On The Consecutive Integers $n+i-1=(i+1)P_i$

Chun-Xuan Jiang
P. O. Box 3924, Beijing 100854, China
and Institute for Basic Research
P.O .Box 1577, Palm Haror, FL 34682. U. S. A
Jiang chunxuan@vip.sohu.com

Abstract

By using the Jiang's function $J_2(\omega)$ we prove that there exist infinitely many integers n such that $n=2P_1$, $n+1=3P_2,\cdots$, $n+k-1=(k+1)P_k$ are all composites for arbitrarily long k, where P_1,P_2,\cdots,P_k are all primes. This result has no prior occurrence in the history of number theory.

AMS Mathematics subject classification: Primary 11N05, 11N32.

Theorem 1. There exist infinitely many integers n such that the consecutive inegers $n = 2P_1$, $n+1=3P_2$,..., $n+k-1=(k+1)P_k$ are all composites for arbitrarily long k, where P_1, P_2, \dots, P_k are all primes.

Proof. Suppose that $m = \prod_{i=1}^{k} (i+1)$. We define the prime equations

$$P_i = \frac{m}{i+1}x + 1,\tag{1}$$

Where $i = 1, 2, \dots, k$.

The Jiang's function [1] is

$$J_{2}(\omega) = \prod_{3 \le P} (P - k - 1 - \chi(P)) \ne 0$$
 (2)

where $\chi(P) = -k$ if $P^2 | m$; $\chi(P) = -k+1$ if P | m; $\chi(P) = 0$ otherwise,

$$\omega = \prod_{2 \le P} P.$$

Since $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many integers x such that P_1, P_2, \cdots, P_k are all primes.

We have the asymptotic formula of the number of integers $x \le N$ [1]

$$\pi_{k+1}(N,2) \sim \frac{J_2(\omega)\omega^k}{\phi^{k+1}(\omega)} \frac{N}{\log^{k+1} N},$$
(3)

where $\phi(\omega) = \prod_{2 \le P} (P-2)$.

From (1) we have
$$n = mx + 2 = 2\left(\frac{mx}{2} + 1\right) = 2P_1$$
, $n + 1 = mx + 3 = 3\left(\frac{m}{3}x + 1\right)$

$$=3P_2, \dots, n+k-1=mx+k+1=(k+1)\left(\frac{m}{k+1}x+1\right)=(k+1)P_k.$$

Example 1. Let k = 5, we have $n = 2 \times 53281$, $n+1 = 3 \times 35521$, $n+2 = 4 \times 26641$, $n+3 = 5 \times 21313$, $n+4 = 6 \times 17761$.

Theorem 2. There exist infinitely many integers n such that the consecutive inegers

 $n=(1+2^b)P_1$, $n+1=(2+2^b)P_2$,..., $n+k-1=(k+2^b)P_k$ are all composites for arbitrarily long k, where P_1, P_2, \dots, P_k are all primes.

Proof. Suppose that $m = \prod_{i=1}^{k} (i+2^{b})$. We define the prime equations

$$P_{i} = \frac{m}{i+2^{b}}x+1, (4)$$

Where $i = 1, 2, \dots, k$.

The Jiang's function [1] is

$$J_{2}(\omega) = \prod_{3 < P} (P - k - 1 - \chi(P)) \neq 0$$
 (5)

where $\chi(P) = -k$ if $P^2 | m$; $\chi(P) = -k+1$ if P | m; $\chi(P) = 0$ otherwise.

Since $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many integers x such that P_1, P_2, \cdots, P_k are all primes.

We have the asymptotic formula of the number of integers $x \le N$ [1]

$$\pi_{k+1}(N,2) \sim \frac{J_2(\omega)\omega^k}{\phi^{k+1}(\omega)} \frac{N}{\log^{k+1} N},$$
(6)

From (4) we have $n = mx + 1 + 2^b = (1 + 2^b) \left(\frac{m}{1 + 2^b} x + 1 \right) = (1 + 2^b) P_1$, n + 1 = 0

$$mx + 2 + 2^b = (2 + 2^b) \left(\frac{m}{2 + 2^b} x + 1 \right) = (2 + 2^b) P_2, \dots, \quad n + k - 1 = mx + k + 2^b = 0$$

$$(k+2^b)\left(\frac{m}{k+2^b}x+1\right)=(k+2^b)P_k$$
.

Example 2. Let b = 1 and k = 4, we have $n = 3 \times 27361$, $n + 1 = 4 \times 20521$, $n + 2 = 5 \times 16417$, $n + 3 = 6 \times 13681$.

Theorem 3. There exist infinitely many integers n such that the consecutive inegers $n = 3P_1$, $n + 2 = 5P_2$, \dots , $n + 2(k-1) = (2k+1)P_k$ are all composites for arbitrarily long k, where P_1, P_2, \dots, P_k are all primes.

Proof. Suppose that $m = \prod_{i=1}^{k} (2i+1)$. We define the prime equations

$$P_{i} = \frac{m}{2i+1}x+1, (7)$$

Where $i = 1, 2, \dots, k$.

The Jiang's function [1] is

$$J_{2}(\omega) = \prod_{3 < P} (P - k - 1 - \chi(P)) \neq 0$$
 (8)

where $\chi(P) = -k$ if $P^2 | m$; $\chi(P) = -k+1$ if P | m; $\chi(P) = 0$ otherwise.

Since $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many integers x such that P_1, P_2, \cdots, P_k are all primes.

We have the asymptotic formula of the number of integers $x \le N$ [1]

$$\pi_{k+1}(N,2) \sim \frac{J_2(\omega)\omega^k}{\phi^{k+1}(\omega)} \frac{N}{\log^{k+1} N},$$
(9)

From (7) we have $n = mx + 3 = 3(\frac{m}{3}x + 1) = 3P_1$, $n + 2 = mx + 5 = 5(\frac{m}{5}x + 1) =$

$$5P_2, \dots, n+2(k-1)=mx+2k+1=(2k+1)\left(\frac{m}{2k+1}x+1\right)=(2k+1)P_k$$

Example 3. Let k = 4, we have $n = 3 \times 631$, $n + 2 = 5 \times 379$, $n + 4 = 7 \times 271$, $n + 6 = 9 \times 211$.

Theorem 4. There exist infinitely many integers n such that the consecutive inegers $n = P_1$, $n + 2 = 3P_2$, \dots , $n + 2(k-1) = (2k-1)P_k$ are all composites for arbitrarily long k, where P_1, P_2, \dots, P_k are all primes.

Proof. Suppose that $m = \prod_{i=1}^{K} (2i - 1)$. We define the prime equations

$$P_i = \frac{m}{2i - 1}x + 1\tag{10}$$

where $i = 1, 2, \dots, k$.

The Jiang's function [1] is

$$J_{2}(\omega) = \prod_{3 < P} (P - k - 1 - \chi(P)) \neq 0$$
 (11)

where $\chi(P) = -k$ if $P^2 | m$; $\chi(P) = -k + 1$ if P | m; $\chi(P) = 0$ otherwise.

Since $J_2(\omega) \to \infty$ as $\omega \to \infty$, there exist infinitely many integers x such that P_1, P_2, \cdots, P_k are all primes.

We have the asymptotic formula of the number of integers $x \le N$ [1]

$$\pi_{k+1}(N,2) \sim \frac{J_2(\omega)\omega^k}{\phi^{k+1}(\omega)} \frac{N}{\log^{k+1} N},$$
(12)

From (10) we have $n = P_1 = mx + 1$, $n + 2 = mx + 3 = 3(\frac{m}{3}x + 1) = 3P_2, \cdots$,

$$n+2(k-1) = mx+2(k-1) = (2k-1)\left(\frac{m}{2k-1}x+1\right) = (2k-1)P_k.$$

Example 4. Let k = 4, we have n = 9661, $n + 2 = 3 \times 3221$, $n + 4 = 5 \times 1933$, $n + 6 = 7 \times 1381$.

Theorem 5. There exist infinitely many integers n such that the consecutive inegers $n = 3P_1$, $n + 4 = 7P_2$, ..., $n + 4(k - 1) = (4k - 1)P_k$ are all composites for arbitrarily long k, where P_1, P_2, \dots, P_k are all primes.

Example 5. Let k = 4, we have $n = 3 \times 2311$, $n + 4 = 7 \times 991$, $n + 8 = 11 \times 631$, $n + 12 = 15 \times 463$.

Theorem 6. There exist infinitely many integers n such that the consecutive inegers $n = 5P_1$, $n + 4 = 9P_2$, \cdots , $n + 4(k-1) = (4k+1)P_k$ are all composites for arbitrarily long k, where P_1, P_2, \cdots, P_k are all primes.

Reference

[1] Chun-Xuan Jiang. Foundations of Santilli's isonumber theory with applications to new cryptograms, Fermat's theorem and Goldbach's conjecture. International Academic Press, 2002 MR 2004c: 11001. http://www.i-b-r.org/docs/jiang/pdf.