linear momentum does not suffer from the precedent complications 
because the notion of speed, or the linear momentum, is compatible as much with 
ideally point-like objects (the point-like mass of the classical mechanics) as with 
extensive entities (an ideal plane wave). However, the dynamical variable qi only 
applies to classical objects ideally reducible to a point, which is impossible for quantum 
ones. For that reason we speak about the propagation speed of a plane wave, but we do 
not speak about its point-like position; as we do know in geometrical optics, the non-
wave limit of a plane wave is a ray, not a point.  

A big amount of texts on elementary quantum physics open the explanations 
considering only a mass-point, what implicates an error from the very begining. We 
know that quantum objects are spatially extensive entities3, the time-dependent wave 
function is not written ψ(qx, t), as we could expect, but ψ(x, t), where x denotes not the 

                                                 
3 That is why the usual name is “electronic field” -insted of “electrons”- or “material fields” in general.  

 5



instantaneous position of a pointlike corpuscle, but a geometric coordinate that 
embraces the whole. And it is natural because a free quantum object is represented by 
means of an infinite plane wave. The function of quantum state, in fact, is a magnitude 
still located in a higher level of abstraction, whose formal characterization is given in a 
functional space of Hilbert with an specific algebra. Anyway, the usual notation, in 
which x and t appear in an equal foot as arguments of the function ψ, incites us to 
wonder why t is not an operator like x. The answer, obviously, comes on remembering 
that neither t nor x are true operators.  
 By the way, just as they have been defined the operators associated to qi and pj 
are not enclosed, and their spectrum of allowed values extends to the whole real line. 
When periodic contour conditions are imposed to the variable position, self-values of 
the linear momentum operator become discreet. And if the wave function must annul in 
the ends of a finite space interval (the ordinary example of the “particle in a box”), not 
even exists then a self-adjoint operator for the linear momentum. The insistence of 
considering t as if it were a genuine operator, would take us to expect that it should 

obey the relationship [t, H]  = i . Being this way, t should possess a continuous 
spectrum of self-values from −∞ until +∞, in so far it embraces all the moments in time. 
In consequence, the same behavior should be shown by the hamiltonian H, against the 
obvious evidence that there exist systems with discreet self-values for the energy.  
 This reasoning convinced to not few authors about the impossibility of building 
an “operator time”, while the presumed existence of an operator position accentuated 
the asymmetry between space and time moving away still more the quantum theory 
from a relativistic spirit. Whereas there is not an authentic problem; neither x nor t are 
operators, and the formal symmetry among both coordinates stays. An alternative, 
certainly, consists on formally defining an operator of time evolution (not an operator 
“time”) that provides the transition from a particular state ψ0(x) in an instant t0 until 
another later state ψt(x) in an instant t.  

We would have this way:  
 

)()ψ(U)(ψ 0 xtxt
ˆ= , 

 
where the operator  is equal to an exponential function exp)(U tˆ e[−iHt]. It is easy to 

prove that the time-evolution operator, although linear, is not hermitian; its self-values, 
expe[−iEnt], are not real. For that reason,  cannot be considered but a purely formal 

artifice concieved to express the transition from an initial state to another final one by 
)(U tˆ
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means of a linear operator that only depends on H and t, in a mathematical language 
comparable to that of other authentic physical operators4.  
 
 The situation is still more delicate when incorporating the Special Relativity in 
the elementary quantum theory, because then we are even deprived of the position 
pseudo-operator managed until that moment5. In 1949, T.D. Newton and E.P. Wigner 
published a well-known paper6 in which they showed an almost univoc characterization 
of an operator called “of position” by means of its behavior under displacements and 
spatial rotations. However, the operator defined this way turns out to be non-covariant 
in the relativistic sense. Even more, due to the positive sign of the energy in the 
ordinary physical systems, if in a certain moment we have a self-state of this operator (a 
“located state”, in Newton-Wigner terminology), after an interval of infinitely brief time 
the subsequent state is extended over all the space. So unpleasant behavior has been a 
source of plentiful literature around the discussion about the meaning and real utility of 
the concept of “localizable particle” in the framework of a consistent quantum-
relativistic theory7.  
 The truth is that in the usual relativistic versions of quantum physics, neither 
position nor duration are counted among the basic notions. The main role in this context 
is played by the operator of quantum field parametrized by means of the space-time 
coordinates considered as classic magnitudes without dispersion (again, those “c-
numbers” of Dirac).  
 
 
4. Heisenberg inequalities 
 Another source of confusion is what we can denominate the “Schroedinger 
approach”: the idea that elementary particles are no more than ultramicroscopic wave 
packets (which is equivalent to accept a wave ontology as the ultimate one for the 
quantum realm and, in general, for the whole physical reality). If a wave packet is a 
localized disturbance that results from the sum of many different wave forms, the more 
strongly localized the packet is, the more frequencies (or linear momenta) are needed to 
allow the constructive superposition in the region of localization and destructive 

                                                 
4The time evolution operator plays an outstanding role in higher study of quantum systems depending on 
time. But it does not change its non-physical condition. 
5In a relativistic quantum theory the notion of a particle with a “definite location” –and, besides, the 
notion of wave function as a carrier of a probability density– is still more controversial than in a non-
relativistic situation. A good discusion could be found in Malament (1996), or Halvorson & Clifton 
(2002). 
6 Newton & Wigner (1949).  
7 For the Dirac spinors of quantum objects with spin = ± ½, the Newton-Wigner operator is equivalent to 
the Foldy-Wouthuysen “position average” operator. More details in Foldy & Wouthuysen (1950). 
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superposition outside that region. So, representing an arbitrary wave as a superposition 
of plane waves: 
 

))exp(()()0( 3 kixkAkdx ⋅∫=ψ
∞

,  

 
The amplitudes A(k) can be expressed in turn as a function of ψ(x,0) evaluated at t = 0 
by inverting the Fourier transform above: 
 

)exp()0()()2()( 33 kixxxdkA ⋅−∫ ψπ=
∞

− ,  

 

Taking into account that p = k, many authors deduce the Heisenberg relation of 

indeterminacy Δx⋅Δpx ≥ . The same procedure applied to variables as time and angular 
frequency leads to similar conclusions. If we regard a wave as a function of time, we 
can write: 
 

∫ ω−⋅ω⋅ω=
∞

)exp()()( tigdtf  

 
whre g(ω) is given by 
 

∫ ω⋅⋅π=ω
∞

− )exp()()2()( 1 titfdtg  

 
Correspondingly, from the features of a wave packet it could be deduced that Δt⋅Δω ≥ 1. 

And if we remember that E = ω, we arrive at the “fourth relation of indeterminacy” 

Δt⋅ΔE ≥ . 
 There are, however, many reason to suspect of the previous results. The main 
one is tht quantum objects are not wave packets. If it were that way, each individual 
quantum particle would produce a whole intereference pattern in the double-slit 
experiment. And this is not what we observe. 
 

From the relationships of commutation, pnqm – qnpm = −i δnm, that are postulated 
by the theory, the definition of quantum average, the definition of standard deviation a 
(coming from the mathematical statistics8), and the inequality of Schwartz9 (taken from 
mathematical analysis), it is obtained without difficulty10  

                                                 
8 For individual quantum objects , statistical dispersions cannot be regarded as those applied to sets of 
quantum particles. See Uffink & Hilgevoord (1985), or Hilgevoord & Uffink (1988). 
9 Schwartz (1950-51). 
10 Kennard (1927), Robertson (1929) and Schroedinger (1930). 
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ΔψpnΔψqm ≥ ( /2)δnm

 
for the component pn of the momentum and the component qm of the position of the 
micro-object represented by ψ.  

It is possible, nevertheless, to define a “time of evolution”, δψtA, for any 
dynamical variable A in a state ψ as the interval of necessary time so that the mean 
value change of A would be appreciable compared with their intrinsic dispersion ΔψA; 
algebraically: 

 
δψtA ≡  ΔψA /{d〈A〉/dt} 

 

Then we have δψtA ⋅ ΔψA ≥ , that would get to the discussed case when A is the 
energy11.  
 
5. Conclusions 
 Most of the debates engendered about the role of space and the time in quantum 
physics, could have been dissipated distinguishing among the space-time coordinates 
(that are c-numbers) and the dynamical variables (an inheritance of the analytical 
mechanics by the hamiltonian formalism) that characterize the behavior of the physical 
systems in space-time. Since the quantum objects are not reducible -not even ideally- to 
point-like corpuscles, a real “position operator” does not exist  in quantum theory, what 
balances the situation, because neither is there an “operator time.” The opposite belief, 
so common as it is, happens to be founded in a double mistake: on the one hand, to 
confuse the dynamical variables of position, typical of the particles, with the 
coordinates of points in space; and on the other, to assign the dynamical variables of 
position to physical entities, as quantum ones, for which they are essentially 
inappropriate. The indeterminacy relations are not the same when applied to x or t. As t 
has no dispersion, the physical meaning of this “fourth Heisenberg’s inequality” is 
different. 
 When we try to submerge the quantum theory in a relativistic formulation, the 
covariance requirements for space-time transformations become so demanding that we 
are even prevented from appealing to a so-called “position operator”: the concept of 
pointlike object gets lost ab initio, still in a much more transparent way that in the non-
relativistic quantum theory, and the entirety of the controversy becomes an obsolete 
one. Finally we would arrive at the domain of the quantum field theory, conceived as 
the royal road to insert the relativistic covariance in the quantum world. That is, at least, 

                                                 
11 Gillespie (1976), p. 74. 
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the general consent of the scientific community; a consent that-later on it will be seen-it 
has their own –and in no way negligible– inconveniences. But this is another story. 
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